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ABSTRACT

In this paper we revisit the problem of computing controlled invari-

ant sets for controllable discrete-time linear systems and present

a novel hierarchy for their computation. The key insight is to lift

the problem to a higher dimensional space where the maximal con-

trolled invariant set can be computed exactly and in closed-form

for the lifted system. By projecting this set into the original space

we obtain a controlled invariant set that is a subset of the maximal

controlled invariant set for the original system. Building upon this

insight we describe in this paper a hierarchy of spaces where the

original problem can be lifted into so as to obtain a sequence of

increasing controlled invariant sets. The algorithm that results from

the proposed hierarchy does not rely on iterative computations. We

illustrate the performance of the proposed method on a variety of

scenarios exemplifying its appeal.
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1 INTRODUCTION

Controlled invariance is a prevalent concept throughout the his-

tory of control systems. Principally, a set is controlled invariant

if trajectories that start in it, can be forced to remain therein by

using admissible control inputs. Controlled invariance is the techni-

cal problem to be solved when synthesizing a controller enforcing
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safety properties, in the sense of ensuring that something bad never

happens. If a trajectory is to remain forever in a set of safe states,

then it must start in a Controlled Invariant Set (CIS) within the set

of safe states. Therefore, such sets are an important tool in several

control design problems, e.g., they act as safe sets in constrained

control [8, 13, 18], are used to design stabilizing control policies

[6, 18], guarantee feasibility of optimization problems in model pre-

dictive control [21], and more recently, they assumed a central role

in synthesizing controllers enforcing safety properties expressed

in temporal logic [30, 31, 35].

Consequently, a substantial e�ort has been devoted over the past

decades to computing CISs for continuous-time, discrete-time and

hybrid systems. Beginning with the pioneering work of [4] on the

computation of theMaximal Controlled Invariant Set (MCIS), many

other contributions followed and are documented in [5, 7].

However, computing CISs is still extremely challenging. Al-

though an iterative procedure was proposed in [4, 12] (see Section 2

for details), its termination is not guaranteed for a number of impor-

tant classes of problems. Moreover, the sets obtained become more

complex with each iteration, thus making this method intractable

for high dimensional systems.

To alleviate these impediments, alternative approaches, relying

on optimization and approximation techniques, have been inves-

tigated. Unavoidably, these techniques su�er from the e�ciency-

accuracy tradeo�, and the curse of dimensionality. Some of the

state-of-the-art methods propose inner and outer approximations

of the MCIS, by solving Semi-De�nite Programs (SDPs) [20, 28], or

Linear Programs (LPs) [33]. Naturally, outer approximations are

not invariant, but even inner approximations are not guaranteed to

be. Other attempts utilize sampling-based approximations [14], or

solve SDPs [17] to keep the system within a set over some speci�ed

time horizon, thus only providing invariance on �nite time intervals.

Another line of work is based on the iterative procedure of [4, 12],

such as [11, 29, 32] for a class of control systems with bounded

disturbances, and [10, 23, 34] for a class of switched systems.

In some cases [7, 19], it is possible to guarantee termination of

the classical algorithm. An important case ensuring this, is the class

of controllable discrete-time linear systems, with the states and

controls lying in �nite unions of hyper-rectangles, see [31, 35, 36],

and in the case of bounded perturbations, with states and controls

in polytopes [32].

In the same spirit, two methods [1, 22] compute exact CISs and

also guarantee �nite termination. In [22], an e�cient method was

presented using SDPs that computes an ellipsoidal CIS for a class of

hybrid systems. In turn, [1] proposed a novel method that computes

CISs by lifting the problem to a higher dimensional space, in which

invariant hyper-rectangles are computed in closed-form. Thus, the

MCIS for the lifted system is the union of such hyper-rectangles. By
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projecting this MCIS back to the original space, a CIS is obtained

for the original system.

In this paper, we extend the work in [1] by drawing inspiration

from the structure of CISs in automata. It is well-known that given

an automaton, a subset of its state-space is invariant if and only

if it contains a loop [25, 26]. This observation lets us interpret the

algorithm in [1] as the construction of loops of length one, i.e.,

self-loops. Motivated by this reasoning, we consider in this paper

the more general problem of constructing loops of length greater

than one.

More speci�cally, we propose a hierarchy based on an upper

bound for the length of loops. As a consequence, by enlarging the

upper bound we compute potentially larger controlled invariant

sets. Since the union of CISs is a CIS, it follows that we can po-

tentially enlarge the CIS based on a loop of length L, by taking its

union with a CIS based on a loop of length L + 1. This is illustrated

in Section 2.

Similarly to [1], the algorithm proposed in this paper computes

the MCIS in a higher dimensional space in closed-form, hence,

it does not rely on iterative computations. The computed MCIS

is projected back to the original space, obtaining thus a CIS for

the original problem. Although the proposed algorithm does not

compute the MCIS, it is nonetheless complete in the sense that if

the MCIS is non-empty, it computes a non-empty CIS.

The paper is organized as follows, in Section 2 we present a

motivating example illustrating the ability of the proposed method

to compute incrementally larger CISs. In Section 3, the problem is

mathematically setup, along with the essential de�nitions. Next,

Section 4 recalls the idea of computing a CIS by lifting the problem

into higher dimensional spaces, and provides the main technical

results. Finally, in Section 5 we provide a number of examples

evaluating the trade-o� between size of the computed sets and

performance, prior to concluding our remarks in Section 6.

2 MOTIVATING EXAMPLE

Before getting into the details of our work, we present a pedagogical

example that motivates the usefulness, and illustrates the improved

performance of the proposed algorithm over the one in [1].

Example 1. For our motivating example we consider the following

system in R2 taken from [1]:

x+ =

[
1.5 1

0 1

]
x +

[
0.5

0.25

]
u .

Let D be a subset of R2 (union of all sets in Fig. 1a), and u ∈ [−1, 1].

We aim to compute a subset of D in which the state x ∈ R2 can be

forced to remain with a suitable choice of u, i.e., a CIS of D.

