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Abstract

Based on the Lyapunov stabilization theory and Gerschgorin theorem, a simple generic criterion is derived for global

synchronization of two coupled chaotic systems with a unidirectional linear error feedback coupling. This simple

criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. To

demonstrate the efficiency of design, the suggested approach is applied to some typical chaotic systems with different

types of nonlinearities, such as the original Chua’s circuit, the modified Chua’s circuit with a sine function, and the

R€oossler chaotic system. It is proved that these synchronizations are ensured by suitably designing the coupling pa-
rameters.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chaos synchronization [3,26] has been investigated for a decade, for which many effective methods have been

presented [1–4,6–11,14,15,17–20,23–26,29,30,33–35]. Due to the simple configuration and ease of implementation in

real systems, the unidirectional linear error feedback coupling scheme turns out to be one of the most efficient methods

for chaos synchronization [10,11,14,15,19,20,29]. In order to design a response (or slave) chaotic system based on the

unidirectional linear error feedback methodology, the choice of the feedback gain (or coupling parameters) is the key

problem in consideration. For Lur’e systems, some LMI conditions have been suggested for determining the feedback

gains (or coupling parameters) [8,29,30]. In [20], the in-phase solution decomposition method has been introduced to

determine the feedback gains for Lorenz system, Chen system and newly found L€uu system. For a general chaotic
system, a generic condition of global chaos synchronization has also been established via a Riccati matrix inequality

with some time-varying parameters related to the nonlinearity of the chaotic system [14].

The aim of this paper is to further develop a simple but generic criterion for the global synchronization of two

coupled general chaotic systems, along with a simple configuration for the corresponding implementation. More

precisely, in this paper, the synchronization of two coupled chaotic systems using the unidirectional linear error

feedback scheme is studied based on the Lyapunov stability theory [16,22] and Gerschgorin’s theorem [12], and a simple

generic condition for global chaos synchronization of two coupled chaotic systems is derived. This condition for chaos

synchronization is in the form of a few algebraic inequalities, which is very convenient to verify.

The layout of this paper is as follows. In Section 2, based on the Lyapunov stability theory and Gerschgorin’s

theorem, the generic condition for global synchronization is derived for two coupled chaotic systems using the
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unidirectional linear error feedback coupling scheme. A criterion for the global synchronization is then established in

the form of a few algebraic inequalities. In Section 3, this criterion is applied to some typical chaotic systems with

different types of nonlinearities, such as the original Chua’s circuit, the modified Chua’s circuit with a sine function, and

the R€oossler system. To that end, conditions for choosing the feedback gain (or coupling parameters) are devised to
ensure the global synchronization for these chaotic systems. Finally, some concluding remarks are given in Section 4.

2. A criterion for global chaos synchronization

Consider a chaotic system in the form of

_xx ¼ Axþ gðxÞ þ u; ð1Þ

where x 2 Rn is the state vector, u 2 Rn is the external input vector, A 2 Rn�n is a constant matrix, and gðxÞ is a con-
tinuous nonlinear function. Assuming that

gðxÞ � gð~xxÞ ¼Mx;~xxðx� ~xxÞ ð2Þ

for a bounded matrix Mx;~xx, in which the elements are dependent on x and ~xx.

Remark 1. Most of chaotic systems, including all Lur’e nonlinear systems and Lipschitz nonlinear systems, can be

described by (1) and (2), which will be further illustrated by concrete examples in Section 3.

From the unidirectional linear coupling approach, a slave system for (1) is constructed as follows:

_~xx~xx ¼ A~xxþ gð~xxÞ þ uþ Kðx� ~xxÞ; ð3Þ

where K ¼ diagðk1; k2; . . . ; knÞ, with ki 2 R, i ¼ 1; 2; . . . ; n, is a feedback matrix to be designed later.
From (1) and (3), the following error system equation can be obtained:

_ee ¼ Aeþ gðxÞ � gð~xxÞ � Kðx� ~xxÞ ¼ Ae� Keþ gðxÞ � gð~xxÞ ¼ ðA� KÞeþ gðxÞ � gð~xxÞ; ð4Þ

where e ¼ x� ~xx is the error term.

