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A simple fuzzy method to remove mixed

Gaussian-impulsive noise from colour images
Joan-Gerard Camarena, Valentı́n Gregori, Samuel Morillas and Almanzor Sapena

Abstract—Mixed impulsive and Gaussian noise reduction from
digital colour images is a challenging task because it is necessary
to appropriately process both types of noise that in turn need to
be distinguished from the original image structures such as edges
and details. Fuzzy theory is useful to build simple, efficient and
effective solutions for this problem. In this paper, we propose
a fuzzy method to reduce Gaussian and impulsive noise from
colour images. Our method uses one only filtering operation:
a weighted averaging. A fuzzy rule system is used to assign the
weights in the averaging so that both noise types are reduced and
image structures are preserved. We provide experimental results
to show that the performance of the method is competitive with
respect to state-of-the-art filters.

Index Terms—Color Image Filter, Fuzzy Metrics, Fuzzy Rules,
Vector Median Filter

I. INTRODUCTION

S
EVERAL sources and types of noise have been studied

regarding digital colour images. In many cases, more than

one noise type can contaminate the images. This happens for

instance in colour images containing some Gaussian noise

from the image acquisition phase (camera optics and CCD)

that are also contaminated with impulse noise due to trans-

mission errors or storage faults. Despite the existence of many

filtering solutions to reduce the different noise types separately

[1]-[3], only a few methods to process mixed noise have been

published and, moreover, most of them are developed for gray-

scale images.

The simplest way to reduce mixed noise from a digital

image is to consecutively apply several (usually two) specific

methods, one for each kind of noise in the image. However, the

application of several filters could dramatically decrease the

computational efficiency of the whole process which implies

that this solution could not be practical for real applications.

Therefore, it is more interesting to devise specific filters to

remove mixed noise.

To date, a few methods in the literature are able to approach

this problem efficiently. The Peer Group Averaging (PGA)

technique presented in [4]-[7] and extended to the fuzzy

context in [8] removes mixed noise by combining a statistical

method for impulse noise detection and replacement with an

averaging operation between the (fuzzy) peer group members

to smooth out Gaussian noise. The difference between these

methods relays on how to build the peer groups: [4], [5], [7]

use the Fisher Linear Discriminant, [6] uses region analysis

The authors are members of the Instituto Universitario de Matemática Pura
y Aplicada, Universidad Politécnica de Valencia, Spain. The authors acknowl-
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and [8] uses fuzzy rules. The Trilateral Filter (TF) [9] is

based on the well-known Bilateral Filter [10], [11] to smooth

Gaussian noise but including an impulse detector to be also

able to reject impulse noise. On the same basis, [12] includes a

switching mechanism in the bilateral filter to remove impulses.

The Adaptive Nearest Neighbor Filter (ANNF) and its variants

[13], [14] use a weighted averaging where the weights are

computed according to robust measures so that impulses that

receive lower weights are reduced. The Fuzzy Vector Median

Filter (FVMF) [15] performs a weighted averaging where the

weight of each pixel is computed according to its similarity to

the robust vector median. Another important family of filters

are the partition based filters [16], [17] that classify each pixel

to be processed into several signal activity categories which,

in turn, are associated to appropriate processing methods.

Similarly, [18] employs a Bayesian classification combined

with kernel regression. Another well studied solution is the

regularization approach [19]-[27] based on the minimization

of appropriate energy functions by means of Partial Differen-

tial Equations (PDEs). In this context, recently, it has been

proposed to use different minimization terms to reduce the

different noise types [25], to employ segmentation followed by

regularization [26], and to combine statistical noise detection

and regularization [27]. Other approaches propose to employ

image decomposition to separate and reduce noise [28], robust

gradient vector flow and diffusion models [29], or finite

element techniques [30]. Also, the problem of mixed Poisson-

Gaussian noise removal is studied in [31].

In this paper we propose a simple method to remove mixed

impulse and Gaussian noise from colour images which is based

on fuzzy logic. According to our proposal, each image pixel is

filtered only once using the same operation: a simple weighted

average over the pixels in a filtering window. The adaptive

nature of the method relays on how the weights involved are

computed, for which we use a fuzzy-rule based system. This

fuzzy system takes as input two sources of information on

the pixels in the filtering window: (i) the degree of noisiness

(from the impulsive point of view) computed using a statistical

method, and (ii) the degrees of similarity between the central

pixel and the rest of the pixels in the window. From this

information, the proposed method computes the weights that

allow to process each pixel in an appropriate way, reducing

the noise and preserving the image structures appropriately.

The paper is organized as follows. Section II describes the

proposed fuzzy method. Experimental results are provided in

Section III and, finally, conclusions are drawn in Section IV.
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Fig. 1. (a) Noise degree of a pixel Fi as a function f of ROD(Fi); (b)
Similarity of Fi with respect to F0 as a function of L1(F0,F

i)

II. PROPOSED FUZZY METHOD

Let F be a colour image to be processed, and let W be a

sliding filtering window, of size n×n (n = 3, 5, . . .), centered

at the pixel F0 under processing. The vectors in F are denoted

as Fi = (FR
i , FG

i , FB
i ), as usual in the RGB colour space.

