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Abstract
Given a high-level specification and a low-level program-
ming language, our goal is to automatically synthesize an
efficient program that meets the specification. In this paper,
we present a new algorithm and methodology for inductive
synthesis that allows us to do this.

We use Second Order logic as our generic high level
specification logic. For our low-level languages we choose
small application-specific logics that can be immediately
translated into code that runs in expected linear time in the
worst case.

We explain our methodology and provide examples of the
synthesis of several graph classifiers, e.g, linear-time tests
of whether the input graph is connected, acyclic, etc. In an-
other set of applications we automatically derive many finite
differencing expressions equivalent to ones that Paige built
by hand in his thesis [Pai81]. Finally we describe directions
for automatically combining such automatically generated
building blocks to synthesize efficient code implementing
more complicated specifications.

The methods in this paper have been implemented in
Python using the SMT solver Z3 [dMB].
Keywords: Transformational Programming, Finite Differ-
encing, High Level Program, Inductive Synthesis

1. Introduction
We describe an algorithmic methodology that takes a high
level specification and a low-level programming language,
and searches for an efficient implementation of the specifi-
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cation. If there is no such implementation then our method-
ology reports failure.

The input is a program in a declarative and expressive
programming language. A naive syntax-directed translation
of this program into machine code usually produces an inef-
ficient and sometimes exponential-time implementation. In-
stead, we automatically convert the input specification into
an equivalent low-level specification. Using a simple syntax-
directed translation, the resulting program is then converted
into imperative code that is guaranteed run in expected linear
time in the worst case.

The high level specifications are written in subsets of
second-order logic (SO), second-order existential logic (SO∃)
which by Fagin’s Theorem expresses exactly those proper-
ties checkable in NP, and first-order logic plus transitive
closure (FO(TC)) which expresses exactly the properties
checkable in NSPACE[log n] [Imm99].

We describe two simple target languages, both of which
can express only linear-time properties, one for expressing
graph properties, and another for expressing properties of
sets.

Of course, our algorithm cannot succeed if there is no
program in the target logic that implements the specification
in question. However, when there is such an implementation,
we do succeed in a large number of cases.

In the first problem domain we automatically generate
linear-time graph classifiers for many simple properties such
as connectivity, acyclicity, etc. In the second domain, we
automatically generate constant-time finite differencing ex-
pressions for many of the examples that Paige worked out by
hand in his Ph.D. thesis [Pai81].

Our methods are fairly simple and general. We use the
SMT solver Z3 to generate structures satisfying the specifi-
cations. Using these models we learn candidate implementa-
tions in the low-level languages that are correct on the gen-
erated structures. Then we use the solver repeatedly to see if
there exist any other examples that satisfy the original spec-
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ifications but for which the candidate implementation fails.
When there are no further counterexamples, we are done.

We feel that it is surprising how well this simple method
works to find asymptotically optimal algorithms which are
implied by the high-level specifications, but definitely not
obvious from the specifications. Indeed a naive implementa-
tion of the high-level specifications would lead to very inef-
ficient algorithms.

While many people have tried to do automatic synthe-
sis, much of our inspiration comes from the work of Bob
Paige and Jack Schwartz on automatically generating effi-
cient data structures and algorithms for specifications written
in the very high-level programming language SETL [Pai81].
An important analogy of our work is the automatic optimiza-
tion of SQL, in which the specification in SQL (essentially
first-order logic plus counting, FO(COUNT) [Imm99, Thm
14.9]) is transformed into a logically equivalent specifica-
tion, also in SQL but with better run time. In our setting,
since the specification language is SO – a language exponen-
tially more powerful than FO – the possible transformations
include a much wider range of possibilities and difficulties.

This paper is organized as follows: §2 provides back-
ground and definitions. §3 explains our synthesis method-
ology at a high level. In §4 we explain the details of an
implementation of the methodology. §5 shows our first ap-
plications: learning efficient code to check whether input
graphs have certain properties. In §6 we automatically gen-
erate numerous examples of finite differencing code equiv-
alent to code that Paige worked out by hand in his Ph.D.
thesis [Pai81]. In §7 we discuss possible extensions of this
work to employ known efficient data structures, and to use
the finite differencing methods of §6 to synthesize efficient
implementations of various graph algorithms. In §8 we dis-
cuss some related work. In §9 we conclude and suggest some
future directions of this work.