Theorem 1. If the feedback gain matrix K is chosen such that

ki 6 l < 0; i ¼ 1; 2; . . . ; n; ð5Þ

where ki are the eigenvalues of the matrix ðA� KþMx;~xxÞTPþ PðA� KþMx;~xxÞ with a positive definite symmetric
constant matrix P, and l is a negative constant, then the error dynamical system (4) is globally exponentially stable about
the origin, implying that the two systems (1) and (3) are globally asymptotically synchronized.

Proof. Choose the Lyapunov function

V ¼ eTPe; ð6Þ

where P is a positive definite symmetric constant matrix. Then, its derivative is

_VV ¼ _eeTPeþ eTP_ee ¼ Að
h

� KÞeþ gðxÞ � gð~xxÞ
iT
Peþ eTP ðA

h
� KÞeþ gðxÞ � gð~xxÞ

i

¼ eT ðA
h

� KÞTPþ PðA� KÞ
i
eþ gðxÞ

h
� gð~xxÞ

iT
Peþ eTP gðxÞ

h
� gð~xxÞ

i

¼ eT ðA
h

� KþMx;~xxÞTPþ PðA� KþMx;~xxÞ
i
e ¼ eTQe; ð7Þ

where Q ¼ A� KþMx;~xxð ÞTPþ P A� KþMx;~xxð Þ.
Since Q ¼ Q0, let Q ¼ U	KU, where U is square unitary matrix and K ¼ diagðk1; k2; . . . ; knÞ. Then, (7) becomes

_VV ¼ eTQe ¼ eTU	KUe ¼ eT1Ke16leT1 e1 < 0; ð8Þ

where e1 ¼ Ue. Accounting to (8) and the Lyapunov stability theory, system (4) is globally exponentially stable about

the origin, and hence, the two systems (1) and (3) are globally asymptotically synchronized. �
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Based on the well-known Gerschgorin’s theorem in matrix theory, the following result can be obtained.

Theorem 2. Choose P ¼ diagðp1; p2; . . . ; pnÞ, and let

PðAþMx;~xxÞ þ ðAþMx;~xxÞTP ¼ ½�aaij� and Ri ¼
Xn

j¼1;j6¼i

j�aaijj: ð9Þ

If a suitable K is chosen such that

ki P
1

2pi
ð�aaii þ Ri � lÞ; i ¼ 1; 2; . . . ; n; ð10Þ

then (5) is satisfied, implying that the two coupled chaotic systems (1) and (3) are globally synchronized.

Remark 2. If P ¼ I, then according to Theorems 1 and 2, one obtains the following algebraic inequalities for choosing
the coupling parameters:

ki P 1
2
ð�aaii þ Ri � lÞ; i ¼ 1; 2; . . . ; n: ð11Þ

Remark 3. If R0 ¼ max16 i6 n
Pn

j¼1;j6¼i j�aaijj, then based on (9) one has R0 PRi and according to Gerschgorin’s theorem

one has

k0i P
1

2pi
ð�aaii þ R0 � lÞ; i ¼ 1; 2; . . . ; n: ð12Þ

However, the range for K in (12) is reduced as compared to (10).

Remark 4. For coupled chaotic systems of the Lur’e type, the corresponding algebraic inequality conditions can also be

derived for determining the coupling parameters to ensure global chaos synchronization.

3. Synchronization of some typical chaotic systems

To illustrate the use of the chaos synchronization criterion derived above, three typical yet topologically different

examples of chaotic systems are discussed.

3.1. The original Chua’s circuit

Chua’s circuit [28] is described by

_xx ¼ aðy � x� f ðxÞÞ;
_yy ¼ x� y þ z;
_zz ¼ �by;

8<
: ð13Þ

where a > 0, b > 0, a < b < 0, f ð�Þ is a piecewise linear function described by
f ðxÞ ¼ bxþ 1

2
ða� bÞðjxþ 1j � jx� 1jÞ; ð14Þ

In (14), we have

f ðxÞ � f ð~xxÞ ¼ kx;~xxðx� ~xxÞ; ð15Þ

where kx;~xx is dependent on x and ~xx, and varies within the interval ½a; b� for tP 0, that is, kx;~xx is bounded by constants as
a6 kx;~xx 6 b < 0 (see Fig. 1).

