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The group G of the title is obtained as a primitive permutation group of 
degree 100 in which the stabilizer of a point has orbits of lengths 1, 22 and 77 
and is isomorphic to the Mathieu group M22. Thus G has rank 3 in the sense 
of [1]. G is an automorphism group of a graph constructed from the Steiner 
system ~ (3, 6, 22). 

WITT [3] defined a Steiner system ~(d,  rn, n) to be a set S of n points to- 
gether with a set B of subsets of S (referred to here as blocks) such that each 
block contains exactly m points and each set of d points is contained in exactly 
one block. WITT [4] showed that Steiner systems ~ (3, 6, 22) exist and that they 
are unique up to isomorphism. The automorphism group Mz2 of an ~ (3, 6, 22) 
contains the Mathieu group Mz2 as a subgroup of index 2 and is the normalizer 
of M22 in M24. 

Throughout the rest of the paper we shall use the following notation: S and 
B will denote the sets of points and blocks, respectively, of a fixed ~(3,  6, 22). 
Points will be denoted by Greek letters ~, fl, ... and blocks by Roman letters 
u, v, .... For each o~eS, [~] will denote the set of blocks containing ~. 

We shall use the following facts about ~(3,  6, 22) and M22: 

(1) Each point ~ is contained in exactly 21 blocks. Thus I[~]I =21. 

(2) Two distinct points are contained in exactly 5 blocks. 

(3) Two distinct blocks have 0 or 2 points in common, 16 blocks being 
disjoint from a given block and 60 meeting it in 2 points. 

(4) If u is a block not in [a], then exactly 6 blocks in [~] are disjoint from u. 

(5) Given distinct points c~ and fi and distinct blocks u and v in [~] c~ [fl] 
there exist exactly 4 blocks disjoint from u and v. 

(6) No 3 blocks are pairwise disjoint. 

(7) M22 contains an involution fixing exactly 8 points and 21 blocks. 

(1 ) - (6 )  are easily proved by counting arguments. (7) can be seen from 
an inspection of the character table of Mz2 given in [2]. 

We now construct an undirected graph ff with vertex set 

{ * } u S u B ,  

where * is a new symbol. In f#, 
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(a) * is joined to each point in S. 

(b) Each point c~eS is joined to the 21 blocks in [cq. 

(c) Two blocks are joined if and only if they are disjoint. 

Let G denote the automorphism group of re. It is clear that the stabilizer 
of �9 in G is isomorphic to the automorphism group of ~(3,  6, 22), that is, M22- 
We shall show that G is transitive on the vertices of re, from which it follows 
that G has order 88,704, 000. Since by (7) G contains an odd permutation, G 
is not simple but contains a simple subgroup G of index 2. 

Take a e S  and let S(a) and B(a) be the sets of vertices of ~ at distance 1 
and 2 from c~, respectively. S(a )={ .}  w [@ Thus IS(a)[ =22 and no two ver- 
tices of S(c 0 are joined. If fleS-{c~}, then fl is joined to �9 and so fleB(e). If 
v e B -  [el, then by (4) v is joined to some block in [cQ and so veB(e). Hence 

B (~) = ( S -  {~}) ~ (B - [~]) 
and ]B(c0l =77. 

We shall prove that 

(i) Each vertex in B(c 0 is joined to exactly 6 vertices in S(e). 

(fl) Three distinct vertices in S(c 0 are joined to exactly one vertex in B(c O. 

(iii) Two vertices in B(a) are joined if and only if they are not joined to a 
common vertex in S(c O. 

From (i), (ii), (iii) and the uniqueness of ~ (3, 6, 22) it follows that the stabilizer 
of c~ in G is also isomorphic to Mee and this implies that G is transitive. 

Proof of (i). A vertex in B(e) is either a point fleS-{c~} or a block u in 
B - [ e ] .  If fleS-{c~}, then by (2) fl is joined to * and to the 5 blocks containing 

and fi and to no other vertices in S(a). If u e B -  [c~], then by (4) u is joined 
to the 6 blocks in [cq disjoint from u and to no other vertices in S(e). 