In Figure 1a, the union of all sets isD, and the union of all sets ex-

cept the blue one is the MCIS ofD. As explained in the introduction,

we lift the problem into a higher dimensional space where the safe

set D is represented as a union of hyper-rectangles. Recall that the

algorithm in [1] computes invariant hyper-rectangles. Projecting

these hyper-rectangles into the original space, the CIS obtained for

our example is the white set in Figures 1a-1d. Now if instead we

allow the state to move between these hyper-rectangles in loops,

i.e., always returning back to a hyper-rectangle in the loop, we may

obtain larger CISs. These CISs are depicted in Figures 1a to 1d as

(a) (b)

(c) (d)
Figure 1:

(1a-d): Sets of Example 1.

Legend: Original set D (blue); Exact MCIS of D (light gray);

Controlled invariant set from [1] (white); Controlled invari-

ant sets from Algorithm 1 in di�erent shades of green for

loops of length 2 to 5.

the incremental union of the white set with the stripes in di�erent

shades of green for loops of length 2, 3, 4, and 5 respectively. For

easier comparison, only the relevant CISs appear in Figures 1b-1d.

3 PROBLEM FORMULATION

In this section, the problem of computing a controlled invariant

subsetD of a compact polyhedronD ⊂ Rn for a discrete-time linear

system Σ is formalized. We begin with the necessary de�nitions.

Definition 1 (Polyhedron and polytope). A polyhedron D in

R
n is a set of the form:

D =
{
x ∈ Rn

�� Gx ≤ f
}
, (1)

whereG ∈ Rk×n , and f ∈ Rk . Set D can be seen as an intersection of

�nitely many closed halfspaces of the form {x ∈ Rn |дTj x ≤ fj }, where

дTj is the j-th row of G and fj the j-th element of f . A polyhedron

that is both closed and bounded is called a polytope.

Definition 2 (Discrete-time linear system). A discrete-time

linear system Σ is a linear di�erence equation of the form:

x+ = Ax + Bu , (2)

where x ∈ Rn , u ∈ R, A ∈ Rn×n , and B ∈ Rn . The state of Σ is

denoted by x , and the input of Σ by u. A linear system Σ is de�ned

by the pair of matrices (A,B).

Assumption 1. In this work, we make the following assumptions

as part of the problem setup:
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(1) The set D ⊂ Rn is a compact polyhedron, i.e., a polytope1.

(2) The system Σ is controllable2.

Definition 3 (Controlled invariant subset). Consider a

polytope D as in (1), and a discrete-time linear system Σ as in (2). A

set D ⊆ D is a Controlled Invariant Subset (CIS) of D for Σ if:

x ∈ D ⇒ ∃u ∈ R : Ax + Bu ∈ D .

We call D the safe set.

Notice, that it follows from the implication in De�nition 3 that

for any initial state in D there is a control policy that forces the

resulting trajectories to remain in D forever [4]. Now we are ready

to formalize the problem we address.

Problem 1. Given a safe set D as in (1), and a discrete-time linear

system Σ as in (2), compute a controlled invariant subset of D for Σ.

There exists a classical algorithm that solves Problem 1. In order

to recall it, we need to �rst de�ne the controlled predecessor of a set

X ⊂ Rn for the system Σ, denoted by PreΣ(X ):

PreΣ(X ) =
{
x ∈ Rn

��∃u ∈ R : x+ = Ax + Bu ∈ X
}
. (3)

Intuitively, PreΣ(X ) is the set of all states x ∈ Rn for which there

exists a control input u forcing them into X in one time-step. Con-

sidering now our safe set D, it follows that PreΣ(D) is given by:

PreΣ(D) = πRn (W (D)) , (4)

where the auxiliary setW (D) is:

W (D) =

{
(x ,u) ∈ Rn × R

����
[
GA GB

] [
x

u

]
≤ f

}
, (5)

i.e., the set of pairs (x ,u) ∈ Rn ×R such thatAx +Bu ∈ D, and πRn

is the natural projection from Rn × R to Rn .

The classical algorithm that solves Problem 1 consists of the

following iterative procedure proposed in [4, 12]:{
S0 = D

Si+1 = Si ∩ PreΣ(Si )
, (6)

with the terminating condition Si+1 = Si . Procedure (6) computes

the MCIS of D for Σ, and theoretically works for any discrete-

time system and set, not just for linear systems and polyhedra.

Even though the proposed algorithm in this paper does not rely on

iterative computations, we will use the above procedure to establish

some of its properties.

In order to provide a clean and streamlined mathematical de-

scription of the proposed results, we work with the Brunovsky

normal form [9] of (2):

x+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x+1
.
.
.

x+n−1
x+n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2
.
.
.

xn
u

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= Acx + Bcu . (7)

Any controllable linear system (2) can be transformed in the above

form by a suitable change of coordinates and feedback [2]. Hence,

without loss of generality, we deal with systems of the form (7).

1See proof of Section 4.5.
2This assumption is only used to obtain the Brunovsky normal form in (7). For details
refer to [2, Ch. 3]

Remark 1. In the remainder of the paper, we assume unconstrained

inputs, i.e., u ∈ R. Our results hold in the exact same manner in the

presence of input constraints, i.e. u ∈ U ⊂ R. In this case, we extend

the original state space by one dimension, thus obtaining the state

y = (x ,u), and introduce a new unconstrained input ν ∈ R governing

the evolution of the state u according to u+ = ν . The input constraints

are now part of the safe set for the extended system:

y+ =

[
x+

u+

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x+1
.
.
.

x+n
u+

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2
.
.
.

u

v

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

and the safe set for the extended system is D ×U, where D is the safe

set for the original system.

Finally, we introduce the notion of transition system that we

will use to describe loops of various lengths.

Definition 4 (Finite transition system). A Finite Transition

System (FTS) A is a tuple (Q,δ ), where Q is a �nite set of states, and

δ : Q → Q is a state-transition function.

In this work we consider only deterministic FTSs, therefore each

state qi has a unique successor state qj , and we write δ (qi ) = qj .