Refering to (3), the following slave system is constructed for the drive (13) with a linear unidirectional coupling:

_~xx~xx ¼ að~yy � ~xx� f ð~xxÞÞ þ k1ðx� ~xxÞ;
_~yy~yy ¼ ~xx� ~yy þ ~zzþ k2ðy � ~yyÞ;
_~zz~zz ¼ �b~yy þ k3ðz� ~zzÞ:

8<
: ð16Þ
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Subtracting (16) from (13) gives

_eex ¼ aðey � ex � kx;~xxexÞ � k1ex;
_eey ¼ ex � ey þ ez � k2ey ;
_eez ¼ �bey � k3ez;

8<
: ð17Þ

where ex ¼ x� ~xx, ey ¼ y � ~yy, ez ¼ z� ~zz. System (17) can be rewritten as

_ee ¼ Aeþ gðxÞ � gð~xxÞ � Ke; ð18Þ

where

A ¼
�a a 0

1 �1 1

0 �b 0

2
4

3
5; K ¼

k1 0 0

0 k2 0

0 0 k3

2
4

3
5; e ¼

x� ~xx
y � ~yy
z� ~zz

2
4

3
5 and gðxÞ ¼

�af ðxÞ
0

0

2
4

3
5:

Observe that

gðxÞ � gð~xxÞ ¼
�aðf ðxÞ � f ð~xxÞÞ

0

0

2
4

3
5 ¼

�akx;~xxðx� ~xxÞ
0

0

2
4

3
5 ¼

�akx;~xx 0 0

0 0 0

0 0 0

2
4

3
5 x� ~xx

y � ~yy
z� ~zz

2
4

3
5 ¼Mx;~xxe; ð19Þ

where

Mx;~xx ¼
�akx;~xx 0 0

0 0 0

0 0 0

2
4

3
5:

It follows from (18) and (19) that

ðAþMx;~xxÞ þ ðAþMx;~xxÞT ¼
ð�2a � 2akx;~xxÞ a þ 1 0

a þ 1 �2 1� b
0 1� b 0

2
4

3
5: ð20Þ

One may then choose

k1 P 1
2
ð�2a � 2akx;~xx þ j1þ aj � lÞ;

k2 P 1
2
ð�2þ j1þ aj þ j1� bj � lÞ;

k3 P 1
2
ðj1� bj � lÞ:

ð21Þ

Fig. 1. Graphical representation of kx;~xx and equality (15).
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According to Theorem 2 and Remark 2, the two coupled Chua’s systems (13) and (16) are globally asymptotically

synchronized. Since a > 0 and a6 kx;~xx 6 b < 0, from (21), one can choose

k1 P 1
2
ð1� a � 2aa � lÞ;

k2 P 1
2
ða � 1þ j1� bj � lÞ;

k3 P 1
2
ðj1� bj � lÞ:

ð22Þ

Corollary 1. For the two coupled Chua’s systems (13) and (16), if the feedback matrix K is chosen such that inequality (22)
holds, then they are globally asymptotically synchronized.

When a ¼ 9:78, b ¼ 14:97, a ¼ �1:31, b ¼ �0:75, system (13) exhibits chaotic behavior (see Fig. 2). By selecting

l ¼ �0:5 and the coupling parameters as k1 ¼ 9, k2 ¼ 12, k3 ¼ 8, the inequality (22) holds. Based on Corollary 1, the

two coupled Chua’s circuits (13) and (16), with the above-chosen parameters are globally asymptotically synchronized,

as shown in Fig. 3.

3.2. Modified Chua’s circuit with a sine function

Unlike the original Chua’s circuit, the modified Chua’s circuit uses a sine function [32]. For this circuit, n-scroll

attractors can be obtained, as shown in Fig. 4.