The proposed method, that we name Simple Fuzzy Rule

Filter (SFRF), consists of replacing a pixel F0 of the image

by a pixel F̂0 which is a weighted average on certain selected

pixels in W , denoted by F
0,F1, . . . ,Fm, and it is given by

F̂0 = (

m∑

i=0

wi · F
i)/(

m∑

i=0

wi), (1)

where the weights wi ∈ [0, 1] are obtained through defuzzi-

fication using fuzzy logic inference by a fuzzy system. The

adaptivity of the method is given by the usage of these weights

and the way that they are computed. This set of weights is

different for each filtering window and depends on the local

features observed, which allows to appropriately process both

types of noisy pixels as well as the original image structures.

In the following subsections, we detail how to obtain these

weights for each filtering window. Mainly, we use two sources

of information: First, the noisiness, from the impulsive point

of view, of each pixel in the image; second, the similarities

observed between the pixel under processing and the rest of

the pixels in the window. From this information, a fuzzy rule

based system obtains the weights through fuzzy inference.

A. Noisiness of image pixels

In the first step we evaluate how noisy each image pixel is.

So, we assign a certainty degree δ(Fi) for the vague statement

“Fi is noisy” to each Fi as follows.

We order the pixels Fj in a window W ′ centered at Fi

which is also taken, for simplicity, of size n × n in the way

F(0),F(1), . . . ,F(n2
−1) according to a distance measure ρ, so

that ρ(Fi,F(0)) ≤ ρ(Fi,F(1)) ≤ · · · ≤ ρ(Fi,F(n2
−1)), where

obviously F(0) = Fi. As the distance measure ρ we use the

metric L∞ given by

L∞(Fi,Fj) = max{|FR
i − FR

j |, |FG
i − FG

j |, |FB
i − FB

j |}, (2)

for its high sensitivity to impulse noise detection (see [32]).

Now, we consider the s+1 first pixels F(0),F(1), . . . ,F(s)

and compute the RODs statistic for the pixel Fi, which is an

adaptation of the definition in [9] to the colour case, as:

RODs(Fi) =

s∑

j=0

L∞(Fi,F(j)) (3)

Since Fi = F(0) then L∞(Fi,F(0)) = 0 and RODs

takes integer values in the interval [0, 255s]. A low value of

RODs(Fi) means that the selected s + 1 pixels F(j) in W ′

are close to Fi which in turn means that Fi is expected to be

noise-free. Moreover, higher values of RODs(Fi) indicate a

higher noise degree for Fi, since no close pixels are found.

The setting of the parameter s is discussed in Section III.
Now, if we put x = RODs(Fi) we define the certainty

degree δ(Fi) for the vague statement “Fi is noisy” by

δ(Fi) = f(x) =






0 x ≤ k1
x− k1
k2 − k1

k1 < x < k2

1 k2 ≤ x

, (4)

where the settings of the parameters k1 and k2 will be

commented in Section III. Notice that in all this work we are

employing linear membership functions instead of exponential

membership functions to lower the computational complexity.

Finally, we assign to each pixel Fi of F a certainty degree

of the vague statement “Fi is not noisy”. Representing the

negation by the fuzzy involutive operator, it will be given by

1− δ(Fi). The corresponding fuzzy sets, f and 1−f , defined

on [0, 255s] are shown in Figure 1 (a).

B. Similarities between the pixel under processing and the rest

of the pixels in the window

In the second step we are interested in analyzing the

similarity between the pixel under processing F0 and the

rest of the pixels in the sliding window W . To measure the

similarity between two pixels we now use the metric L1:

L1(Fi,Fj) = |FR
i − FR

j |+ |FG
i − FG

j |+ |FB
i − FB

j | (5)

Here, we prefer to use this metric instead of the L∞ above

because the latter is not suitable to measure similarity since

it focus on the biggest difference found among the colour

components and not in their similarities. The L1 metric is

much better for measuring the similarity because its com-

putation takes into account the three components of the two

pixels under comparison and the differences between the pixels

components are not emphasized, unlike other metrics such as

the L∞ or the Euclidean (L2), where they are powered. In

fact, in [32], [33], [34] it has been studied the influence on

a filter performance of the metric used and it was concluded

that depending on the purpose some metrics are more suitable

than others. Therefore, here we choose using two different

metrics in two different parts of the filter because, as we have

seen, the purpose of each part is totally different. On the

other hand, the additional computational cost is practically

negligible because the absolute value differences have been

evaluated before, when computing L∞.

Now, using the similarities observed, we will assign to

certain selected pixels of W , denoted by F
i, a certainty

degree in the vague statements: the similarity between F
i and

F0 is “high”, “medium” and “low”, denoted by µH(F0,F
i),

µM (F0,F
i) and µL(F0,F

i), respectively.