4 CONTROLLED INVARIANCE IN HIGHER
DIMENSIONAL SPACES

4.1 Controlled invariance in two moves

A novel algorithm for computing a CIS was recently presented in

[1], and relies on an idea that works in two moves: 1) it lifts the safe

set to a higher dimensional space, where it can be represented as

a union of hyper-rectangles, and the MCIS is computed in closed-

form; 2) it projects this MCIS back to the original domain, obtaining

thus a CIS for the original problem.

We brie�y review the lifting procedure of [1]. In order to rep-

resent the safe set D = {x ∈ Rn | Gx ≤ f } as a union of hyper-

rectangles, a new variable λ ∈ Rkn is introduced. Then, D ⊂ Rn is

lifted to the set Dℓ ⊂ Rn+kn by the following construction:
{
дjixi ≤ λ

j
i , i = 1, · · · ,n

∑n
i=1 λ

j
i ≤ fj

, j = 1, . . . ,k, (9)

where дji is the entry of G in its j-th row and i-th column, and

λ =
(
λ1, . . . , λk

)
∈ Rkn , with each λj ∈ Rn , j = 1, . . . ,k . The lifted

set Dℓ is:

Dℓ
=

{
(x , λ) ∈ Rn+kn

��� Ḡx ≤ λ, Hλ ≤ f
}
, (10)

where Ḡ = [diaд(д1) · · · diaд(дk )]
T, with diaд(дj ) a diagonal ma-

trix with the elements of дj along its diagonal, with дj being the

j-th row of G, and H ∈ Rk×kn is such that Hλ ≤ f ⇔
∑
i λ

j
i ≤ fj ,

j = 1, . . . ,k . Once λ is �xed, (9) de�nes a hyper-rectangle by re-

stricting xi ∈ R to an interval. Hence, one can see Dℓ as the union

of all the hyper-rectangles de�ned by the λ-variables satisfying the

second equation in (9). In addition, the system Σ (7) is lifted to Σ
ℓ :

[
x+

λ+

]
=

[
Ac 0

0 I

] [
x

λ

]
+

[
Bc
0

]
u . (11)
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Figure 2 illustrates the aforementioned ideas: the original set, an

octagon, is lifted to a higher dimensional space and represented by a

union of di�erent hyper-rectangles parameterized by λ. For a �xed

λ we have an instantiation of the hyper-rectangles (transparent).

By projecting all these instantiations back to the original domain,

one recovers the octagon.

Notice that in (11) equation λ+ = λ forces λ to remain constant

so that the hyper-rectangles are preserved by the lifted system. This

requirement allows for the computation of the MCIS of Dℓ in the

lifted space as a union of invariant hyper-rectangles. This MCIS is

given in closed-form as:

SMCIS =

⎧⎪⎪⎨
⎪⎪⎩

x ∈ Rn ,

λ ∈ Rkn

������

GMCISx ≤ λ

Hλ ≤ f

Γnλ ≤ 0

⎫⎪⎪⎬
⎪⎪⎭
, (12)

where the exact expressions for the matrices GMCIS, H , and Γn can

be found in [1, Th. 3.1].

4.2 Proposed algorithm

In this paper, we relax the requirement of invariant hyper-rectangles

imposed in [1]. Intuitively, we allow the state of the lifted system to

move between hyper-rectangles, visiting each of them at least every

L steps. This is formalized by an FTS A with L states. Each state

of A corresponds to a collection of hyper-rectangles, and di�erent

states of A can be associated with the same collection. The FTSs

we consider consist of a single loop of length L and have L states:

A = (Q,δ ) such that |Q | = L, δL(q) = q, ∀q ∈ Q, (13)

where δ i denotes the i-fold composition of δ with itself. The pro-

posed method is realized by the following steps:

(1) Given the system Σ, and the safe set D, select an FTS A

satisfying (13). Composing Σ and A we obtain Σ
′
= Σ × A:

[
x+

q+

]
=

[
Acx + Bcu

δ (q)

]
, (14)

with state (x ,q) ∈ Rn ×Q . Similarly, we compute the new

set D ′ as the product D ′
= D ×Q . We interpret the set D ′ as

L copies of D, one for each possible value of q. Let us denote

each such copy by Dq = D × {q}, q ∈ Q .

Figure 2: Illustration of domain lifting. Octagon is the safe

setD. Transparent hyper-rectangle is an instantiation of the

hyper-rectangles whose union equals the lifted set Dℓ . Gra-

dient cube is the MCIS of Dℓ . Light grey rectangle is the CIS

obtained after projection. Dark grey polygon is the MCIS.

(2) Lift system Σ
′ from Rn ×Q to Rn ×Q ×

(
R
kn

)Q
. The lifted

system Σ
′ℓ is:

⎡⎢⎢⎢⎢⎣

x+

q+

λ+(q)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

Acx + Bcu

δ (q)

λ ◦ δ (q)

⎤⎥⎥⎥⎥⎦
. (15)

The lift of D ′ is performed using construction (9), and D ′ is

lifted to D ′ℓ :

D ′ℓ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������
Ḡx ≤ λ(q),

Hλ(q) ≤ f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (16)

For the rest of the paper, towards ease of notation, we write

λq to denote λ(q), and also denote λ+(q) = λ ◦ δ (q) by λq+ .

This completes the lift process.

It is important to notice that λ lives in the space of functions from

Q to Rkn . For a �xed q, we have a collection of hyper-rectangles

corresponding to copy Dq , and for a �xed value of λq , an instantia-

tion of these hyper-rectangles. To portray it, the case of the state

moving between two hyper-rectangles is shown in Figure 3.

Given system Σ
′ℓ and setD ′ℓ , in principle one could use iterative

procedure (6) to obtain the MCIS. Albeit termination of (6) is not

guaranteed in general, we prove that for system (15) and set (16)

it terminates in a �nite number of steps, and provide the closed-

form expression for the resulting MCIS. Therefore, the proposed

algorithm computes the MCIS in the lifted space Rn ×Q ×
(
R
kn

)Q

without any iterative computations. Finally, by projecting the com-

puted MCIS back to Rn a CIS is obtained for the original system.