The dimensionless state equation of the circuit is

_xx ¼ aðy � f ðxÞÞ;
_yy ¼ x� y þ z;

_zz ¼ �by;

8<
: ð23Þ

where

f ðxÞ ¼

bp
2a ðx� 2acÞ if xP 2ac;

�b sinðpx
2a þ dÞ if � 2ac < x < 2ac;

bp
2a ðxþ 2acÞ if x6 � 2ac:

8><
>: ð24Þ

Fig. 2. The double scroll attractors of Chua’s circuit.
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Here, in (23) and (24), a, b, a, b, c, d are suitable constants, and a > 0, b > 0, a > 0, b > 0. An n-scroll attractor is

generated under the following constraints:

n ¼ cþ 1 ð25Þ

and

d ¼ p if n is odd;
0 if n is even:


ð26Þ

Fig. 3. The difference signal ex ¼ x� ~xx, ey ¼ y � ~yy, ez ¼ z� ~zz in two coupled Chua’s circuits with the coupling parameters k1 ¼ 9,

k2 ¼ 12 and k3 ¼ 8.

Fig. 4. Four-scroll attractors of the modified Chua’s circuit with sine function.
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In (24), one has

f ðxÞ � f ð~xxÞ ¼ kx;~xxðx� ~xxÞ; ð27Þ

where kx;~xx is dependent on x and ~xx , and satisfies the condition of �pb=2a6 kx;~xx 6 pb=2a (similar to Fig. 1).
The slave system for system (23), via a linear unidirectional coupling, is

_~xx~xx ¼ að~yy � f ð~xxÞÞ þ k1ðx� ~xxÞ;
_~yy~yy ¼ ~xx� ~yy þ ~zzþ k2ðy � ~yyÞ;
_~zz~zz ¼ �b~yy þ k3ðz� ~zzÞ:

8><
>: ð28Þ

Subtracting (28) from (23), the following error dynamical system is obtained:

_eex ¼ aðey � kx;~xxexÞ � k1ex;

_eey ¼ ex � ey þ ez � k2ey ;

_eez ¼ �bey � k3ez;

8><
>: ð29Þ

where ex ¼ x� ~xx, ey ¼ y � ~yy, ez ¼ z� ~zz. System (29) can be rewritten as

_ee ¼ Aeþ gðxÞ � gð~xxÞ � Ke; ð30Þ

where

A ¼
0 a 0

1 �1 1

0 �b 0

2
4

3
5; K ¼

k1 0 0

0 k2 0

0 0 k3

2
4

3
5; e ¼

x� ~xx
y � ~yy
z� ~zz

2
4

3
5 and gðxÞ ¼

�af ðxÞ
0

0

2
4

3
5:

Hence,

gðxÞ � gð~xxÞ ¼Mx;~xxe and Mx;~xx ¼
�akx;~xx 0 0

0 0 0

0 0 0

2
4

3
5:

It then follows that

ðAþMx;~xxÞ þ ðAþMx;~xxÞT ¼
�2akx;~xx a þ 1 0

a þ 1 �2 1� b
0 1� b 0

2
4

3
5: ð31Þ

It then follows from Theorems 1 and 2 that with

k1 P 1
2
ðpbþ 1þ a � lÞ;

k2 P 1
2
ð�1þ a þ j1� bj � lÞ;

k3 P 1
2
ðj1� bj � lÞ;

ð32Þ

the two coupled modified Chua’s systems (23) and (28) are globally asymptotically synchronized.

Corollary 2. For the two coupled modified Chua’s systems (23) and (28), if k1, k2, k3 are chosen such that the inequality
(32) holds, then they are globally asymptotically synchronized.

Let a ¼ 10:814, b ¼ 14:0, a ¼ 1:3, b ¼ 0:11, c ¼ 3, d ¼ 0. Then, system (23) exhibits chaotic behavior (see Fig. 4).