But previously, we select the pixels that will be involved in

the filtering operation. Using the distance L1(F0,Fj) between

each pixel Fj of W and the pixel under processing F0 we

introduce a new ordering for the n2 pixels of W in the ordered

set W ∗ = {F0,F1, . . . ,Fn2
−1} such that
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L1(F0,F
0) ≤ L1(F0,F

1) ≤ · · · ≤ L1(F0,F
n2

−1)

where, obviously, F0 = F0. Then, we select the first m+1
pixels F0, . . . ,Fm to avoid pixels very different from F0 being

involved in the filtering. The setting of the parameter m is

discussed in Section III.
Now, to assign the certainty degrees of the three vague

propositions above we perform as follows: we put x =
L1(F0,F

i) and we define µH(F0,F
i) = gH(x) by

gH(x) =






1 x ≤ a
−x/(3a) + 4/3 a < x < 4a

0 4a ≤ x
(6)

Using the fuzzy negation, we assign µL(F0,F
i) = 1 −

µH(F0,F
i). The certainty for µM (F0,F

i) = gM (x) is

gM (x) =






(x− a)/a a < x < 2a
1 2a ≤ x ≤ 3a

(4a− x)/a 3a < x < 4a
0 elsewhere

(7)

The corresponding fuzzy sets, gH , 1−gH , and gM defined on

[0, 3 · 255] are represented in Figure 1 (b). The best value of

the a parameter in (6) and (7) depends on the noise intensity,

and its optimization will be discussed in Section III.

C. Fuzzy system and computation of weights

To compute the weights involved in the filtering average

operation we now use a fuzzy rule based system and fuzzy in-

ference. The fuzzy system use the vague statements described

in the previous subsections to decide whether each weight in

(1) should be large, medium or small. Finally, defuzzification

is used to obtain the particular value for each weight.

The objective of the rules in the fuzzy system can be

summarized in two main ideas: (i) pixels that are noisy should

be assigned to a small weight, and (ii) pixels that are noise-

free can only be associated to a larger weight if either they are

similar to the central pixel or if the central pixel is noisy. This

latter idea, for the different cases to be found, is summarized

in the following tree fuzzy rules:

1) IF (Fi is not noisy AND F0 is noisy AND the similarity
between F0 and F

i is medium)
THEN wi is a medium weight

2) IF (Fi is not noisy AND F0 is noisy AND the similarity
between F

i and F0 is low)

OR (Fi is not noisy AND F0 is not noisy AND the
similarity between F

i and F0 is high)

THEN wi is a large weight
3) IF (Fi is noisy)

OR (Fi is not noisy AND F0 is noisy AND the similarity
between F

i and F0 is high)
OR (Fi is not noisy AND F0 is not noisy AND the
similarity between F

i and F0 is medium)
OR (Fi is not noisy AND F0 is not noisy AND the
similarity between F

i and F0 is low)

THEN wi is a small weight

Before performing the fuzzy inference process we need to

define the fuzzy sets corresponding to the consequents of the

fuzzy rules. Each weight wi ∈ [0, 1] is associated to a certainty

Fig. 2. Fuzzy sets νL, νM and νS .

degree in the vague statements “wi is a large weight”, “wi is

a medium weight” and “wi is a small weight” denoted by

νL(wi), νM (wi) and νS(wi), respectively. The fuzzy sets νL,

νM and νS are represented in Figure 2, where we have selected

triangular-shape fuzzy membership functions for simplicity of

the defuzzification process, as follows:

νM (wi) =






(2wi − 1)/(2b− 1) + 1 1− b < wi ≤ 0.5

(1− 2wi)/(2b− 1) + 1 0.5 < wi < b

0 elsewhere

(8)

νL(wi) = (wi−1)/(1−b)+1 if b < wi ≤ 1 and 0 elsewhere (9)

νS(wi) = wi/(b− 1)+ 1 if 0 ≤ wi ≤ 1− b and 0 elsewhere (10)

The value of the b parameter has been set experimentally and

it will be discussed in Section III.

Now, for computing the certainty degree of the antecedents

of the Fuzzy Rules, following the usual procedure in fuzzy

logic, we apply the conjunction operation AND and the

disjunction operation OR by means of a t-norm ∗ and its

associated s-norm ∗′, respectively. In this paper we use the

usual product as the t-norm and the probabilistic addition as

the s-norm.

The certainties of the antecedents are assigned to the con-

sequents, and finally, by defuzzification, we obtain the weight

wi of the pixel Fi. In so doing, we have used the centroide

technique, or center of gravity (COG), which is the most

popular defuzzification method ([35], [36], [37]) as follows.

Suppose that, for a pixel Fi, ym, yl and ys are the certainty

degrees of the consequents in rules 1), 2) and 3) above, respec-

tively. In Figure 2, consider the triangles defined by νM , νL
and νS and the constant functions y = ym, y = yl, y = ys.

Taking the surface in each of the mentioned triangles and

under each one of the three constant functions, respectively,

three trapeziums are built. The poligonal line constituted by

the tops and sides of these trapeziums determines a fuzzy set A
on [0, 1] which is integrable in the Riemann (classical) sense.

