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A Simple Gradient Sign Algorithm for Transmit
Antenna Weight Adaptation With Feedback

Brian C. Banister, Member, IEEE,and James R. Zeidler, Fellow, IEEE

Abstract—In this paper, a simple algorithm for adaptation of
the complex baseband weights of a transmit antenna array using
feedback from the receiver is proposed and analyzed. The system
utilizes stochastic gradient adaptation to maximize the power de-
livered to the receiver for a constrained transmission power, which
provides both fading diversity and beam steering gain. Dual per-
turbed transmission weight vectors are time multiplexed onto the
pilot signal, and the receiver generates feedback selecting the per-
turbed weight vector which delivers greater power. This feedback
is used to provide weight adaptation at the transmitter, and this
adaptation is shown to be an update by a coarse estimate of the
gradient of the delivered power. The performance of the algorithm
is analyzed in terms of convergence and tracking of an AR1 fading
channel, with simulations confirming the analysis. Bit error rate
(BER) simulations in a dynamic fading channel show that the algo-
rithm outperforms previously proposed vector selection feedback,
and in slower fading, the algorithm substantially outperforms di-
versity space time coding.

Index Terms—Adaptive beamforming, antenna array, stochastic
gradient algorithms, transmit beamforming.

I. INTRODUCTION

I T is generally accepted that the downlink of next-generation
cellular systems will require greater capacity than the uplink.

This is largely due to the asymmetry of data traffic patterns. For
example, a mobile data terminal may download large web sites
while uploading only control information such as IP addresses.
The use of transmit adaptive antenna arrays at the base station
is a promising area for downlink capacity improvement [1]–[3].
This paper describes a gradient algorithm utilizing mobile to
base feedback in order to achieve some of those possible gains.

Optimal multiple antenna transmission algorithms can be
defined if the forward channel state is known [4], [5]. However,
in mobile wireless applications, the channel is time varying and
unknown a priori. In addition, many systems use frequency
division duplexing (FDD), such that the downlink and uplink
channels in a multipath environment are not in general the same.
Thus, the uplink channel state measured at the base station
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cannot be used directly as a reciprocal downlink channel state.
In general, transmit antenna algorithms in this environment can
be classified as

a) space time codes;
b) blind adaptive beam steering algorithms;
c) adaptive steering algorithms incorporating feedback.
With multiple receive antennas, space time codes can provide

diversity gain [6], [7] and “multiplexing” coding gain [8]–[10]
through the application of codes across the multiple transmit an-
tennas, but with a single receive antenna only diversity gain is
possible. These space time coding techniques are “blind,” where
the downlink channel state is assumed unknown to the trans-
mitter, and there is no adaptation to changing channel condi-
tions. These algorithms do not provide beamforming or “aper-
ture” gain. The gains from these codes are diminished when the
fading channels experienced by the antennas are correlated, with
no gain when the fades are fully correlated.

On the other hand, “blind” adaptive beam steering algorithms
also have no direct knowledge of the downlink channel but uti-
lize the measured uplink channel to infer characteristics of the
downlink channel. These are then used to adapt transmit antenna
weights. This may require accurate antenna calibration as, for
example, in estimating the angle of arrival and angular disper-
sion of the received signal to steer the transmit beam [11], or it
may assume that the long-term characteristics of the uplink and
downlink channels are strongly correlated [12]. However, these
algorithms do not provide fading diversity, and if the antennas
experience independent fading then blind techniques will not
work, as without correlation between antennas, no correlation
from uplink to downlink channel can be extracted.

In order to benefit from both fading diversity and beam
steering, an algorithm incorporating detailed downlink channel
information must be used, which in FDD systems requires
feedback from the receiving unit to the transmitting unit.
This has led to several proposals for feedback, using training
sequences from each antenna [13], [14] or gradient extraction
of the forward complex channel vector [15]. Feedback of
the complete forward channel state as in [13] and [15] is
impractical in a mobile wireless channel due to the power
and bandwidth required by the feedback channel, motivating
vector quantization (or “codebook selection”) feedback as in
[14]. This requires detailed information sharing between the
transmitting and receiving units as there must be an agreed
codebook of possible weight vectors, and each transmission
antenna must have a distinguishable pilot sequence. In addition,
the vector quantization induced coarseness of the available
transmission weight vectors limits the achievable performance.
The algorithm presented here overcomes these limitations

1053-587X/05$17.00 © 2003 IEEE
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with i) a simple interface requiring the receiver to be aware
only of a single dedicated pilot and ii) recursive adaptation,
which allows fine adjustment over time. The dedicated pilot is
generally required for beam steering with coherent demodu-
lation regardless of the specific adaptation mechanism, and in
this scheme the receiver does not need to know details of the
transmit algorithm such as the number of antennas in the array.

Gradient-based algorithms vary according to the reliability
and precision of the gradient information, from numerical op-
timization which may assume accurate knowledge, sometimes
including second derivatives for Newton step adjustment [16],
to signal processing applications which apply a stochastic esti-
mate such as least mean squares (LMS) [17]. The gradient algo-
rithm of this study considers a more coarse stochastic approach
with only binary (signed) gradient information, which operates
upon the usable power delivered to the mobile as the metric to
be maximized.1 Weight vector perturbations and feedback are
used to extract a coarse estimate of the gradient of this metric,
which is then used to adjust the transmit antenna weights. This
paper will provide an analysis of the convergence and tracking
performance of the algorithm. The analysis includes the effect
of the noise in the gradient estimate, allowing for an adapta-
tion rate optimization that considers the tradeoff of the induced
noise versus the tracking rate. In addition, bit error rate (BER)
simulations show that for moderate fading rates this algorithm
outperforms previously proposed algorithms.