2. Background
We use standard notation from mathematical logic. For
background in descriptive complexity we recommend [Imm99].
All our logical structures are finite and ordered. For ex-
ample, an ordered graph, G, is a finite logical structure:
G = ([n], E), whose universe of vertices is the set |G| =
[n] = {0, 1, . . . n − 1}, and whose edge relation is a subset
of the set of ordered pairs of vertices: E ⊆ |G|2. In this
case the vocabulary of G consists of a single binary relation
symbol, σ = {E2}, which we sometime describe as an input
relation symbol.

We use STRUC[σ] to denote the set of all finite, ordered
structures of vocabulary σ, and STRUC≤k[σ] denotes the
subset of these structures with universe size at most k. If
σ′ ⊃ σ is a larger vocabulary, and if A ∈ STRUC[σ]
and A′ ∈ STRUC[σ′] is identical to A except that it also
interprets the symbols of σ′ − σ then we say that A′ is
an expansion of A to σ′ and we write A < A′. If A ∈

STRUC[σ] and α,ϕ are formulas of vocabulary σ, then we
write A |= ϕ to mean that A satisfies ϕ, and α ` ϕ to mean
that there is a proof ofϕ from assumption α. We write α ≡ ϕ
to mean that α is equivalent to ϕ, i.e., α ` ϕ and ϕ ` α.

The logical languages we consider include first-order
logic, FO; first-order logic plus transitive closure, FO(TC)
(the closure of first-order logic under the transitive closure
operation, i.e, if we can express the binary relation R, then
we can also express its transitive closure, R+, and its re-
flexive, transitive closure, R?); first-order logic plus a least-
fixed-point operator, FO(LFP) (The least-fixed-point opera-
tor formalizes the process of making inductive definitions, so
FO(LFP) is the closure of first-order logic under the ability
to define new relations by induction.); second-order existen-
tial logic, SO∃; and full second-order logic, SO. We assume
that these languages have access to the numeric ordering re-
lation (≤) and the numeric constant symbols, 0, 1, . . . ,max.

It is well known that natural logical languages capture
natural complexity classes, for example, FO = CRAM[1],
FO(TC) = NSPACE[log n], FO(LFP) = P, SO∃ = NP, and
SO = PH. Here CRAM[1] is the set of problems checkable
in constant time by a parallel random access machine with
polynomially much hardware, PH is the polynomial-time
hierarchy.

Thus, SO is an extremely rich, very expressive algorith-
mic language . Therefore, we decided use SO as the main
input to our tool. In the future we plan to develop an equally
expressive, but more user-friendly specification language.

3. A Methodology for Inductive Synthesis
We start with a specification ϕ ∈ SO and a target language
L. We are hoping to derive an α ∈ L such that α ≡ ϕ. Thus
α will be an efficient implementation of the specification,
ϕ. We have an input vocabulary, σ, which contains all of the
numeric and input predicate, constant, and function symbols.
For example, the numeric symbols might be 0, 1,max,≤2.
The input symbols might be E2, r, for a rooted graph with
constant symbol, r, denoting a specified root node. The
output vocabulary σ′ consists of σ together with the output
symbols. For example, for topological sort, σ′ would include
the output function symbol, g1, that denotes a topological
ordering, and for the minimum spanning tree algorithm, σ′,
would include the relation symbol, T 2, denoting the tree
edges. In the finite differencing examples, we usually have
input relations symbols such as E2, S1, and their new values
one step later as the output, i.e., E′2, S′1. Note that the
exponents denoting arity are shown in the vocabularies, but
are omitted when these symbols are used in formulas.

Our synthesis algorithm works in two settings both of
which come up often in practice. Sometimes we are asked
to compute a well-defined single valued function, e.g., con-
nected components, strongly connected components, etc., in
this case, the desired answer is fully specified. However,
sometimes the problem corresponds to a relation and any
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answer — or the answer that there is no solution — is what
is desired, e.g., minimum spanning tree, topological sort,
depth-first search, max network flow, and, of course, SAT.
In this case, the answer is only partially specified. The two
cases are distinguished as follows:

• ϕ is a full specification. In this setting, for all A ∈
STRUC[σ] there exists a unique expansion A < A′ ∈
STRUC[σ′] such that A′ |= ϕ. In this case we wish to
synthesize a formula α ∈ L such that α ≡ ϕ.

• ϕ is a partial specification. In this setting, for all A ∈
STRUC[σ] there exists at least one expansion A < A′ ∈
STRUC[σ′] such that A′ |= ϕ. In this case we wish to
synthesize a formula α ∈ L such that α ` ϕ and for
all A ∈ STRUC[σ] there exists at least one expansion
A < A′ ∈ STRUC[σ′] such that A′ |= α.