The ideas of this subsection are summarized in Algorithm 1, where

MCISS0,Σ′ℓ denotes the MCIS of a set S0 for a system Σ
′ℓ .

4.3 Exact computation of CIS in the lifted space

This section contains the main theorem of this work. It is a gener-

alization of the result in [1], and was inspired by similar results in

[31, 35, 36], in which �nite termination is guaranteed. The latter

0
q

1
q

Figure 3: The state in the lifted space moves between two

instantiations of (transparent) hyper-rectangles correspond-

ing to states q0,q1 ofA. For each of them, we compute a (gra-

dient) cube. Their union is the MCIS of the lifted set. By pro-

jecting it, a larger CIS is obtained in the original space.
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Algorithm 1: Computation of a controlled invariant subset

of a set D.

Data: A set D = {x ∈ Rn |Gx ≤ f } as in (1), a controllable

system Σ de�ned by the pair (Ac ,Bc ) as in (7), and an

FTS A = (Q,δ ) as in (13).

Result: A controlled invariant subset of D.

Input: G, f ,Ac ,Bc ,Q,δ

De�ne:

Σ
′ℓ :

⎡⎢⎢⎢⎢⎣

x+

q+

λ+(q)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

Acx + Bcu

δ (q)

λ ◦ δ (q)

⎤⎥⎥⎥⎥⎦

D ′ℓ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������
Ḡx ≤ λ(q),

Hλ(q) ≤ f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Compute:

S0 ← D ′ℓ

MCISS0,Σ′ℓ ← SA as in (18)

DA ← πRn (SA )

Return DA

results rely on controllability as one of their assumptions, however

in the lifted space where procedure (6) is applied, the system (15) is

not controllable.

In this theorem we make three claims: 1) �nite termination, 2)

correctness, and 3) completeness of Algorithm 1. While 1) is proven

in this subsection, we prove 2) and 3) in subsequent theorems.

Theorem 4.1. Consider a safe set D as in (1), and a discrete-time

linear system Σ as in (7), for which Assumption 1 holds, and select an

FTS A as in (13). A CIS DA ⊆ D for Σ is provided by:

DA = πRn (SA ) , (17)

where SA is the MCIS of D ′ℓ for system Σ
′ℓ , and whose closed-form

expression is given in (18).

Proof. To show �nite termination, we apply iterative procedure

(6) with S0 = D ′ℓ , for system Σ
′ℓ (15). In each iteration i ∈ N, we

compute Si+1 = Si ∩Pre
Σ′ℓ

(Si ). Computation of Pre
Σ′ℓ

(Si ) requires

the auxiliary setW (Si ) as in (5). During the �rst n iterations, the

constraints that de�neW (Si ) are of the form:

[
ḠAic ḠAi−1c Bc

] [
x

u

]
≤ λq+ , q ∈ Q .

We assumed (Ac ,Bc ) in Brunovsky normal form (7). It follows

then, that in the above set of inequalities, variables x and u do

not appear in the same inequalities, i.e., if a row of ḠAic is zero,

then the corresponding row of ḠAi−1c Bc is non-zero, and vice versa.

From (4), to obtain Pre
Σ′ℓ

(Si ) we eliminate u, i.e., we project the

setW (Si ) from R
n × R × Q × (Rkn )Q to Rn × Q × (Rkn )Q . This

yields constraints only on λ since for the rows of ḠAi−1c Bc that are

non-zero, the corresponding rows of ḠAic are zero. At the end of

the n-th iteration, without loss of generality, describe the set Sn by:

Sn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������
Ĝnx ≤ λq
∆nλq ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

where ∆nλq ≤ 0 denotes all constraints involving only λ, and

Ĝnx ≤ λ, the constraints involving both x and λ.

By noticing that for i > n, GAic = GA
i−1
c Bc = 0 holds, it follows

that no new constraints are generated by eliminating u as above

beyond iteration n. Resuming the procedure nonetheless, observe

that:

Pre
Σ′ℓ

(Sn ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������
Ĝnx ≤ λq+

∆nλq+ ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

and therefore:

Sn+1 = Sn ∩ Pre
Σ′ℓ

(Sn ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

��������

Ĝnx ≤ λq
∆nλq ≤ 0

Ĝnx ≤ λq+

∆nλq+ ≤ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

that is, even though Ĝn and ∆n do not change for iterations i ≥ n,

termination is not reached yet since by computing Pre
Σ′ℓ

(Sn ) we

get a new set of constraints, similar to the previous one, but on λq+ .

Since q+ = δ (q), and A consists of a loop of length L, it follows

from (13) that δL(q) = q. In L more iterations, Pre
Σ′ℓ

(Sn+L−1) intro-

duces Ĝnx ≤ λδ L (q) = λq , and ∆nλδ L (q) = ∆nλq ≤ 0, which

already appear. Consequently, at this point, Sn+L = Sn+L−1 ∩

Pre
Σ′ℓ

(Sn+L−1) = Sn+L−1 holds, and the termination condition

is met. Hereby, �nite termination is proven in a total of n + L − 1

steps.

Let SA be the result of eliminating q from Sn+L−1. The closed-

form expression of SA is:

SA =

⎧⎪⎪⎨
⎪⎪⎩
(x , λ) ∈ Rn ×

(
R
kn

)Q
�������

Ĝnx ≤ R̂nλ

Ĥλ ≤ f̂

Γ̂nλ ≤ 0

⎫⎪⎪⎬
⎪⎪⎭
, (18)

and its exact form is found in Section 7 with a detailed proof. �

Remark 2 (The multi-input case). In this paper, we only discuss

single-input systems to simplify the presentation. It is straightforward

to extend our results to controllable systems withm inputs. In this case,

the original system can be decomposed intom decoupled single-input

subsystems. If the safe set can be re-written as a product ofm sets,

each involving only the corresponding states of the decoupled systems,

then it su�ces to apply our algorithm to each of the subsystems, and

compute the product of the resulting CISs. In the general case, where

the safe set cannot be decomposed, we can use arguments similar to

those employed for the single-input case to prove �nite termination

in a total of μ + L − 1 steps, where μ is the maximal controllability

index, i.e., the size of the largest subsystem. For details see [2, Ch. 3].