This paper is organized as follows. Section II introduces the
general multiple transmit single receive antenna system model,
eigenanalysis notation for the system, the capacity motivation
for selecting transmit weights to maximize the delivered power,
and a brief comparison of transmit weight adaptation to blind
diversity space time coding. Section III introduces the gradient
sign feedback algorithm. Section IV provides the signed feed-
back gradient statistics. Section V analyzes the convergence of
the system in a static channel. Section VI analyzes the tracking
performance in an AR1 frequency flat fading channel. Detailed
derivations are located in the Appendices.

II. PRELIMINARIES

A. System Model

The system is analyzed with Nyquist pulse shaping so that a
discrete time representation of the waveforms is adequate. The
system contains transmission antennas at the base station,
and there are a maximum ofdelay paths. A wideband system
might provide several such paths, while a narrow band system
would give . In order to simplify the presentation, multi-
path terms in (2) have delays that are a multiple of the Nyquist
sample time. This leads to a clean eigenstructure by eliminating
interpolation issues and provides a clearer picture of the algo-
rithm properties.

The vector applied to weight the transmission of the multiple
antennas will be constrained to have unit norm so that it does
not impact the total transmitted power. The analysis addresses
the weight vector norm constraint by allowing the norm of the
analyzed weight vector to be unconstrained and applying a nor-

1This is counter to more the typical gradient algorithm formulation where a
cost function is minimized.

malization to the weight vector in (1) prior to transmission. In
this way, the constraint is correctly addressed in the adaptation
characterization and analysis but is not explicitly a constraint
on the adaptation. This unconstrained norm reflects the analysis
and not a realistic implementation. Because of the normaliza-
tion of (1), it is always the “direction” of the vector which is
of interest and never the magnitude. Divergence of the norm of

is inconsequential.
The transmitted signal is

(1)

so that the received signal is

(2)

where is the modulation sequence, is a com-
plex zero mean Gaussian with variance representing the re-
ceived noise and interference, is the transmit power,
is the 1 prenormalization transmit weight vector, andis
the 1 conjugated channel response vector of thepath.
For the moment, this formulation includes no pilot signal and
assumes perfect channel estimation for demodulation at the re-
ceiver.

Defining the mobile’s gain matrix as2

(3)

and the total usable signal power at the receiver is given by

(4)

B. Performance Metric, Gradient, and Eigenanalysis

In this application, the ultimate cost function is BER or ca-
pacity loss. The ratio of the received power to transmit power
is a valid surrogate for either metric, particularly in the case of
either DS-CDMA with large spreading gain, as is shown below,
or a narrowband system with frequency flat fading. With the
weight normalization applied prior to transmission as in (1), the
metric used by the algorithm, which is to be maximized, is given
by the Raleigh quotient

(5)

The gradient of this metric with respect tois given by

(6)

The subtractive term in (6) results from projection of the gra-
dient into the subspace orthogonal to. Since adjustment in the
direction of determines the transmission power [or would if

2It is worth noting that in the case of multiple receive antennas, (2) applies to
each antenna, and (3) is defined by performing an additional summation over
each receive antenna. Hence, the structure of the problem and solution is the
same, but the rank is increased.
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not for the power normalization in (1)] and not the transmission
“direction,” this projection provides for superior gradient adap-
tation given the power constraint.

Eigenanalysis is used in the system evaluation. The gain ma-
trix is decomposed as follows, where the indices reflect magni-
tude sorted eigenvalues, with being the largest.

(7)

Then the weight vector can be represented in terms of the
eigenmodes as an eigenweight vector

(8)

The eigenweight representations of (5) and (6) are

(9)

(10)

The analysis will consider the second moments, so the vector
, with elements , is defined to be comprised of the squared

magnitudes of . Then, with

(11)

(12)

we define higher order values of as as in (13) and find
the following:

(13)

(14)

(15)

In contrast to the MSE problem in receive systems [17], the
gradient does not consist of independent terms in each eigen-
mode, as the term of (10) introduces intermodal depen-
dence. This coupling arises from the weight normalization (5),
which constrains the gradient to be orthogonal to.

The gradient (10) of the Raleigh quotient is zero only when
the weight vector lies in one of the eigenspaces of(e.g., the
nullspace or the principal eigenspace) [18]. Hence, when one
eigenmode dominates the weight vector, the resulting gra-
dient is small. The only local maximum is the global maximum,
occurring within the principal eigenspace. Within the span of
other nonminimal valued eigenvectors, a saddle point gives rise
to the zero gradient, where the surface rises in the direction of
larger valued eigenvectors and falls in the direction of smaller
valued eigenvectors. If the principal eigenspace is not unique,
then the solution to the power maximization problem is not
unique and lies in any of those principal eigenspaces. The only
minimum is the global minimum, occurring as a bowl bottom in
the minimal eigenspace (the nullspace if it exists).

C. Channel Capacity

To derive the capacity of this system, the vector frequency
response of the channel is given by

(16)

Then, the capacity (in bits per second per Hertz) of this dis-
crete time channel is given by

(17)
In a DS-CDMA system with large spreading gain, the signal

density to noise density ratio at each frequency is small so that
the capacity formula is approximated using a first-order Taylor
expansion as

(18)

Hence, the capacity is maximized in this context by selecting
to maximize the received power. Similarly, we can show that

in a DS-CDMA system this power maximization minimizes bit
and frame error rates in additive white Gaussian noise. In the
rank 1 case (single time resolvable path), this conclusion is triv-
ially extended to narrowband systems. Even in systems which
may be more “bandwidth limited” than DS-CDMA and yet un-
dergoing nonflat fading, power maximization is clearly a rea-
sonable adaptation objective, although it is no longer neces-
sarily optimal. Hence, maximizing the received power for a con-
strained transmission power is an effective strategy for weight
selection. The received power is maximized by selectingas

, the eigenvector corresponding to the largest eigenvalue of
so that for arbitrary

(19)

For , this is the matched filter weights [3], [15], providing
both fading diversity and beam steering gain.