While our methodology can handle both cases, all the
examples in this paper are full specifications. Thus we make
the exposition simpler by assuming we are always given a
full specification ϕ ∈ SO. We first generate a set of instance
structures M = {A1, . . .Ak} ⊂ STRUC≤n[σ′] such that
M |= ϕ. Here k, n, the initial number of structures, and the
upper bound on the number of elements in the universe of
each structure, are parameters.

In this paper we make the simplifying assumption that our
target language L consists of conjunctions from the set of
base formulas, B. We first compute a set of good formulas,
G ⊆ B, having the property that M |= G, i.e., every
instance structure satisfies every good formula.

Next we use a greedy algorithm to compute a minimal
cover w.r.t.M, C ⊆ G. C is a cover w.r.t.M iffM |= C
and for allA ∈M, C determines all the output bits ofA. In
symbols,

M |= C ∧

(∧
c∈C

c

)
∧ ∆σ(A) ` ∆σ′(A) . (1)

Here, ∆τ (A), is the diagram of A, i.e., the conjunction
of all ground literals (from the vocabulary τ together with
constants for the elements of the universe of A) that are
satisfied by A.

The greedy algorithm incrementally chooses C by suc-
cessively choosing an element ofG that determines the max-
imum number of output bits not yet determined by C, and
then adding it to C.

Once we have such a cover, C, it gives us a candidate
α =

∧
c∈C c. To determine whether α is a correct candidate,

we ask two questions of the SMT solver.

1. (∃A ∈ STRUC≤n[σ′])(A |= ϕ ∧ ¬α)

2. (∃A ∈ STRUC≤n[σ′])(A |= ϕ∧(α∧∆σ(A) 6` ∆σ′(A))

That is, (1) Is there a small instance for which α is not
good? and (2) Is there a small instance for which α does
not determine the answer? If the answer to either of these

Prepare initial instances, M

[SYNTHESIZE-FROM-INSTANCES]

Find candidate α

conforming to M

α φ ?
yes

Input

φ

Output

α

Get the counterexample(s) cei
s.t.  cei � φ → (α “α determines 

output”)

no

[REFINE-INSTANCE-SET]

Add {cei} to M

Figure 1. An abstract flowchart of the synthesis algorithm.

questions is, “yes”, then we add the instance structure toM,
and repeat the above construction.

4. An Implementation of the Methodology
We now explain our more detailed algorithm that imple-
ments the above methodology. Fig. 1 shows a flowchart of
the algorihtm, and pseudocode is shown in Fig. 2. We now
fill in the details of each step. The main phases of the algo-
rithm are:

1. Generate M ⊂ STRUC≤n[σ′], a set of instance struc-
tures that all satisfy the specification ϕ.

2. Find a cover C w.r.t.M (Eqn. 1).

3. Let α =
∧
c∈C c. Test whether there is a new instance

structure, i.e., A ∈ STRUC≤n[σ′] and A |= ϕ, such that
α is not good for A, or α does not determine the answer
for A. If so, add A toM and repeat, otherwise output α.
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Inductive-SynthesisL(ϕ)
M := GENERATE-INSTANCES(ϕ);
do {

t := Synthesize-From-InstancesL(M);
}
while (Refine-Query(ϕ, t,M))

Figure 2. The main counterexample-guided refinement
loop for synthesizing efficient programs.

4.1 Generate the Instances
In both the first and the last step we are required to search
for models of the specification ϕ. For all examples in this
paper, the specifications are fully characterized by finite
structures, and in fact fairly small such structures. We will
fix a parameter, n, throughout this paper to bound the size
of these structures. For all the examples we have tested so
far, n = 10 has been sufficient. Once we have a formula α
that passes the test in phase (3), we have found no further
counterexamples of size ≤ 20.

We use the subset SO∃ of SO to express our specifica-
tions. By Fagin’s Theorem (SO∃ = NP) it follows that we
can phrase the searches for structures in (1) and (3) as sin-
gle calls to a SAT solver [Imm99, Thms 7.8, 7.16]. The tar-
get languages, L, that we use are always a small subset of
SO∃ ∩ SO∀ and thus queries that involve ϕ and α, or ¬α,
can still be translated to a single instance of SAT, see §A for
details.

4.2 Synthesize the Cover
Given the set of instances, M, we must build a cover, C,
satisfying Eqn. 1. In the two problem domains explored in
this paper, the target languages, L1 in §5 and L2 in §6, are
sets of conjunctions of base formulas, B1 ⊂ L1, B2 ⊂ L2.