4.4 Proof of correctness

In this subsection we prove that the set computed by Algorithm 1

is indeed a controlled invariant set.
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Theorem 4.2. Consider a safe set D as in (1), and a discrete-time

linear system Σ as in (7), for which Assumption 1 holds, and select an

FTS A as in (13). For this setting, if Algorithm 1 returns a non-empty

set DA , then DA is a CIS of D for Σ.

Proof. For any x ∈ DA , there exists a x̂ = (x , λ) ∈ SA such that

πRn (x̂) = x . Since SA is controlled invariant, it follows that x̂+ =

(x+, λ+) = (Acx + Bcu, λ ◦ δ ) ∈ SA . Consequently, πRn (x̂) ∈ DA .

By noting that Acx + Bcu = πRn ((Acx + Bcu, λ)) ∈ D the proof is

now �nished. �

4.5 Proof of completeness

In this subsection we establish a form of completeness. If the MCIS

of a compact polyhedron D is non-empty, then Algorithm 1 always

�nds a non-empty CIS of D.

Theorem 4.3. Consider a safe set D as in (1), and a discrete-time

linear system Σ as in (7), for which Assumption 1 holds, and select

an FTS A as in (13). For this setting, if the MCIS of D is non-empty,

then Algorithm 1 returns a non-empty set DA , which is a controlled

invariant subset of D.

Proof. Recall that in this paper, we require the state of the lifted

system Σ
′ℓ in (15) to loop back to a hyper-rectangle in a �nite

number of steps, L. This is formalized by the FTS A in (13). The

invariant hyper-rectangles proposed in [1] are of course a special

case of returning every L steps. Let us denote by S̃MCIS the lifted

version of SMCIS in (12), proposed in [1], to the space where SA
lives. Then, S̃MCIS is a subset of SA and consequently:

S̃MCIS ⊆ SA =⇒ πRn
(
S̃MCIS

)
⊆ πRn (SA ) =⇒ D ⊆ DA ,

where D is the CIS computed in [1], and DA the CIS computed

by our algorithm. From [1, Th. 3.3], for which compactness of D

is a requirement, if the MCIS of D is non-empty, then D is also

non-empty. Therefore:

MCIS of D � ∅ =⇒ D � ∅ =⇒ DA � ∅,

for any FTS A. This concludes the proof. �

4.6 Some observations

Upon concluding our technical results, and prior to the computa-

tional evaluation of our novel method, the following observations

are in order:

(1) It su�ces to consider only the simple FTS proposed in (13)

of length L. If more complicated deterministic transitions of

length L exist, e.g., a hyper-rectangle is visited more than

once in the loop, Algorithm 1 will consider them automati-

cally. To exhibit this, consider the two FTSs in Figure 4, both

have loops of length 4. The �rst (Fig. 4a) moves the state

between 3 collections of hyper-rectangles, labelled by the

respective λ-variables. The other (Fig. 4b) considers as many

collections as the length of the loop, which are visited con-

secutively. The CIS based on the FTS in Fig. 4a, is contained

in the one based on the FTS in Fig. 4b.

(2) The proposed hierarchy is not strict. This can be easily ver-

i�ed with a toy example of a double integrator and a safe

set of box constraints. In this case, our approach with L = 1

returns the MCIS, as any L > 1 does.

q2

q1

q0

λ0

λ1

λ2

(a)

q2

q1

q3

q0

λ0

λ1 λ2

λ3

(b)

Figure 4: Two di�erent FTSs with the same loop length:

In (4a), the loop is (q0q1q2q1)
ω . while in (4b), (q0q1q2q3)

ω ,

where ω denotes in�nite repetition.

(3) Denote by DL and DL′ the CISs computed by Algorithm 1

based on loops of length L and L′ respectively, where L′ < L

and L is an integer multiple of L′. Then DL′ ⊆ DL . Concep-

tually, the case of visiting a hyper-rectangle at least every

L steps, contains all cases that do so in L′ < L steps if L′

divides L. This suggests that increasing the length of the

loop appropriately, may yield a larger CIS.

(4) In the general case, given L′ < L, we can have DL′ � DL .

For example, in Fig. 5a, D3 does not contain D2. A di�erent

example is provided in Fig. 5b, where we can appreciate that

D2 is actually larger than D3, but again without contain-

ment. Still, as expected from point (3), D6 contains both D2,

and D3 as shown in Fig. 5c.

(5) An important question is whether by increasing L to in�nity,

the computed CIS converges to the MCIS. At the moment,

this is under investigation and answering this question is

part of our ongoing research.

The above observations suggest the following fact: our method

enforces a simple hierarchy on the computed CISs. By increasing

loop length L, and computing the union of the resulting CIS with a

CIS for a smaller length, we obtain a larger CIS. Moreover, given a

loop length L, the resulting CIS contains the CISs computed for all

its divisors L′. In this sense, FTSs are simply ordered by the length

of their loop, or as one could think more intuitively by the amount

of memory that is allowed to the algorithm.

5 COMPUTATIONAL EVALUATION

In this section, we perform a computational evaluation3, 4 of the

proposed approach. We begin with the system from Section 2.

Example 2. Consider again the following system:

x+ =

[
1.5 1

0 1

]
x +

[
0.5

0.25

]
u .

Let D be a subset of R2 as in Fig. 6, with input constraints u ∈ [−1, 1].

This is a system in R2 with constraints on the input, thus can be

modeled as a system in R3 with unconstrained input.