The abscissa of the center of gravity of the area under A is

the weight wi. So, wi =
(∫ 1

0
x ·A(x) dx

)
/
(∫ 1

0
A(x) dx

)

The weights for the pixels F
i for i = 0, 1, . . . ,m allow to

apply equation 1 for obtaining the desired denoised pixel F̂0.

III. EXPERIMENTAL STUDY

In this section, several images have been considered to

evaluate the performance of the proposed filter. Two types of

impulse noise (fixed-value and random-value) and the classical

model for Gaussian noise [1], [38] have been considered.

The images of Lenna, Flower, Parrots and Motorbikes (see

Fig. 3) have been corrupted with Gaussian noise followed by
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(a) (b) (c) (d)

Fig. 3. Test Images: (a) Lenna, (b) Flower [39], (c) Motorbikes [39], (d)
Parrots

TABLE I
PERFORMANCE IN TERMS OF AVERAGE PSNR WHEN FILTERING THE

IMAGES FLOWER AND LENNA CONTAMINATED WITH DIFFERENT

DENSITIES OF THE TWO TYPES OF MIXED NOISE CONSIDERED FOR

DIFFERENT VALUES OF THE s PARAMETER.

Noise s = 2 s = 3 s = 4 s = 5
σ = 5, p = 0.05 31.75 30.78 31.05 30.19
σ = 10, p = 0.1 29.66 29.63 29.62 28.83
σ = 15, p = 0.15 27.77 27.72 27.19 26.80
σ = 20, p = 0.2 26.24 26.23 26.32 25.55
σ = 25, p = 0.25 25.64 25.47 25.05 24.48
σ = 30, p = 0.3 24.92 24.49 24.45 24.69

one type of impulse noise with different noise intensities. From

now on, we represent the standard deviation of Gaussian noise

as σ ∈ [5, 30] and the probability of impulse noise appearance

as p ∈ [0.05, 0.3].
The filters performance has been evaluated by using the

common objective measures MAE (Mean Absolute Error),

that measures the detail preserving, PSNR (Peak Signal to

Noise Ratio), that measures the noise suppression, and NCD

(Normalized Color Difference), that measures the color preser-

vation, as defined in [1], [38].

A. Adjustment of Parameters

In the proposed filter, several parameters are involved

(m, s, k1, k2, a, b). For their adjustment, we have analyzed the

PSNR performance as a function of them and for it we have

used the test images of Flowers and Lenna (Figure 3 (e), (f)),

corrupted with the two mixtures of the different noise models

(Gaussian and random-value impulse and Gaussian and fixed-

value impulse).

First, recall that the value m is the number of weighted

pixels in the filtering window which will compute in the

output (1). The value of the parameter s indicates the number

of pixels which will compute in Eq. (3) to determine the

noisy degree of a pixel. Both parameters have been selected

according to the window size taking into account that it should

involve a minimum number of pixels to be able to suppress the

Gaussian noise and less than a maximum number of pixels to

avoid excessive image blurring. We have extensively studied

the 3×3 case, which is commonly used in the literature [8], and

from our experiences the most appropriate setting to optimize

overall PSNR is m = 7 and s = 2. Table I shows the average

PSNR for the images Flower and Lenna contaminated with

different densities of the two types of mixed noise for different

values of s, where we can see that s = 2 provides the best

overall results but that a higher value of s (s = 3, 4) could

be used without significantly decreasing the performance. An

analogous procedure has led us to set m = 7.

The k1 and k2 parameters in (4) are used to determine

the noise degree of a pixel from RODs(Fi). Recall that if

the value of RODs(Fi) is lower than k1 then the pixel has

a noise degree of 0, whereas if RODs(Fi) is greater than

k2 then the pixel has a noise degree of 1. For intermediate

values the corresponding certainty is given by a linear as-

cending relation, as explained before. The setting of k1 and

k2 is very important to obtain appropriate certainty degrees

and should be set according to the image noise level. Our

experiences have determined that PSNR optimal values for k1
and k2 are obtained for k1 ∈ [0.45RODmax, 0.55RODmax]
and k2 ∈ [0.55RODmax, 0.65RODmax] where RODmax =
max{RODs(Fi) : Fi ∈ F}. Therefore, these parameters can

be automatically set in the filter. In particular, we have fixed

the values k1 = 0.5RODmax and k2 = 0.6RODmax as robust

settings for the proposed filter.

The a parameter in Eq. (6) and Eq. (7) determines how the

degrees of similarity are computed. For lower noise levels, a

small value of a is appropriate but the value should increase as

the noise level grows. We have tried to relate the appropriate

value for a with the density of Gaussian noise in the image,

since it critically influences the observed similarities. We have

obtained the PSNR optimal values for a varying proportionally

p and σ in their corresponding ranges. Then, we performed a

linear regression study, that relates a with σ as a = 0.998σ+
1.960. So, we have obtained a way to automatically set a
adaptively to the noise level. Notice that this noise level can

be estimated using the technique described in [8].

Finally, the b parameter in Eqs. (8-10) is used to determine

the weight associated to each pixel in the image through

defuzzification of the corresponding certainty degrees of the

vague statements. After several experiences, our results show

that an appropriate setting is b = 0.9.