(20)

D. Comparison to Diversity Space Time Coding

Here, a brief comparison of optimal adaptive beam forming
and diversity space time coding is provided. Optimal adaptive
beam forming will outperform blind diversity space time coding
because the former assumes that full channel state informa-
tion is available at the transmitter, e.g., from a feedback algo-
rithm such as that introduced in Section III. When the receiver
has only a single antenna, space time coding techniques (e.g.,
[6], [7]) can provide diversity but cannot provide the multi-
plexing coding gain seen in multiple-input multiple-output sys-
tems (e.g., [8]–[10]) so that a performance comparison based
only on received power can be considered adequate. In the case
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of a diversity space time coding transmission, a general formu-
lation of the transmission vector is

(21)

For a good space time code design, this transmission vector
is uncorrelated since the diversity gain is obtained by delivering
energy to as many of the spatial modes as possible (e.g., this
is true of the schemes of [6] and [7] with independent symbol
inputs).

(22)

This is in contrast to the adaptive weight scheme, wherein the
transmission energy is concentrated in a single (optimal) spatial
mode and the autocorrelation is of rank 1.

(23)

The ratio of the power received in the adaptive weight scheme
versus the diversity space time coding scheme is

(24)

(25)

Hence, we see that optimal adaptive weighting will always
outperform the diversity space time coding scheme with a
gain that increases as the ratio of the number of antennas to
the number of paths (i.e., rank of ) is increased. The per-
formance in terms of this power delivery translates directly to
instantaneous capacity or bit/frame error rate for flat fading or
DS-CDMA with large spreading gain, as has been discussed, so
that this gives a precise performance comparison in these cases.
For the single path case, the gain of optimal beam forming
over diversity space time coding is dB at all
time instants. Other cases would require detailed consideration
of equalization techniques and coding structure for a more
thorough performance comparison.

III. A LGORITHM DEFINITION

The proposed algorithm uses binary sign feedback to pro-
vide a gradient estimate to the transmitting unit. This has some
similarities to the “sign algorithm” (SA) applied in some re-
ceive systems attempting to minimize mean square error (MSE)
[19]–[21]. The SA is an approximation to more precise gradient
techniques such as LMS, motivated by the desire to minimize
the complexity of the weight update. The motivation for using a
gradient sign in this transmit system is very different: the mini-
mization of the amount of information required as feedback for
weight adjustment. The Raleigh quotient metric in this system,

as discussed above, and the norm constrained adaptation re-
sulting from its gradient are different from the quadratic MSE
cost function applied in SA receivers.

The system can be considered to be a DS-CDMA system
with a code multiplexed pilot or a time division multiple access
system with a time multiplexed training sequence. The multi-
plexing type of the system is not specified for the analysis as
it is not relevant to the basic properties of the algorithm. Time
multiplexing would be obtained with appropriate zeroing of the
traffic and pilot baseband signals. The base station transmits the
data with a weight vector , whereas the pilot is transmitted
using two different weight vectors, and , which are
perturbed from the tracked transmission weight vector. All
of these weight vectors are constant during a measurement in-
terval. The transmitted waveform for the specific mobile is given
by

if even

if odd
(26)

Here, is the Nyquist sampling time index, is the duration
of each even/odd perturbation slot, is the information
bearing modulated symbols, is the pilot sequence mod-
ulation, is the mean traffic channel transmission power,
and is the mean pilot channel transmission power. The se-
quences and would typically be orthogonal
by code or time multiplexing.

The receiver generates feedback by determining whether
the even or the odd time slot provided the larger received pilot
power. The feedback bit is “ 1” to select the even slot or
“ 1” to select the odd slot. Note that in the case of resolvable
multipath [rank ], the receiver will be tracking several
versions of the received pilot, making channel estimates for
each path and combining these channel estimate powers prior
to doing the decision comparison, as is implied by (5). For the
purpose of this discussion, it is assumed that the base station
receives the feedback bit instantaneously after the completion
of the measurement period. Given this feedback, the base
station generates new transmit weights as follows.

when feedback is received at beginning of
new test interval
if ( feedback , indicating the even

channel was better)

else

end if
new test perturbation vector

The test perturbation is generated as a zero mean complex
random Gaussian vector with an autocorrelation matrix. The
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Fig. 1. Diagram of the system with example of efficient receiver channel estimation for coherent demodulation and antenna adaptation feedback.

parameter is the adaptation rate, with a largergiving faster
but noisier tracking, as is seen in the following analysis. The
normalization of the even/odd weight vectors applied in (26)
results in equal power transmission in both even and odd time
slots, and hence, the mobile selects the better weight vector di-
rection rather than a larger transmission power, according to (5)
and (10). Note that the norm of the weightis allowed to grow
for the analysis, but a practical implementation would maintain
normalized vectors at every step. Note also thatis the mean
of the even and odd pilot weight vectors, so that obtaining a
channel estimate from the received pilot for the coherent de-
modulation of the traffic is straightforward, as discussed below.