In Table 1, the �rst row shows how the overall computation time

is impacted by increasing the states L of the utilized FTS. As ex-

pected, the larger L is, the more computation time increases -rather

3The code for our all examples, as well as the code that implements Algorithm 1, are
available online at https://github.com/janis10/cis2m.
4The exact parameters of all examples in this paper can be found in
https://github.com/janis10/cis2m/tree/master/HSCC20/paper-examples.
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exponentially- on the grounds of projecting from an increasingly

higher dimensional space to the original one. Following, the second

row of Table 1 shows the ratio of the computed CIS’s volume to

that of the MCIS. Notice that as we increase L, the ratio approaches

1. There is thus a clear trade-o� between quality and performance.

Nonetheless, the gain in the size of the CIS is decreasing as L in-

creases, indicating that in practice there is no need to consider

increasingly larger FTSs.

To further demonstrate the performance and �exibility of our

method, we compare with the approach proposed in [22]. There,

the authors utilize Sum-Of-Squares (SOS) programming to compute

ellipsoidal CISs. Although their approach was proposed for a more

general class of discrete-time hybrid systems, we adapt it to the

discrete-time linear systems case. For the example above, in Figure

6, the incremental union of the white set with each of the green

stripes represents the CIS obtained with our method using an FTS

with 1 to 5 states respectively, and in orange is the ellipsoidal CIS

obtained from [22]. This �gure highlights one of the advantages

of our method, which stems from the proposed hierarchy. If the

(a)

0.5

0.4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.3

0.35
0.050.10.150.20.250.3

(b)

(c)

Figure 5: (a) CIS for L = 2 (blue), CIS for L = 2 (grey). (b,c) CIS

for L = 2 (red), CIS for L = 3 (green), CIS for L = 6 (white).

Table 1: Execution times and percentage of MCIS volume

captured by the CIS computed by Algorithm 1. States of the

FTS range from L = 1 to L = 6. System is in R3.

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

Time (sec.) 0.32 0.65 1.53 6.98 10.42 21.92

% of MCIS

volume
71.59 86.24 89.72 94.81 97.55 99.72

Figure 6: Comparison of our approach with [22].

Legend: Original set D (blue); MCIS of D (light gray); CISs

from Algorithm 1 (white and di�erent shades of green) us-

ing an FTS with 1 to 5 states; CIS from [22] (orange).

computed CIS is deemed insatisfactory, an incrementally larger CIS

can be obtained by increasing the states of the FTS. In Figure 6 we

can observe that by using L = 2 we already obtain a CIS larger than

the one produced by the techniques in [22].

For the next experiment we consider the system of a truck with

N trailers [30], which is shown in Fig. 7.

Example 3. Consider the continuous-time system of a truck with

N trailers:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�di = vi−1 −vi

�v0 =
ks
m d1 −

kd
m v0 +

kd
m v1 + u

�vi =
ks
m (di − di+1) +

kd
m (vi−1 − 2vi +vi+1)

�vN =
ks
m dN −

kd
m vM +

kd
m vN−1

, i = 1, . . . ,N ,

where velocities v0, . . . ,vN , and distances d1, . . . ,dN are as in Fig. 7.

Discretize with sampling time Ts to obtain a discrete-time linear sys-

tem. The state is x = [d1, . . . ,dN ,v0, . . . ,vN ], and hence N trailers

correspond to dimension n = 2N + 1 of the discrete-time system.

Table 2 shows in turn how the performance of the algorithm

is a�ected by increasing the dimension n of the system. Again,

the exponential increase in computation time demonstrates how

cumbersome the problem becomes in high dimensions, especially

when compared for example with [22], which is signi�cantly faster.

Be that as it may, comparing the volumes of the computed CISs,

reveals that the proposed approach returns considerably larger sets

for n = 3, 5. Furthermore, it still has the ability to compute even

larger sets if needed by increasing L, which could be the case for

n = 7. Hence, depending on the application, the ability to compute

larger CIS can be quite useful. As a reference, the volume of the

MCIS is provided in the third row. Computing the MCIS using the

v0 v1 vN

d1 dNd2

. . .

Figure 7: Illustration of a truck with N trailers.
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Table 2: Execution time and CIS volume for Example 3 as

the number of trailers N increases: using Algorithm 1 with

L = 2, the algorithm in [22], and MPT3.

Dash “−” denotes negligibly small sets, and “NA” that the

value is not available since the algorithm did not converge

within the given iteration upper bound.

n = 3 n = 5 n = 7 n = 9

Alg. 1

with L = 2

Time (sec.) 0.303 4.34 57.89 852.7

Volume 19.91 0.262 4 · 10−5 −

Alg. in

[22]

Time (sec.) 0.07 0.11 0.13 0.17

Volume 1.006 0.068 1 · 10−3 −

MPT3

50 iterations

Time (sec.) 1.05 4.5 363.2 >7200

Volume 21.68 20.75 NA NA

invariantSet() function of the Multi-Parametric Toolbox (MPT3)

[15], which is based on the iterative procedure (6), is extremely

more costly computationally for higher dimensions. For this reason,

we set an upper bound of 50 iterations for MPT3. Table 2 shows that

even though MPT3 computes the MCIS fairly quickly for n = 3, 5,

it failed to converge in 50 iterations for larger values of n, and

simulations were aborted, thus the computed set is not a CIS.

It is worth noticing, that for our algorithm almost the entire

execution time was consumed in projecting from the lifted space

to the original space. This is readily understood by taking into ac-

count that the more copies of the original problem we make when

composing it with FTS A, the larger is the lifted space, and in turn

the more e�ort it requires to return to the original space by projec-

tion [16]. This highlights though, the opportunity for signi�cantly

improving performance by exploiting the speci�c structure of the

MCIS computed in closed-form in the higher dimensional space,

which is the focus of our current research.

Remark 3. Even though this paper considers exact CISs, for the

sake of comparison we assessed the performance of one of the state-

of-the-art algorithms [20] in computing approximations of the MCIS

by solving SDPs5. Table 3 shows our �ndings for Example 3, n = 3, 5,

and using polynomials of di�erent degrees d . For reference, in [20], a

system with similar constraints on the state and n = 2 is presented,

and the approximations are adequate for d ≥ 8. Therefore, given

the times for d = 8, we conclude that just solving the SDP performs

worse in terms of execution time compared to both methods in Table

2. Moreover, formulating the problem, i.e., all computations prior to

calling the solver, was considerably time consuming as we required

more accurate approximations in MATLAB using YALMIP [24] .