B. Performance of the proposed method.

First we assess the performance of the proposed Simple

Fuzzy Rule Filter (SFRF) in the noise detection phase. We

assume that all pixels are contaminated with Gaussian noise

so we just evaluate the performance of the impulse noise de-

tection. Given that our noise detection is fuzzy, we compute as

a measure of the detection error the absolute value difference

between the fuzzy noise degree δ(Fi), determined for each

pixel Fi, and the values 1 or 0 depending on whether the orig-

inal pixel has been corrupted with impulse noise or not. Since

we apply the filtering process iteratively, after k iterations we

have k different noise degrees δ(Fi)
1, δ(Fi)

2, . . . , δ(Fi)
k. We

take as global noise degree δ(Fi)
G to measure the detection

error the result of applying the OR operation among all these

k degrees, that is: δ(Fi)
G = δ(Fi)

1 OR δ(Fi)
2 OR . . .

OR δ(Fi)
k, using the probablistic addition as the s-norm

modeling the OR operation. The detection performance for

a whole image is given by the average of all absolute value

differences computed. The results shown in Table II suggest

that the impulse noise detection is accurate, since detection

errors obtained are low. In addition, it should be taken into

account that the images are also contaminated with Gaussian

noise, which means that when a pixel is contaminated only
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TABLE II
ERROR IN IMPULSE NOISE DETECTION MEASURED IN TERMS OF MEAN ABSOLUTE ERROR OVER THE FLOWER AND MOTORBIKES IMAGES

CONTAMINATED WITH DIFFERENT DENSITIES OF MIXED GAUSSIAN AND FIXED/RANDOM-VALUE IMPULSE NOISE, CORRECTION TERM c AND CORRECTED

ERRORS (INDICATED WITH ∗).

Image σ = 5 σ = 10 σ = 15 σ = 20 σ = 25 σ = 30
and p = 0.05 and p = 0.1 and p = 0.15 and p = 0.2 and p = 0.25 and p = 0.3

Flower Random-value 0.040 0.054 0.109 0.136 0.135 0.175
Flower Fixed-value 0.056 0.052 0.076 0.104 0.117 0.135

Motorbikes Random-value 0.016 0.018 0.035 0.053 0.075 0.098
Motorbikes Fixed-value 0.024 0.015 0.028 0.037 0.075 0.114

Correction term c 0.000 0.000 0.000 0.001 0.008 0.037
Flower Random-value∗ 0.040 0.054 0.109 0.135 0.127 0.138

Flower Fixed-value∗ 0.056 0.052 0.076 0.103 0.109 0.098
Motorbikes Random-value∗ 0.016 0.018 0.035 0.052 0.067 0.061

Motorbikes Fixed-value∗ 0.024 0.015 0.028 0.036 0.067 0.077

TABLE III
COMPARISON OF THE PERFORMANCE MEASURED IN TERMS OF MAE, PSNR, AND NCD (×102) USING THE TEST IMAGES CONTAMINATED WITH