To further illustrate the algorithm operation, let the time index
indicate the algorithm measurement/update interval, the dura-

tion of which is an (unspecified) integer multiple of 2times
the Nyquist sampling interval (indexed). At time , the weight
vector is applied to the traffic, and the weight vectors for
the even/odd pilot time slots are

(27)

(28)

The received pilot channel power is given by inserting (27)
and (28) in (4). The decision statistic computed by the re-
ceiver is given by the difference between the measured even and
odd received pilot power, which in the case of perfect power es-
timation, gives

(29)

The decision feedback from the receiver and the subse-
quent weight update at the transmitter are

sign (30)

(31)

New perturbed vectors (27) and (28) are then calculated for
time , and the process continues iteratively.

A block diagram for transmitter and receiver of this system
is shown in Fig. 1, which in this case illustrates recovery of a
single path. As shown, an efficient receiver for this mechanism
can use a sliding window filter to generate an estimate of the
composite complex scalar channel of the traffic transmission

, summing the received pilot channel estimates over an
equal number of both even and odd time slots. This estimate
can be used directly for coherent data demodulation since the
data was transmitted with the mean of the even and odd pilot
weight vectors. At the same time, a difference channel estimate

is generated via an accumulate and dump unit since it is not
needed continually for demodulation. From these two estimates,
the channel estimates for even and odd time slots and
are generated, which ultimately provide the feedback.

IV. GRADIENT EXTRACTION

In the following, the feedback is assumed to be generated by
the receiver without estimation error [as in (29)] and received
by the transmitting unit without error. The channel, and hence

, is nonrandom (or taken as given). If is small, then the
test statistic can be considered to be generated as a weighted
differential step. That is, the test statistic at timeis the gradient

(6) weighted by the perturbation vector .

Re

Re

(32)

From (31) and (32), the update at the transmitter upon re-
ceiving the feedback is then given by

sign Re (33)

As is shown in Appendix A, with comprised of i.i.d. Gaus-
sians and given (or nonrandom), this update takes the form of
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a step of fixed magnitude in the direction of the gradient(in
expectation) plus a zero mean error term.

(34)

The algorithm by its basic formulation is a “descent method”
[16], and from (34), it is seen to be a stochastic gradient al-
gorithm, performing steepest descent adaptation in expectation
with a cost function , which is given by sign inversion of the
maximization metric .

From (86), the variance of the error vector cast into each of
the eigenmodes is given by

(35)

The variance of the update in theth eigenmode is given by

(36)

It has been shown that the weight update defined for the algo-
rithm provides an estimate of the gradient of the delivered power
performance metric. This estimate provides the two-norm nor-
malized direction of the gradient in expectation. The normaliza-
tion of the gradient estimate is to be expected since the binary
feedback does not provide any information of the gradient am-
plitude but only of the relative magnitudes of the gradient com-
ponents. Note that a Gaussian estimation error at the receiver, in
(29), would simply modify the normalization of the gradient in
(34) since this would be an additional Gaussian component in
the summation of (78). In addition, a feedback bit error proba-
bility of modifies the derived update expectation derived in by
a factor of ( ). Both modifications also require appropriate
adjustment to the update variance. Incorporation of these effects
is beyond the scope of the current work.

V. CONVERGENCE INSTATIC CHANNEL

A. Derivation of Learning Curve

The convergence can be visualized by inserting the gradient
(6) into the update (34), giving

(37)

Hence, it is seen that the expectation of the adaptation update
takes the form of a matrix premultiplication of the weights by

the channel gain matrix plus a scaled identity. By the prin-
ciple of matrix power iteration3 [18], iterating such a modifica-
tion tends to extract the eigenvector corresponding to the largest
eigenvalue of the premultiplying matrix. In this case, the largest
non-negative eigenvalue of the premultiplying matrix is associ-
ated with , and hence, the iteration tends to extract the desired
eigenvector-space and maximize the power delivered to the re-
ceiver. While there are degenerate conditions with large nega-
tive eigenvalues, it turns out that such conditions are transient
and do not yield undesirable behavior.

The behavior is best analyzed within the eigendomain. In-
serting (8) and (10) into (34), the eigenweights of the weight
vector adapt as follows:

(38)

One can approximate this weight adjustment by assuming a
noiseless update so that the new value ofis given simply by
the expectation of the step (i.e., ). However, it is more in-
formative to consider the expectation of the magnitude squared
of the eigenweights (the vector(12)), which allows the effects
of the coarse gradient estimation of the update to be included.
Then, from (36) and (38)

(39)

With the error variance from (36) and some simplification
using (11)–(15), the algorithm adaptation update is parameter-
ized only by , , and the current state .

(40)

(41)

Extending the expectation of (41) over is nontrivial. We
make the approximation

(42)

Applying the approximation (42) iteratively gives

(43)

3Matrix power iteration yieldslim � A b = (q b) � q , where�
andq are the principal eigenvalue and eigenvector, respectively, of the Hermi-
tian symmetric matrixA, so that ifq b 6= 0, then the principal eigenvector
results.
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For conciseness, the approximation implied by the iterative
computation of (43) will be denoted

(44)

Finally, this result is plugged into (14) to provide an estimate
of the mean performance metric

(45)

It is worth making note of a degenerate adaptation condi-
tion. When the weight vector lies very nearly within a single
eigenspace, the gradient vector norm approaches zero. In this
condition, the normalization in (39) and (40) approaches zero,
and some of the diagonal components of the matrix can
blow up and approach negative infinity. This would seem to
violate the obvious requirement that the resultant eigenenergy
vector must be all non-negative. However, the update (39) is
clearly all non-negative, and the update in (34) is clearly well be-
haved. Closer examination of the gradient norm given by (15),
and the update equation shows that the diagonal entry ofcor-
responding to a particular eigenweight can only approach nega-
tive infinity as the eigenweight itself approaches zero so that the
overall process remains well behaved. However, this degenerate
condition does present analytic difficulties.