For reference, all the simulations were conducted with an iMac

(Late 2012), with a 4 core Intel Core i7 Processor @ 3.4 GHz, and

32 GB 1600 MHz DDR3 RAM. All optimization problems have been

solved with MOSEK v8.1 [3].

6 DISCUSSION & CONCLUSION

In this paper, we presented a novel hierarchy for computing con-

trolled invariant sets of discrete-time linear systems. The proposed

5Towards this, we adapted the code found on https://homepages.laas.fr/henrion/ to
our example.

methodology works as follows: 1) composes the system with an

FTS with L states, e�ectively creating L copies of the problem; 2)

lifts these copies to a higher dimensional space where the MCIS is

computed in closed-form; 3) projects this set back to the original

domain resulting in a CIS.

The resulting algorithm expresses the hierarchy via the FTS used:

increasing the upper bound for the loop length, potentially yields

larger CISs. In turn, this introduces a trade-o� between quality,

in terms of the size of the CIS, and performance, in terms of the

running time. Consequently, due to this inherent �exibility, the

algorithm can adapt to a speci�c application’s requirements. More-

over, it is complete as it is guaranteed to compute a non-empty CIS

if the MCIS is not empty.

The proposed hierarchy is understood as follows: computing

the union of a CIS for a given loop length L, with the CIS obtained

for a smaller loop length L′, can return larger controlled invariant

sets. In the general case, there can be instances where increasing

the loop length from L′ to L, does not necessarily imply that the

CIS for L, by itself, will contain the CIS for L′. An exception to

this, is that given a length L, the CIS based on L contains any CIS

based on a divisor of L. Ideally of course, the result we would like

to establish is a much stricter hierarchy based only on the upper

bound of the loop length, so that a given L yields a larger CIS

than any L′ < L. To do so however, requires embedding di�erent

lengths in the same FTS, resulting in disjunctions of sets during

the execution of our algorithm, something that would potentially

sacri�ce properties such as convexity of the computed sets, and

deteriorate the performance. Moreover, as discussed in Section 4.6,

it is still unknown to us if by increasing L to in�nity, the computed

CIS converges to the MCIS. Exploring this line of work is one of

the foci of our current research.

At the same time, the performance of the proposed method can

be signi�cantly improved by exploiting the speci�c structure of

the MCIS in the lifted space, which is computed in closed-form.

Such result, is part of our future research directions towards more

e�ciently computing controlled invariant sets.

We anticipate no real impediments to extending the results to

linear systems with disturbances, which will be part of our future

work.

Last but not least, we would like to emphasize the ensuing fact:

as mentioned extensively in the introduction, numerous approaches

for di�erent classes of systems are fundamentally based on the iter-

ative procedure of [4], which always returns the MCIS. We believe

that many results based on the algorithm in [4] can be generalized

to use the proposed algorithm so as to bene�t from guaranteed �nite

termination, closed-form expressions, and reduced computational

cost.

Table 3: Times (sec.) to solve the SDP approximating the

MCIS with the algorithm in [20], using polynomials of de-

gree d for Example 3, and n = 3, 5.

d = 4 d = 6 d = 8

n = 3 1.102 1.639 4.468

n = 5 1.743 12.42 126.48
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7 DERIVATION OF THE CLOSED-FORM IN
THEOREM 4.1

We demonstrate here how to derive the closed-form expression of

the set SA in (17). Initialize procedure (6) with:

S0 = Dℓ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������
Ḡx ≤ λq ,

Hλq ≤ f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Denote the following for the remainder of this proof:

qi = δ i (q),

where δ i is the i-fold composition of δ with itself. To compute

Pre
Σ′ℓ

(S0), we use the auxiliary setW (S0) in (5):

W (S0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x ,u) ∈ Rn × R,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ḡ(Acx + Bcu) ≤ λq1

Hλq1 ≤ f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Since we assume (Ac ,Bc ) to be in Brunovsky normal form, in the

above set of inequalities variables x andu do not appear in the same

inequalities, i.e., if a row of Ac is zero, then the corresponding row

of Bc is non-zero, and vice versa. Then the inequalities involving

u are of the form дjnu ≤ λq1, jn , j = 1, . . . ,k . To obtain Pre
Σ′ℓ

(S0)

from (4), we eliminate the variable u. Using the Fourier-Motzkin

Elimination method [27] we obtain:
∧

p∈P1

∧

t ∈T1

(
дtλq1,p − дpλq1,t ≤ 0

)
, (19)

where:

Pi =
{
p
��дp = дj(n+1−i) > 0

}
,

Ti =
{
t
��дt = дj(n+1−i) < 0

}
,

Ri =
{
r
��дr = дj(n+1−i) = 0

}
.

Let Γ1λq1 ≤ 0 be equivalent to (19), then:

Pre
Σ′ℓ

(S0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

(
ḠAc

)
R1

x ≤
(
λq1

)
R1

,

Hλq1 ≤ f , Γ1λq1 ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

where the subscript R1 denotes keeping only the rows with indices

in the set R1. Consequently, at the end of the �rst iteration:

S1 = S0 ∩ Pre
Σ′ℓ

(S0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ḡx ≤ λq ,
(
ḠAc

)
R1

x ≤
(
λq1

)
R1

,

Hλq ≤ f , Hλq1 ≤ f ,

Γ1λq1 ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Applying this procedure iteratively, at the n-th step:

Sn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ḡx ≤ λq , · · ·
(
ḠAnc

)
Rn

x ≤
(
λqn

)
Rn
,

Hλq ≤ f , · · · Hλqn ≤ f ,

Γ1λq1 ≤ 0, · · · Γn [λq1 . . . λqn ] ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

At this point, notice that during the next iteration of the procedure,

W (Sn ) has the new inequality Ḡ(An+1c x+Anc Bcu) ≤ λqn+1 . However,

An+1c = Anc B = 0, and hence no new constraints are generated by

eliminating u anymore. Let us write the set Sn more compactly as:

Sn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ĝnx ≤ R̂ λq ,

Hnλq ≤ fn ,

∆nλq ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (20)

where matrices Ĝn , R̂, Hn , ∆n , and vector fn are of the appropriate

forms. Even though eliminating u at each of the subsequent iter-

ations does not result in the generation of new inequalities, the

reader should notice that Sn ∩ Pre
Σ′ℓ

(Sn ), still introduces inequali-

ties involving λ. These inequalities are:

Hnλq+ ≤ fn and ∆nλq+ ≤ 0,

and consequently:

Sn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ĝnx ≤ R̂ λq ,

Hnλq ≤ fn , Hnλq+ ≤ fn ,

∆nλq ≤ 0 , ∆nλq+ ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Since q+ = δ (q), and A consists of a loop of length L, it fol-

lows from (13) that δL(q) = q. In a total of n + L more iterations,

Pre
Σ′ℓ

(Sn+L−1) introduces:

Ĝnx ≤ R̂ λδ L (q) = λq ,

Hnλδ L (q) = ∆nλq ≤ fn ,

∆nλδ L (q) = ∆nλq ≤ 0,

which already appear. Consequently, at this point, Sn+L = Sn+L−1∩

Pre
Σ′ℓ

(Sn+L−1) = Sn+L−1 holds, and the termination condition is

met. Hereby, �nite termination is proven in a total of n+L− 1 steps,

thus obtaining:

Sn+L−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

�������

Ĝnx ≤ R̂ λq

Ĥλq ≤ f̂

Γ̂ λq ≤ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (21)

where:

• Ĝn , R̂ are as in (20),

• Ĥ , f̂ are such that Ĥλq ≤ f̂ is equivalent toHλq ≤ f , q ∈ Q ,

and

• Γ̂ is such that Γ̂ λ ≤ 0 is equivalent to:

Γn [λqs . . . λq(s+n−1) ] ≤ 0, s = 0, . . . ,L − 1 .

At this point, the set computed in (21) can be simpli�ed to some

degree towards a more e�cient algorithmic implementation. Let

us write the above set as follows:

Sn+L−1 =

L−1⋃

s=0

Sn+L−1,qs ,

where for each set Sn+L−1,qs we �x the value of q = qs ,∀qs ∈ Q :

Sn+L−1,qs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈ Rn ,

q ∈ Q,

λ ∈
(
R
kn

)Q

��������

q = qs

Ĝnx ≤ R̂ λq

Ĥλq ≤ f̂

Γ̂ λq ≤ 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (22)

We now show that the projections of all these sets coincide inRn .

Towards this, we �rst eliminate q ∈ Q , and work in Rn × (Rkn )Q .

In (22), q comes into play directly only in the constraint q = qs , and
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eliminating q is equivalent to dropping said constraint. Denote two

sets withq projected out as Sqs , and Sq(s+1) ⊂ R
n×(Rkn )Q . Nowwe

can show that these two sets are related to each other through a rota-

tion in the λ-coordinates. Consider a point
(
x , λq0 , . . . , λqL−1

)
∈ Sqs .

By rotating the λ-coordinates we obtain
(
x , λq1 , . . . , λqL−1 , λq0

)
∈

Sq(s+1) , which proves our claim. Given that x-coordinate is invariant

under these rotations, one can intuitively realize that the projections

of these sets onto Rn , i.e., the x-coordinates, are identical.

To show that, consider:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 . . . 0

0 0 . . . I

.

.

.

.

.

.

.

.

.

.

.

.

0 I . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and P =

⎡⎢⎢⎢⎢⎢⎣

I 0 . . . 0
.
.
.

.

.

.

.

.

.

.

.

.

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
,

where R is a permutation matrix, and P de�nes the orthogonal

projection onto the x-coordinates. Then we write Sqs , and Sq(s+1)
as:

Sqs =

{
(x , λ) ∈ Rn ×

(
R
kn

)Q ���� Gqs [x λ] ≤ f̃

}
,

Sq(s+1) =

{
(x , λ) ∈ Rn ×

(
R
kn

)Q ���� Gq(s+1) [x λ] ≤ f̃

}
,

and the equality Gqs = Gq(s+1) R follows.

Similarly, the corresponding projections on Rn are:

πRn
(
Sqs

)
=

{
P [x λ]

��� Gqs [x λ] ≤ f̃
}
,

πRn
(
Sq(s+1)

)
=

{
P [x λ]

��� Gq(s+1) [x λ] ≤ f̃
}
,

and for any point in πRn
(
Sq(s+1)

)
, using the change of coordinates

R [x λ], and noticing that P R = P :

πRn
(
Sq(s+1)

)
=

{
P [x λ]

��� Gq(s+1) [x λ] ≤ f̃
}
,

⇒ πRn
(
Sq(s+1)

)
=

{
PR [x λ]

��� Gq(s+1)R [x λ] ≤ f̃
}
,

=

{
P [x λ]

��� Gqs [x λ] ≤ f̃
}
= πRn

(
Sqs

)
.

Therefore:

πRn
(
Sn+L−1,qs

)
= πRn

(
Sn+L−1,qs′

)
, for all s, s ′ = 0, . . . ,L − 1 .

Thus, it su�ces to compute just one of the sets in (21) in the lifted

space. Denote this set by SA :

SA =

⎧⎪⎪⎨
⎪⎪⎩
(x , λ) ∈ Rn ×

(
R
kn

)Q
�������

Ĝnx ≤ R̂nλ

Ĥλ ≤ f̂

Γ̂nλ ≤ 0

⎫⎪⎪⎬
⎪⎪⎭
, (23)

where:

• Ĝn , R̂n are such that Ĝnx ≤ R̂nλ realizes Ḡx ≤ λq0 , and(
ḠAc

)
Ri

x ≤
(
λqi

)
Ri
, i = 1, . . . ,n, without loss of generality,

and

• Ĥ , f̂ , and Γ̂n as in (21).

This concludes the proof.
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