DIFFERENT DENSITIES OF MIXED GAUSSIAN AND RANDOM-VALUE IMPULSIVE NOISE

Filter σ = 5 Gaussian σ = 10 Gaussian σ = 20 Gaussian σ = 30 Gaussian

and p = 0.05 impulse and p = 0.1 impulse and p = 0.2 impulse and p = 0.3 impulse

MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

Parrtos

None 7.87 20.54 8.23 14.06 18.13 14.77 27.31 14.71 28.43 39.04 12.62 39.76

VMF 12.63 20.18 6.36 13.71 19.97 7.76 17.06 19.06 10.74 21.08 17.98 14.38

AMF 13.96 20.93 7.72 16.04 20.35 9.81 21.40 18.70 14.64 27.37 17.00 18.67

ANNF 12.89 20.3 5.69 13.28 20.22 6.25 15.14 19.86 8.12 18.41 18.98 10.48

PGA 9.82 22.91 5.53 11.02 22.38 7.08 14.28 20.55 9.72 18.04 18.86 11.89

TF 6.34 24.66 5.66 10.74 21.67 7.55 14.79 19.22 10.63 17.71 18.27 11.96

TF 5×5 6.49 23.01 6.92 9.75 21.43 9.12 15.97 18.67 14.44 21.66 17.24 18.66

FVMF 12.41 20.22 6.12 13.16 20.04 7.00 15.46 19.33 8.76 18.04 18.54 10.68

FPGA 5.95 26.43 3.64 9.26 22.52 5.49 12.80 20.42 7.82 15.03 19.85 9.48

SFRF 6.33 26.32 3.72 7.38 25.66 4.71 11.18 22.52 7.06 15.30 20.43 9.64

SFRF5×5 5.97 25.28 3.71 8.28 23.57 5.74 14.95 19.82 10.27 18.89 18.45 12.47

SFRF7×7 5.49 26.28 3.74 7.61 24.99 5.60 13.50 21.23 10.09 19.06 18.78 13.38

Lenna

None 7.88 20.79 8.24 14.27 18.26 15.23 27.68 14.76 28.24 37.43 13.17 38.40

VMF 6.77 27.02 5.01 8.31 25.91 6.55 11.64 23.68 9.90 15.24 21.84 13.52

AMF 8.99 25.59 7.10 11.09 24.09 9.85 16.74 21.06 15.30 21.29 19.23 19.29

ANNF 6.81 26.99 4.41 7.42 26.63 5.21 9.38 25.38 7.45 12.29 23.60 10.04

PGA 5.92 28.58 4.49 7.44 27.30 6.23 10.11 24.80 8.71 12.73 23.07 10.73

TF 4.71 27.12 5.08 7.14 26.15 6.31 9.70 24.44 8.12 12.12 23.23 10.32

TF 5×5 6.13 24.06 6.57 8.39 23.02 8.59 13.55 20.34 13.11 16.59 19.92 15.63

FVMF 6.59 27.05 4.81 7.77 26.09 5.80 9.68 24.81 7.88 11.93 23.47 9.54

FPGA 4.10 31.13 3.21 6.02 28.23 4.69 8.24 26.11 6.77 10.56 24.56 9.00

SFRF 3.86 32.65 3.00 5.42 29.28 4.83 8.30 26.17 6.83 11.78 23.49 9.85

SFRF 5×5 3.64 32.35 3.00 5.64 29.30 5.05 9.95 25.28 8.91 12.84 23.28 10.96

SFRF 7×7 4.05 30.53 3.28 6.20 27.73 5.30 10.93 24.07 9.57 14.66 22.12 12.92

Motorbikes

None 7.71 21.09 9.77 14.74 18.11 18.77 27.87 14.82 34.20 39.02 12.92 46.34

VMF 8.74 24.41 6.77 10.62 23.43 8.97 14.00 21.90 13.18 17.95 20.19 17.69

AMF 10.63 24.07 8.61 13.15 22.72 11.87 18.26 20.37 17.15 23.42 18.46 21.51

ANNF 8.81 24.63 5.88 9.58 24.28 6.96 11.66 23.30 9.66 14.94 21.62 12.77

PGA 7.26 26.70 6.15 8.81 25.51 8.36 11.84 23.18 11.46 15.05 21.35 14.19

TF 5.283 26.32 6.71 8.55 24.47 8.63 12.00 22.41 11.33 14.79 21.24 13.83

TF 5×5 6.10 23.87 8.08 9.24 22.15 11.12 14.6 19.94 16.24 18.54 18.91 19.92

FVMF 8.60 24.39 6.62 9.73 23.82 7.93 12.12 22.55 10.32 14.71 21.29 13.12

FPGA 4.63 29.94 4.29 7.11 26.19 6.32 10.01 23.93 9.00 12.51 22.66 11.82

SFRF 4.65 30.49 4.18 6.63 27.79 6.06 10.23 24.19 9.03 14.15 21.66 12.39

SFRF 5×5 4.23 30.01 4.08 6.47 27.39 6.78 11.40 23.64 11.86 15.05 21.62 14.76

SFRF 7×7 4.44 29.01 4.34 6.89 26.37 6.98 12.16 22.82 12.57 16.50 20.77 16.17

Flower

None 7.69 21.25 8.23 14.50 18.39 15.68 27.10 15.16 29.29 38.26 13.21 40.83

VMF 6.91 27.15 4.61 8.71 25.80 6.39 12.04 23.62 9.71 15.55 21.66 13.29

AMF 8.81 25.79 6.28 11.20 24.15 8.93 15.84 21.54 13.34 20.73 19.47 16.93

ANNF 7.17 27.01 3.90 7.82 26.61 4.71 9.67 25.32 6.98 12.46 23.46 9.14

PGA 6.17 28.40 4.21 7.76 27.08 6.06 10.72 24.52 8.94 13.21 22.92 10.76

TF 4.66 27.89 5.05 7.55 26.53 6.02 10.41 24.43 7.78 12.39 23.38 10.43

TF 5×5 5.95 24.56 6.58 8.65 23.40 8.74 13.04 21.32 12.52 16.47 20.29 15.60

FVMF 6.79 27.15 4.49 8.22 26.05 5.66 10.41 24.57 7.75 12.61 23.20 9.60

FPGA 4.45 31.04 3.06 6.39 28.29 4.52 8.79 25.96 6.93 10.96 24.48 8.71

SFRF 3.83 32.44 2.92 5.88 29.45 4.33 9.26 25.55 6.91 11.93 23.56 8.79

SFRF 5×5 3.76 32.20 2.92 5.99 29.10 5.11 10.37 25.10 9.39 13.19 23.20 11.17

SFRF 7×7 4.09 30.65 3.12 6.48 27.64 5.32 11.39 23.97 10.03 15.05 22.01 12.76

with a high Gaussian noise, it could also be considered an

impulse. This is appropriate from the noise reduction point of

view but it is considered an error by our statistic. To take this

into account we introduce a correction term to our statistic.

The correction term c represents the probability of an image

pixel to be highly contaminated with Gaussian noise so that

our method could detect it as an impulse. We compute c, which

depends on σ, as the probability of any of the Gaussian random

values added to the R, G, and B channels to be higher than th
or lower than −th setting th = 75. The corrected mean error

is obtained by subtracting c from the original error. Notice

that a correction term c significantly larger than 0 can only be

found for high density Gaussian noise.