B. Discussion

The convergence can be visualized by the matrix power iter-
ation formulation of (37), where the weight vector tends toward
the principal eigenvector of , as desired. The update varies
from matrix power iteration in three ways:

i) error vector ;
ii) premultiplying matrix that is projected orthogonal to the

current ;
iii) scaling of the component of the pre-multiplying ma-

trix that is varying because of the update normalization
by the norm of the gradient.

The noise introduced byis averaged out through multiple iter-
ations, establishing the tradeoff between fast convergence with
a large and a smaller residual weight error with a small.
Since we are not interested in the magnitude of the vector,
we can note that the latter two issues modify the magnitude of
the directional change of but not the direction. Hence, these
do not indicate any problem with a general convergence. While
the orthogonal and fixed norm nature of the update indicates the
convergence will never settle closer than one update step size,
in practice, this effect is overwhelmed by the update noise. The
maximum gradient norm is derived in Appendix B, which gives
some insight into minimum adaptation rate since this divides the
adaptation components of (37) and (40).

In nondegenerate conditions, the diagonal terms of are
non-negative, and the diagonal element corresponding to the
principal eigenvector is largest in magnitude. This causes the

desired adaptation toward the principal eigenvector. However,
in degenerate situations, some of the diagonal elements can be
negative. This indicates a condition where the weight vector lies
so close to a single eigenspace that the adaptation, which recall
is perpendicular to the weight vector itself and constrained to
be unit norm, will pass through the nearby eigenspace causing
the weight projection into lesser eigenspaces (with smaller
associated eigenvalues) to change sign. One particular example
can be visualized if the weight vector is near the principal
eigenspace and the update noiseis ignored. In this situation,
the adaptation is forced to be nearly orthogonal to the desired
eigenspace (i.e., orthogonal to the weight vector itself) and
has a constrained norm. The adaptation would be toward the
desired eigenspace but pass through it and invert the other
eigenweights, like passing over the north pole and effectively
inverting the east-west position. Hence, these degenerate situa-
tions would only arise when the distance of the weight vector
to an eigenspace is small relative to the step size .

As has been discussed, the Raleigh quotient performance
metric contains no local maxima so that there are no inverted
bowls into which the algorithm may become trapped. However,
gradient algorithms can also stall when the gradient is near
zero, as at some local minimum or saddle point (i.e., within a
single eigenspace) [17]. For the Raleigh quotient metric with
this algorithm, these conditions are degenerate, as previously
mentioned. Two factors mitigate against stall problems with
this algorithm. First, the normalization of the applied gradient
update (which causes the analytic degeneracy) helps to avoid
stalling. When the gradient approaches zero, the rate of adap-
tation of the algorithm will not be reduced since the norm of
the expected value of the adjustment inis unchanged. This
is somewhat similar to normalized-LMS [17], but here, the
weight update step size itself is fixed (in expectation). Note
that this is the near-degeneracy (near zero gradient) working to
benefit the algorithm. Second, the weighted term in the
update generator represents the introduction of weight
noise through the application of the random perturbation vector
so that all eigenmodes are excited. This pushes the weight
vector state away from those degenerate potential stall inducing
locations where the primary eigenweight of is near zero.
This noisy modal excitation is somewhat analogous to the
stall mitigating properties of the leaky-LMS algorithm [17].
Since this induced noise has a greater root-variance than the
gradient update magnitude [compare (85) with (86)], it should
be expected that it is not possible for these degenerate states to
persist or arise to any relevant extant.

C. Numerical Examples and Simulation

The above results have been verified by simulation. The first
simulation example shows the convergence of the metricand
eigenweight energiesfor a rank 2 (two path) case with
antennas to illustrate the modal convergence and stall avoidance
characteristics. Then, examples of the metricare presented for
a rank 1 (one path) case for both and with var-
ious values of to show the convergence times in a comparable
environment to the tracking simulations of Section VI.
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Fig. 2. Convergence of the eigenweight energiesv for first example simulation
and analytic from (43).N = 4, � = 0:1, � = 0:7256, � = 0:2744, and
� = � = 0 (two paths).

The first simulation example uses two paths with randomly
selected coefficients generated as real Gaussians normalized by
the Frobenius norm over both vectors so that is unity.

Example 1: (46)

The eigenvalues for the resultant matrixare given by

(47)

The performance metric (9) is dependent on the magnitude
and independent of the phase of, and given the post-normal-
ization of (14), the ratios of the entries ofare relevant, whereas
their absolute magnitudes are not. Thus the initial conditions can
be captured as the ratios of the elements of. The initial con-
ditions selected for the simulation represent a very poor state,
where the energy of the desired modeis much smaller than
the other modes. In order to demonstrate the performance near a
potential stall location, this initial state is near the zero-gradient
location at the bottom of the null-space bowl in. The initial
state is defined by

(48)

The simulation is performed with . Fig. 2 shows the
convergence of the eigenweight energiestoward dominance
of the principal eigenmode, showing an average over 500 sim-
ulations against the analytic result of (43). The simulated and
analytic results are nearly indistinguishable. The stall mitigation
from the excitation of every eigenmode is visible in the first step
at time index 1; both and jump (in expectation) from near
zero to approximately ( 17 dB). From
there, grows to dominate the weight vector by the eighth
update sample and, finally, to about0.6 dB of the weight en-
ergy ( ) in steady state. The lesser eigenspace energy
converges toward 12.8 dB, whereas the two nullspace ener-
gies and both recede to about 14.7 dB of the weight
energy. The value of for these cases is shown in Fig. 3 as