Proof of (ii). We consider in turn each of the three types of sets of 3 distinct 
vertices in S(~). Since by (i) each vertex in B(e) is joined to 20 triples and 
there are 77 �9 20 triples altogether, it suffices to show that each triple is joined 
to at least one vertex in B(e). 

Type L {*, v, w}, v, we [c~]. In this case *, v and w are joined to t ,  where 

Type H. {u, v, w},u, v, we[,]n [/~l, /~eS-{e}. Here u, v and w are joined 
to ~. 

Type III. {u,v,w}, u, v, we[a], uc~v={c~,/?}, u n  w={e,7}, v c~ w ={cq6}, with 
/?, 7 and fi distinct points of S -{e} .  We must show the existence of a block 
disjoint from u, v and w. Let ~ = w-{cq 7, 6}. By (5) there are 4 blocks disjoint 
from u and v, say z 1, z 2 , z 3 , z 4. Suppose all of the zi intersect w non-trivially. 
Let 5i=z~-w.  By (3) 15il =4. Let 1 <=i<j<4. wc~zi and wnz~ are contained 
in ~ and each contain 2 points. Hence w ~ zl n zj is non-empty. Since I zi n zj 1N 2, 
we have I z~ n 5j[ _< 1. Therefore 

I u Iz~t- Y, I _>_16-6=10. 
i i i < j  
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However, 

and luuvuwl =13. Thus 

a contradiction. 

Us~c_S-uuvuw 
i 

Iy ,l=<9, 

Proof of Cffl). By (ii) each vertex in B(e) is joined to 16 other vertices in 
B (c~). By (i) and (ii) we may consider B (e) to be the set of blocks of an G (3, 6, 22) 
with point set S(~). By (3) it suffices to show that if two vertices in B(a) are 
joined, then they are not joined to a common vertex in S(a). There are three 
types of two-element subsets of B(a). 

Type I. {fl,~}_~S-{~}. fl and 7 are not joined. 

Type IL {fi, u}, fleS-{c~}, ueB-[a]. If fl and u are joined, then flsu. If fl 
and u are joined to a common vertex in S(e), then that vertex must be a block 
ve [cr But then tier and so unv+r  Therefore u and v are not joined. 

Type 111. {u, v} ~ B -  [~]. A vertex in S(a) joined to u and v must be a block 
w in [~]. If u is also joined to v, then u, v and w are pairwise disjoint, contradict- 
ing (6). 

We conclude by giving generating permutations for G. Numbering the ver- 
tex �9 as 1, the points of S as 2, 3 . . . .  ,23, and the blocks in B as 24, 25, ..., 100 
in an appropriate manner, G is found to be generated by the permutations 

and 

a =(1) (2, 8, 13, 17, 20, 22, 7) (3, 9, 14, 18, 21, 6, 12) 

(4, 10, 15, 19, 5, 11, 16) (23) (24, 77, 99, 72, 64, 82, 40) 

(25, 92, 

(27, 55, 

(30, 39, 

(32, 53, 

(34, 94, 

49 ,88 ,28 ,65 ,90) (26 ,41 ,70 ,98 ,91 ,38 ,75)  

43 ,78,86,87,45)(29,  69, 59,79,76,35,67)  

42,81, 36 ,57 ,89) (31 ,93 ,62 ,44 ,73 ,71 ,50)  

85, 60, 51, 96, 83) (33, 37, 58, 46, 84, 100, 56) 

80 ,61 ,97 ,48 ,68) (47 ,95 ,66 ,74 ,52 ,54 ,63)  

b =(1, 35) (2) (3, 81) (4, 92) (5) (6, 60) (7, 59) (8, 46) 

(9, 70) (10, 91) (11, 18) (12, 66) (13, 55) (14, 85) (15, 90) 

(16) (17, 53) (19, 45) (20, 68) (21, 69) (22) (23, 84) 

(24, 34) (25, 31) (26, 32) (27) (28) (29) (30) (33) (36) 

(37, 39) (38, 42) (40, 41) (43, 44) (47) (48) (49, 64) 

(50, 63) (51, 52) (54, 95) (56, 96) (57, 100) (58, 97) 

(61, 62) (65, 82) (67, 83) (71, 98) (72, 99) (73) (74, 77) 

(75) (76, 78) (79) (80) (86) (87, 89) (88) (93) (94). 
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