Second, the performance of the SFRF is compared with the

classical Arithmetic Mean Filter (AMF), the Vector Median

Filter (VMF) and a series of state-of-the-art filters able to

reduce both Gaussian and impulse noise: Adaptive Nearest

Neighbor Filter (ANNF) [13], [14], Trilateral Filter (TF)

[9](applied in a componentwise manner), Fuzzy Vector Median

Filter (FVMF) [15], Peer Group Averaging (PGA) [7], and

Fuzzy Peer Group Averaging Filter (FPGA) [8]. All filters have

been applied on a 3 × 3 filter window in an iterative fashion

with the same stop condition. Also, the proposed SFRF and the

TF have been used with larger filtering windows and one only

filtering (no iterations), adjusting the parameters appropriately.

From the experimental results in Tables III-IV it can be

observed that for both types of mixed noise considered, the

two best-performing filters are the proposed SFRF and the

FPGA (the best results are marked in bold). The PGA and

the TF are able to provide competitive performance only for
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TABLE IV
COMPARISON OF THE PERFORMANCE MEASURED IN TERMS OF MAE, PSNR, AND NCD (×102) USING THE TEST IMAGES CONTAMINATED WITH

DIFFERENT DENSITIES OF MIXED GAUSSIAN AND FIXED-VALUE IMPULSIVE NOISE

Filter σ = 5 Gaussian σ = 10 Gaussian σ = 20 Gaussian σ = 30 Gaussian

and p = 0.05 impulse and p = 0.1 impulse and p = 0.2 impulse and p = 0.3 impulse

MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

Parrtos

None 6.11 21.73 8.08 11.84 18.84 15.70 23.69 15.02 30.23 32.96 13.38 41.92

VMF 12.17 20.50 6.20 13.38 20.14 7.70 16.10 19.27 10.91 18.32 18.65 14.00

AMF 13.08 21.29 7.24 14.61 20.78 9.43 18.35 19.57 13.67 21.04 18.73 16.96

ANNF 12.65 20.40 5.63 13.02 20.34 6.21 14.16 20.05 7.741 15.66 19.56 9.76

PGA 9.40 23.32 5.56 10.75 22.85 7.40 14.13 20.52 10.15 16.05 19.6 11.79

TF 5.48 26.46 5.00 10.31 22.10 7.41 14.28 19.18 9.96 16.69 18.16 12.58

TF 5×5 4.89 25.41 6.175 7.78 23.74 8.31 13.54 19.59 13.56 17.40 18.26 17.81

FVMF 12.00 20.40 6.04 13.02 20.06 7.03 14.54 19.52 8.33 16.12 18.74 9.54

FPGA 5.93 26.05 3.71 8.98 22.84 5.48 12.29 20.85 7.68 13.96 19.99 9.17

SFRF 5.89 27.52 3.61 7.11 26.20 4.73 10.00 23.38 6.76 12.41 21.88 8.79

SFRF 5×5 5.43 26.53 3.66 7.73 24.50 5.86 13.55 21.01 10.82 18.05 18.84 14.04

SFRF 7×7 4.69 29.32 3.61 6.77 27.14 5.67 11.89 22.79 10.69 16.55 20.41 15.37

Lenna

None 6.07 22.31 7.88 12.10 18.80 15.12 23.45 15.43 28.24 34.10 13.28 39.76

VMF 6.55 27.28 4.86 8.11 26.09 6.42 11.10 24.13 9.83 13.36 22.87 12.47

AMF 7.74 26.55 6.12 9.70 25.06 8.36 13.41 22.84 12.52 17.05 20.99 16.45

ANNF 6.67 27.11 4.31 7.23 26.80 5.00 8.52 26.02 6.62 10.22 24.78 8.61

PGA 5.81 28.80 4.59 7.34 27.38 6.35 9.88 24.89 8.67 11.36 23.98 9.90

TF 3.82 30.32 4.45 6.67 27.20 5.80 8.88 25.25 7.86 11.24 23.76 9.54

TF 5×5 4.48 27.45 5.56 6.62 25.74 7.20 10.69 22.43 10.77 14.28 20.28 14.37

FVMF 6.40 27.30 4.67 7.48 26.42 5.56 9.16 25.17 7.44 10.68 24.33 8.97

FPGA 3.98 31.35 3.26 5.97 27.80 4.78 7.98 26.54 6.60 9.79 25.00 8.57

SFRF 3.44 33.52 2.94 5.07 30.64 4.07 7.78 26.66 6.24 9.61 25.19 8.42

SFRF 5×5 3.40 33.81 2.91 5.32 30.34 4.87 9.53 25.83 9.00 12.51 23.69 11.71

SFRF 7×7 3.54 33.43 3.06 5.34 29.94 5.04 10.01 25.12 9.57 14.01 22.60 13.46

Motorbikes

None 6.20 22.08 9.91 12.36 18.74 19.33 24.21 15.22 36.14 35.01 13.17 50.30

VMF 8.55 24.59 6.69 10.15 23.79 8.76 13.02 22.47 12.96 16.03 21.11 17.76

AMF 9.78 24.57 8.13 11.65 23.54 11.22 15.37 21.69 16.39 18.74 20.19 20.40

ANNF 8.68 24.73 5.81 9.26 24.50 6.76 10.78 23.87 9.21 12.86 22.66 11.63

PGA 7.11 26.96 6.36 8.91 25.41 8.69 11.45 23.51 11.79 13.35 22.31 13.59

TF 4.48 28.31 6.23 7.97 25.41 8.08 11.24 22.95 10.80 13.61 21.69 13.88