Fig. 3. Convergence of the metricJ . First example, simulation, analytic from
(14) and (43), analytic with noiseless approximation of (38).N = 4,� = 0:1,
� = 0:7256,� = 0:2744, and� = � = 0 (two paths).

a loss from the ideal . For comparison, curves are
generated for a single realization of the simulated metric, the
mean over the 500 simulations, the analysis of (14) and (43)
with noisy update, and the noiseless approximation computing
the update of (38) with . The initial conditions provide
a starting point with a 44.2 dB loss from the optimal weight
vector. The noiseless update curve shows a weak initial adapta-
tion as the eigenmode excitation due to the noisy update does
not occur, and the weights stay stalled near the zero-gradient
at the nullspace. This noiseless curve eventually catches up and
has the best steady-state performance with the weights bouncing
back and forth across the principal eigenspace. Analysis of (14)
and (43) with noisy update is nearly identical to the simulation
mean, and the weights settle to a loss of about0.5 dB from the
optimal.

The second and third convergence examples are performed
with a rank one channel (single path). In this case, the channel
vector is arbitrary, and , is selected. The weight
vector is again initialized according to (48) (a pessimistic con-
dition). The value of is varied to provide the convergence time
versus adaptation rate, and the metricis shown for simulation
and analysis in Figs. 4 and 5. As one would expect, a larger
provides a faster convergence with a noisier final result.

VI. TRACKING PERFORMANCE

A. Reduced-Rank Analysis

A tracking analysis for a simplified system is presented, with
a single time resolvable path ( ) undergoing AR1 Raleigh
fading, independent across all antennas. Since the time varying
gain matrix (3) is now of rank one, the weight vector can be de-
composed into two constituent eigenvectors ofif the eigen-
vectors are properly selected.

We now have some notes on notation. In Appendix C, a
prime mark is used to distinguish the reduced-rank notation
from the full-rank notation, but this is omitted in the following
to avoid notational clutter. In this section, the vectorrefers to
the 2 1 reduced-rank formulation defined below. In addition,
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Fig. 4. Convergence of the metricJ for the second example, simulation and
analytic from (14) and (43).N = 2, � = 1, and� = 0 (one path).

Fig. 5. Convergence of the metricJ for the third example, simulation and
analytic from (14) and (43).N = 4, � = 1, and� = � = � = 0 (one
path).

the overbar distinguishing the update in expectationfrom the
true eigenenergy vector is omitted, and all analysis is subject
to the expectation approximations applied to obtain (44) and
(45).

The first eigenvector is the normalized channel vector. All
other eigenvalues are zero and their eigenvectors are arbitrary
within the nullspace (orthogonal to the channel vector). Hence,
a specific eigenvector set can be imposed wherein only the first
two eigenweights of the weight vector are nonzero, and the
second eigenvector is given by the normalized projection of

orthogonal to . The first eigenvector represents the desired
weight vector, and the second represents the error vector. The
relevant eigenvectors are

(49)

(50)

Then, the weight vector can be represented in terms of these
eigenvectors as

(51)

Again, the vector is comprised of the squared magnitudes
of .

(52)

The performance metric is

(53)

gives the portion of the “energy” of that lies in the de-
sired direction, which is received by the mobile, andis the
portion of the “energy” of , which is in error and cannot be
received by the mobile.

B. Dynamic System Model

The fading channel is defined as a first-order autoregressive
(AR1) complex Gaussian process with a zero mean complex
Gaussian stimulus.

(54)

The channel is uncorrelated across the antennas so that the
autocorrelation matrix of is

(55)

The parameter is used in the analysis, which is defined by
the expectation of the inverted scaled chi-squared distribution
given as follows:

(56)

C. Dynamic Performance Analysis

The tracking performance will be considered by deriving
expressions for a transition matrix applied to the eigenmodal
vector representation of the weight vector. This transition
matrix incorporates the effect of both the algorithm update
and the channel change for one time step. Each step is shown
to be a multiplicative transformation of the vectorwith the
following approximations:

1) independence of the channel vector norm from update to
update;

2) second-order Taylor approximation of the fading channel
update on .

The first assumption will more closely apply for large num-
bers of antennas as the channel norm approaches a constant in
expectation. The second is reasonable because the expectation
of odd order terms is zero, and the fourth-order term will be
small for small values of ( ).

The step update of (34), which assumed perfect receive
channel estimation and no feedback bit errors, is translated
into a simplified notation for this rank one situation (only one
resolvable path). As shown in Appendix C, the reduced-rank
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update formula can be expressed with a simplified 22
generator matrix (the prime mark distinguishing reduced rank
notation in Appendix C is omitted) as follows:

(57)

(58)

As shown in Appendix D, defining from (56) as a function of
the AR1 parameter, the second-order Taylor approximation of
the effect of an AR1 increment on the eigenenergiesis given
by

(59)

The measurement that leads to the algorithm update is based
on the channel iterated one step from its value of the last time
slot. Hence, the effect of one iteration is captured by considering
the operation of first the algorithm update followed by the
channel update . This is described by the matrix in (60),
shown at the bottom of the page.

The effect of an iteration of both the algorithm and channel
change is then approximated as

(61)

If a steady-state solution for (61) exists, then the steady-state
vector must be one of the eigenvectors of. The eigenvectors
of this 2 2 matrix are given by

(62)

Hence, in the steady state

(63)

This gives rise to a fourth-order polynomial in.

(64)

Two of the roots of this equation are given by . These
roots are not of direct interest for this problem sinceis pos-
itive. The remaining two roots are given by (65), shown at the
bottom of the page.