Select l ¼ �0:5 and the coupling parameters as k1 ¼ 8, k2 ¼ 12, k3 ¼ 8. Then, the inequality (32) holds. Hence, it

follows from Corollary 2 that the two coupled modified Chua’s circuits (23) and (28), with the above-chosen para-

meters, are globally asymptotically synchronized, as shown in Fig. 5.
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4. R€oossler system

R€oossler system [27] is described by the following equation:

_xx ¼ �ðy þ zÞ;
_yy ¼ xþ ay;
_zz ¼ bþ zðx� cÞ;

8<
: ð33Þ

where a, b and c denote positive parameters. According to the unidirectional linear error feedback coupling approach,

the slave system of (33) is constructed as follows:

_~xx~xx ¼ �ð~yy þ ~zzÞ þ k1ðx� ~xxÞ;
_~yy~yy ¼ ~xxþ a~yy þ k2ðy � ~yyÞ;
_~zz~zz ¼ bþ ~zzð~xx� cÞ þ k3ðz� ~zzÞ:

8<
: ð34Þ

It follows from (33) and (34) that

_ee ¼ Aeþ gðxÞ � gð~xxÞ � Ke; ð35Þ

where

A ¼
0 �1 �1
1 a 0

0 0 �c

2
4

3
5; K ¼

k1 0 0
0 k2 0

0 0 k3

2
4

3
5; e ¼

x� ~xx
y � ~yy
z� ~zz

2
4

3
5 and gðxÞ ¼

0
0

xz

2
4

3
5:

Hence, one has

gðxÞ � gð~xxÞ ¼Mx;~xxe and Mx;~xx ¼
0 0 0
0 0 0

~zz 0 x

2
4

3
5;

so that

ðAþMx;~xxÞ þ ðAþMx;~xxÞT ¼
0 0 ~zz� 1
0 2a 0

~zz� 1 0 2x� 2c

2
4

3
5: ð36Þ

Fig. 5. The difference signal ex ¼ x� ~xx, ey ¼ y � ~yy, ez ¼ z� ~zz in two coupled modified Chua’s circuits with the coupling parameters
k1 ¼ 8, k2 ¼ 12 and k3 ¼ 8.
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It follows from Theorems 1 and 2 that if

k1 P 1
2
ðj~zz� 1j � lÞ;

k2 P 1
2
ð2a� lÞ;

k3 P 1
2
ðj~zz� 1j þ 2x� 2c� lÞ;

ð37Þ

then the two coupled R€oossler systems (33) and (34) are globally asymptotically synchronized.

Fig. 6. The attractors of R€oossler chaotic system.

Fig. 7. The difference signal ex ¼ x� ~xx, ey ¼ y � ~yy, ez ¼ z� ~zz in two coupled R€oossler chaotic systems with the coupling parameters k1 ¼
12, k2 ¼ 0:5 and k3 ¼ 19:5.
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Corollary 3. For the two coupled R€oossler systems (33) and (34), if k1, k2, k3 are chosen such that the inequality (37) holds,
then they are globally asymptotically synchronized.

Remark 5. Since the trajectory of a chaotic system is bounded, inequality (37) holds for large enough values of k1, k2, k3.

Selecting a ¼ 0:2, b ¼ 0:2, c ¼ 5:7 gives a chaotic behavior of the system as depicted in Fig. 6. From the figure, one

can see that �10 < x < 13, �12 < y < 8, 0 < z < 24. Choosing l ¼ �0:5 and the coupling parameters as k1 ¼ 12,

k2 ¼ 0:5, k3 ¼ 19:5 will satisfy inequality (37). Hence, by Corollary 3, the two coupled R€oossler systems (33) and (34) are
globally asymptotically synchronized, as shown in Fig. 7.

5. Concluding remarks

In this paper, a simple algebraic condition is derived for the global synchronization of two coupled general chaotic

systems with a unidirectional linear error feedback coupling. Suitable coupling parameters can be easily designed ac-

counting to the given condition to ensure the global chaos synchronization. This simple criterion is applicable to a large

class of chaotic systems. Simulations have shown its effectiveness in application to some typical chaotic systems with

different types of nonlinearities. The new result can also be applied to many other chaotic systems, such as the Murali–

Lakshmanan–Chua (MLC) circuit [23], Chua’s circuit with cubic nonlinearity [13], modified Chua’s circuit with non-

linear quadratic function xjxj [31], Lorenz system [21], Chen’s system [5], and so on. Further simplification of the

conditions is still quite possible, which will be investigated elsewhere.
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