We say that a formula, β, is good iff M |= β, i.e., it
satisfies all the current instances. Let G denote the set of
good base formulas and assume for the sake of discussion
that G is finite.

Now, if there is any cover, then γ =
∧
β∈G β is a cover

because it is the strongest good formula. However, note
that γ would not be an appropriate candidate for α because
typically G and thus γ will be huge. Furthermore, γ would
probably include too much information about the particular
chosen instances instead of the specification ϕ that they all
satisfy.

Instead it makes sense to use the principle of Occam’s
razor, and search for the smallest cover, i.e., the smallest
good formula that determines the output for all the given
instances.

Recall from §2 that the universe of each structure of size
n is [n] = {0, . . . , n − 1} and that we have the numeric
constants, 0, 1, . . . ,max, available. Assume for simplicity in
the following discussion that the output vocabulary σ′ − σ
consists of a single unary function symbol, f . (Additional

Synthesize-From-InstancesL(M)
Good := {β | β a base formula of L,∀A ∈MA |= β}
Find a minimal subset
C ⊂ Good such that

∧
c∈C c determines all output bits;

return C

Figure 3. Compute Minimal Cover.

Refine-QueryL(ϕ, α,M)
example := GENERATE-INSTANCE(α not good or does
not determine answer)
if (example 6= null) add example toM
return (example 6= null)

Figure 4. Procedure to Generate New Instances.

function symbols would be treated similarly, and relations
would be treated as boolean functions.)

Let A ∈ STRUC[σ′], i ∈ |A| and let α ∈ L. We say that
α determines f(i) for A if there is a value j ∈ |A| such that

α ∧ ∆σ(A) ` f(i) = j

The following proposition is just a restatement of the
cover property (Eqn. 1):

PROPOSITION 4.1. If for all A ∈ M, A |= α and for all
i ∈ |A|, α determines f(i) for A, then α is a cover.

It is relatively straightforward to keep track of which
output bits are determined by the current set, C, of base
formulas. The process SYNTHESIZE-FROM-INSTANCES is
defined in Fig. 3. It uses a greedy algorithm to find a minimal
cover, i.e., it chooses a good base formula that adds the
largest number of points to the determined set and adds that
formula to C until C is a cover. Note that it could be the
case that there is no cover. This can only happen if there is
no formula α ∈ L that is equivalent to ϕ. In this case our
procedure will of course fail.

4.3 Refine-Query
Anα found by the previous phase may still be incorrect since
it is only guaranteed to produce correct results for the in-
stances represented by M. To test for the existence of in-
stances outside ofM for which α violates the specification
ϕ, we use the subroutine GENERATE-INSTANCE again, but
instead of just trying to find instances satisfying the specifi-
cation, we attempt to find models of ϕ that do not satisfy α,
or for which α does not determine the answer. This is imple-
mented in the procedure Refine-Query shown in Fig. 4.

5. Deriving Graph Classifiers
In this section, we apply the methodology of §3 to derive ex-
pected linear-time algorithms for checking properties of di-
rected graphs. Such algorithms have many applications. For
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Name Example Input Specification
(+ Integrity Constaints)

Synthesized
Formula Inst. Time

SLL

Singly Linked List

r

N
N

N

N

N

1:1 N ∧
∀u(¬N+(u, u))(

root r via N
functional N

) #pN (r) = 0 ∧
∀v(#pN (v) ≤ 1)

4 14 sec

CYCLE

Cyclic Linked List

r

N

N
N

N

N
N

∀u, v(N?(u, v))(
root r via N
functional N

) #pN (r) = 1 4 11 sec

DLL

Doubly Linked List

r

B
B B

B
B

F

F

F

F

F

1:1 F ∧ 1:1 B ∧
∀u, v

(
(F (u, v)↔ B(v, u))

∧ ¬F+(u, u)
)

(
root r via F

functional F,B

)
#pF (r) = 0 ∧

∀v(sF (v) = pB(v))
18 149 sec

TREE

Directed Tree

r

C C

CC

1:1 C ∧
∀u(¬C(u, r))(
root r via C

)
#pC(r) = 0 ∧
∀v(#pC(v) ≤ 1)

8 21 sec

TREEPP

Tree with Parent Ptr. C

P

P
P

P

r

C C

C

1:1 C ∧
∀u, v

(
(C(u, v)↔ P (v, u))

∧ ¬C(u, r)
)