Of these two roots, one is negative and thus does not satisfy
the original definition (57) [in (58) and (60), is non-nega-
tive]. Hence, the additive root is the only root consistent with the
problem formulation and gives the solution to the steady-state
value of . This gives the steady-state solution for the expected
correlation value by using

(66)

D. Discussion and Numerical Results

Equation (65) provides a mechanism for evaluating the ef-
fectiveness of an adaptation ratefor a fading rate of the AR1
process. It is of interest to note that with

(67)

This is a confirmation of the common sense solution in this
case, where of the weight vector energy lies within span
of the channel vector and the remainder is in its nullspace.

To confirm the applicability of this analysis, simulations were
performed for (Figs. 6–9) and (Figs. 10–13)

(60)

(65)
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Fig. 6. Mean correlationv , N = 2, simulated and from (65) and (66).

Fig. 7. BERs forN = 2, a = [0:968; 0:9968].

antennas with fading uncorrelated across the antennas as per
(55) over a variety of values of the AR1 parameterand the
adaptation rate . In addition, BERs were simulated in order
to compare the BER performance with the performance of the
vector “cross correlation energy” between and given by
( ). The simulations implemented the receiver’s de-
cision and the feedback channel with no errors.

The simulation results are compared to the analysis in Figs. 6
and 10 for two and four antennas, respectively. Both figures
show that the simulated vector correlation ( ) has
a very good match with the analysis for all fading rates except

, for which we note that the AR process is approaching
the limit of (109). Comparing these figures with Figs. 7 and 11,
we see that the analysis provides a good prediction of the best
value of for minimizing BERs. The optimal versus fading
frequency ( ) from both analysis and BER simulations is
shown in Fig. 9 for and Fig. 13 for . For low
signal-to-noise ratios (SNRs), the analysis is a very good pre-
dictor of the optimal for minimizing BER as power delivery
is important in this condition. For higher SNRs, it is apparent

Fig. 8. Simulated BER forN = 2, � = 0:1419, anda = [0:968;0:9968],
compared with optimal weights, STC, and vector quantization.

Fig. 9. Optimal values of� versus fading frequency (1� a) from simulation
and analysisN = 2.

Fig. 10. Mean correlationv , N = 4, simulated and from (65) and (66).
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Fig. 11. BERs forN = 4, a = [0:968; 0:9968].

Fig. 12. Simulated BER forN = 4, � = 0:07979, and a =
[0:968;0:9968], compared with optimal weights, STC, and vector quantization.

Fig. 13. Optimal values of� versus fading frequency (1�a) from simulation
and analysisN = 4.

that minimizing BER requires to be larger than is given by
maximizing the analytic result for ; in this condition, fading
diversity becomes more important than simple mean power de-
livery, and BER is best minimized by prioritizing moving the
weights away from the nullspace quickly over ensuring optimal
power delivery when the channel is not in a deep fade.

BERs from the simulation of the gradient sign feedback
(GSF) are shown for two of the fading rates in Figs. 8 and
12. For comparison, these figures also include the analytic
performance of diversity space time codes (STC) for a single
Rx antenna and simulated performance of vector quantization
code book selection feedback, wherein the receiver provides
feedback selecting which of several weight vectors is best [14].
The space time code performance is evaluated as a loss from
optimal weight adaptation for diversity codes with no coding
gain, as in [6] for two Tx antennas. For four Tx antennas, such
codes are a lower bounding BER abstraction as they do not
exist without bandwidth expansion [22], but approximations
do exist [7]. For two antennas, VQ1BF is vector quantiza-
tion with one bit feedback selecting which antenna should
transmit (second-order selection diversity), and VQ2BF is a
2-bit feedback selecting a phase rotation of
for the second weight. For four antennas, VQ2BF is a 2-bit
feedback selecting which of the four antennas should transmit
(fourth-order selection diversity), and VQ3BF is a 3-bit feed-
back selecting a phase rotation of for weights , ,
and . For 2- or 3-bit feedback, the feedback decision interval
is lengthened so that the feedback data rate is unchanged.

BERs are plotted versus Tx normalized to the Rx
for one Tx antenna so that the 3.01- and 6.02–dB array

gain from two- or four-antenna systems can be seen. For slow
fading, the algorithm performs close to the theoretic limit and
outperforms the vector quantization feedback approaches. The
gradient adaptation provides a simple recursive update that
uses the history to provide better resolution in the weights
than is available from vector quantization, and the gain from
beam forming provides better performance than the diversity
space time codes. For faster fading, the gradient approach gives
similar performance to vector quantization, but both feedback
approaches are outperformed by diversity space time coding,
which does not require the transmitter to adapt to the time
varying channel.

VII. CONCLUSION

A new gradient sign algorithm for transmit antenna array
adaptation has been defined, and the convergence and tracking
performance of the algorithm has been analyzed. The algorithm
makes use of gradient sign feedback from the receiver to
generate a coarse gradient estimate used by the transmitter
to recursively adjust the transmit weights. The mechanism
employed by the receiver to generate the feedback is simple
and can be employed with no knowledge of the specifics of the
transmitter antenna algorithm, i.e., the receiver need not know
how many antennas are employed or exactly how the update
is performed. The convergence and tracking behavior was
found to match the analysis through simulation verification,
and the algorithm is found through simulations of bit error
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rate to outperform previously proposed antenna weight vector
selection feedback and diversity space time coding algorithms
for moderate fading speeds.

APPENDIX A
SIGNED GRADIENT EXTRACTION

This appendix derives the first and second moments of the
signed gradient algorithm update.