TF 5×5 4.72 26.05 7.62 7.27 24.55 9.90 12.16 21.13 15.07 16.12 19.26 19.33

FVMF 8.24 24.72 6.45 9.21 24.26 7.67 11.14 23.20 9.79 12.91 22.29 12.21

FPGA 4.58 29.56 4.41 6.96 26.22 6.43 9.51 24.61 9.27 11.75 23.23 11.67

SFRF 4.05 31.67 4.15 6.24 28.33 6.03 8.94 25.53 8.89 11.81 23.23 11.62

SFRF 5×5 3.95 31.20 4.07 6.03 28.44 6.85 10.80 24.29 12.56 14.65 21.65 16.46

SFRF 7×7 3.93 31.52 4.26 6.09 28.26 7.04 10.94 23.97 13.25 15.93 21.11 19.11

Flower

None 6.23 22.19 8.25 12.48 18.70 16.14 24.17 15.36 30.87 35.07 13.32 43.88

VMF 7.06 27.01 4.63 8.45 26.10 6.33 11.34 24.17 9.75 14.03 22.56 13.10

AMF 8.05 26.40 5.82 10.06 24.86 8.51 13.63 22.76 12.77 16.92 21.06 15.95

ANNF 7.06 27.19 3.83 7.63 26.82 4.63 9.09 25.91 6.85 11.09 24.41 8.76

PGA 6.02 28.78 4.33 7.59 27.31 6.26 10.34 24.85 9.11 12.12 23.64 10.62

TF 3.98 29.56 4.66 7.16 27.27 5.76 9.35 25.40 7.68 11.55 23.68 9.77

TF 5×5 4.64 26.76 5.99 7.18 25.09 7.94 11.41 22.14 11.97 14.99 20.14 15.59

FVMF 6.57 27.47 4.38 7.90 26.40 5.53 9.81 25.15 7.66 11.39 24.04 9.17

FPGA 4.46 30.30 3.21 6.36 27.66 4.67 8.54 26.37 7.05 10.77 24.59 8.99

SFRF 3.64 33.08 2.93 5.93 27.88 5.42 8.61 26.28 6.84 10.73 24.57 8.57

SFRF 5×5 3.54 33.33 2.91 5.65 30.01 5.16 10.10 22.53 10.29 13.51 23.11 13.20

SFRF 7×7 3.69 32.70 3.08 5.90 29.15 5.33 10.81 24.49 11.02 15.34 21.78 15.70

low noise. On the other hand, for higher noise, the ANNF and

FVMF perform pretty robustly. The rest of the filters in the

comparison (AMF, VMF) perform quite worse in general. The

use of a larger filtering window instead of an iterative filtering

seems to work well only in some cases and for low noise.

In Figure 4 we show some outputs of the best performing

filters in each case, where we can see that the performance of

the proposed method is also competitive from the visual point

of view. For instance, in Figures 4 (a)-(h) we can see that

SFRF performs better than FPGA and PGA, generating more

smoothed flat regions and appropriately preserving image

edges. However, in Figures 4 (i)-(p), SRFR is able to better

reduce the noise than the PGA and ANNF but a little worse

than FPGA. But, on the other hand, SFRF preserves better

the image details. It should be pointed out that these filtering

results use a parameter setting which has been obtained

through PSNR optimization. On the one hand, it is known

that PSNR does not perfectly match visual quality. Also, on

the other hand since, in general, images contain more plain

areas than edges, the former weigh more in the adjustment than

the latter, which makes that optimal PSNR does not perfectly

correspond with optimal visual image quality in the sense

of edge preservation. To optimize visual quality, a different

adjustment could be made based on subjective criteria. For

instance, regarding the m parameter in SFRF, in Figure 5 we

show that using a lower value as m = 4 could provide a little

better edge and detail preservation than m = 7.

IV. CONCLUSIONS

In this paper, we propose a simple and effective fuzzy

method to reduce Gaussian and impulsive noise from colour

images. The method uses one only filtering operation, a

weighted averaging, which uses a set of weights computed by

a fuzzy rule system. In turn, the fuzzy rule system uses two

sources of information on the pixels in each filtering window:

(i) their degrees of noisiness (from the impulsive point of view)

computed using a statistical method, and (ii) the degrees of

similarity between the central pixel and the rest of the pixels

in the window. Experimental results show that the method is

able to reduce noise and preserve image details, providing

competitive results.
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