1) Theorem 1:For a nonrandom and a zero mean complex
Gaussian vector with autocorrelation , define the decision
vector and error vector as follows:

sign Re (68)

(69)

Then, the update is characterized by the following first and
second moments:

(70)

(71)

Proof of Theorem 1:Consider the vectors generated as the
serialized real vectors containing the real and imaginary com-
ponents of , , and , which will be denoted by a prime

Re
Im

(72)

Re
Im

(73)

Re
Im

(74)

Hence

(75)

Let

(76)

Recalling that is complex Gaussian with autocorrelation,
is real Gaussian of unit variance so that

(77)

var (78)

Then, the th element of the update vector is given by

sign
sign

(79)

Noting that and are statistically independent, the expec-
tation of the th element of the update vector is

(80)

With some manipulation, this is found to be

sign
(81)

Substituting and folding the even function of into
the positive half plane

sign
(82)

Substituting and swapping the order of integration
gives

sign

sign
(83)

Considering that this is now an integral over a Gaussian PDF,
the result can be found simply as

(84)

Extending the result of (84) to all elements of, the final
complex vector solution is

(85)

The error vector (69) clearly has zero mean, and its autocor-
relation is simply determined by

(86)

Q.E.D.

APPENDIX B
MAXIMUM GRADIENT NORM

In order to bound the adaptation performance, it is useful to
determine the maximum realizable norm of the gradient vector
subject to the constraint . Equivalently, we can deter-
mine the maximum of the norm squared. That is, we wish to
find the maximum

(87)
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From the decomposition of (10) using the constraint of (87)

(88)

To maximize this quantity with the weight norm constraint,
the method of Lagrange multipliers is applied. Since the gra-
dient norm is a function only of the magnitude of the eigen-
weight values , we consider the function parameterized by
the real quantity , and for simplicity, we denote this as
(the eigenvectors can be rotated to accomplish this). Using a La-
grange multiplier of , we find the partial derivatives

(89)

One way to zero all of the derivatives would be to zero each
of the eigenweights that correspond to nonzero eigenvalues, ex-
cept that this violates the unit norm requirement if there is no
null space. Beyond this we have only 2 degrees of freedom avail-
able in selecting the values : the Lagrange multiplier and
the summation . Hence, any inflection points in
the gradient norm are achieved when one of the following is sat-
isfied.

a) The weight vector falls in the null space of.
b) All but one of the eigenweights is zero.
c) All but two of the eigenweights is zero, and the remaining

two eigenweights and conform to the relations of (90)
and (91) below.

In the case of a) or b), the gradient is zero, and a minimum of
the gradient norm is attained. In the case of c), a local maximum
of the gradient norm is attained. The requirement for a local
maximum from c) is

(90)

(91)

The solution to these two equations is given by

(92)

(93)

Hence, we see that the inflection points of the gradient norm
occur when the weight vector is comprised of equal contribu-
tions from only two eigenvectors. Plugging this into (88), the
gradient norm at the inflection point is given by

(94)

The global maximum value of the gradient norm is attained
when the two nonzero eigenweights are the maximal and min-
imal modes so that

(95)

APPENDIX C
REDUCED-RANK REPRESENTATION OF THEGRADIENT

ALGORITHM UPDATE

We wish to represent the update generator matrix (40)
in terms of the reduced-rank eigendecomposition described in
Section VI-A for the rank one (single path) channel condition. In
this condition, the first eigenvalue of is given by the channel
vector norm.

(96)

All other eigenvalues of are zero. Hence, with some
straightforward algebraic simplification, the algorithm update
matrix (40) reduces to

(97)

Relating the reduced-rank variable(57) to ( has dimen-
sion 1) for the rank 1 channel

(98)

Inserting (98) into (97) with some algebraic simplification
provides

(99)

Define the reduced-rank 21 vector with a prime, . Then

(100)

and the update from (99) is (101), shown at the bottom of the
next page, where is of dimension 2 2, and

(102)

Note that the expression is simplified by parameterizing
by the single parameter rather than by , although the latter
would be the equivalent to the portrayal of the full rank matrix
in (40).
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APPENDIX D
DERIVATION OF AR1 UPDATE SECOND–ORDER

TAYLOR APPROXIMATION

For the transition of due to the time varying channel, a
second-order Taylor approximation of the incremental step due
to the new stimulus is applied. The nomenclature of this ap-
pendix is 2 1 reduced-rank vector (52). The approximation
is given by the gradient and Hessian of with respect to

so that

(103)

Ignoring the time index for the moment and considering dif-
ferentiating in (52), the derivatives are

(104)

(105)

Incorporating the eigenweight energy nomenclaturewhere
convenient, the Hessian is

(106)

Plugging (104) and (106) into (103) and taking the expecta-
tion of (103) with respect to using (55) gives

(107)

This is used as an approximation to the update in the desired
eigenspace. Given this update in, the update in is known,
as the weight norm is not changed by a change of the channel.
Applying the second approximation of the analysis, the realiza-
tion of is assumed independent of the prior realizations that
gave rise to so that the expectation with respect tocan be
used. Using (107) and (56) while conserving the weight vector
norm gives the channel update transition.

(108)

Note that the update of (108) satisfies intuitive expectations.
For small ( ), the update represents a transfer of an equal
fraction of modal power from each eigenmode to all the other
eigenmodes. Each null eigenmode receives one share from

, but since represents these eigenmodes of the
nullspace, it receives shares from . At the same time,
each of the null eigenmodes contributes one share of its power
to every other eigenmode. In the nullspace, this is a zero sum
game, but these contributions go from the nullspace energy to

. Since represents the sum of all the powers of the null
eigenmodes, this is a transfer of only one share fromto .
Clearly, this approximation can only be valid if the resultant
values of remain positive so that the AR1 rate of change
must be slow enough to satisfy

(109)
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