(
root r via C
functional P

)
#sP (r) = 0 ∧

∀v(sP (v) = pC(v))
26 181 sec

TREERP

Tree with Root Ptr.

r

R

RR

R

C C

CC
1:1 C ∧

∀u, v
(
¬C(u, s) ∧ ¬R(r, u)

∧ (u 6= s→ R(u, r))
)

(
root r via C
functional R

)
#pC(r) = 0 ∧

pR(r) = sC+(r) ∧
∀v(#pC(v) ≤ 1)

48 359 sec

SC

Strongly Connected

r

NN

N
N

N

N
N

∀u, v
(
E?(u, v)

)
(

root r via E
) pE?(r) = sE?(r) 4 9 sec

Table 1. Graph-classifiers with their input specifications, synthesized formulas, number of instances needed and time to do
synthesis. A global integrity constraint is that no relation has self-loops.
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Abbrev. Meaning
self-loop-free N ∀u(¬N(u, u))

root r via N ∀u(N?(r, u))
functional N ∀u, v, x

(
N(x, u) ∧N(x, v)→ u = v

)
1:1N ∀u, v, x

(
N(u, x) ∧N(v, x)→ u = v

)
Table 2. Common Abbreviations. The first three are used as
integrity constraints.

example, they can be used to dynamically check runtime as-
sertions for programs that manipulate dynamicaly allocated
data structures.

We ask the reader to familiarize herself with the seven ex-
ample input specifications to our algorithm shown in Table 1.
All these specifications are in first-order logic plus transitive
closure (FO(TC)), a subset of SO.

5.1 Integrity Constraints and Abbreviations
In the specifications shown in Table 1, certain integrity con-
straints are assumed in addition to the written formulas.
When we specify “root r via N” we assume that every ver-
tex is reachable from the root by following edges labeled
“N”. When a relation, N , is specified as functional, we as-
sume that it has outdegree at most one. Furthermore, unless
otherwise stated, we make the default assumption that no re-
lation has self-loops. In addition to the integrity constraints,
we also use the abbreviaton “1:1 N to meant that N is one-
to-one.

These abbreviations and their meanings are given in Ta-
ble 2. Note that they may all be checked in linear time. We
assume that the integrity constraints are part of the input
specification and the synthesized specification.

Since the specifications in Tables 1 and 2 make use of
transitive closure and doubly nested quantifiers, some of
their naive implementations would run in cubic time. (The
situation becomes even more interesting when in later sec-
tions we use second-order quantification because then the
naive implementation would have exponential runtime.)

Table 1 also shows the linear-time specifications in L1

that our tool automatically synthesized. We next define the
language L1. To help the reader get a feeling for L1 we give
an example first. The base formula ∀v(#sN (v) ≤ 1) express
the fact the the relationN is functional. The function symbol
sN (v) denotes the set of vertices that are successors of v
via an edge labeled N . Thus the formula says that for every
vertex, v, the cardinality of that set is at most one. Note that
the formula is checkable in linear time by doing a depth first
search and recording the number of edges labeled N that
leave each vertex.

5.2 Target Language L1

Let σ be a vocabulary that includes the constant symbol, r,
which is assumed to be present and a root throughout this
section. The target language L1(σ) — or just L1 when σ is

understood — is based on single traversals of the graph, clas-
sifying the paths along the way using regular expressions.
L1 is a two-sorted first-order logic, with sorts nodes and sets
of nodes. An important restriction of L1 is that it only has
one variable, v, ranging over nodes, and no variables rang-
ing over sets of nodes.

As function symbols, L1 has set constructors, i.e, maps
from nodes to sets of nodes, based on regular expressions for
classifying paths. For the vocabulary, σ, when the starting
point of a path is a constant, we restrict our attention to the
following simple regular expressions,

R(σ) =
{
A?B?, A?B?C,A?B,A?BC?

∣∣ A2, B2, C2 ∈ σ
}
,

although we may abbreviate A?A as A+. When the starting
point is the variable, v, so we may be computing n sets,
we restrict the regular expressions to single letters: S(σ) ={
A
∣∣ A2 ∈ σ

}
.

In order to define the function symbols of L1 we need
some notation involving regular expressions.

DEFINITION 5.1. For a graph G ∈ STRUC[σ] and a regu-
lar expression e ∈ R(σ), we write x e→ y to mean that there
is a path from vertex x to vertex y such that the resulting
sequence of edge labels is an element of L(e).

EXAMPLE 5.2. Let G = ([4], AG, BG, rG) be a struc-
ture of vocabulary σ = (A2, B2, r) such that AG =
{(0, 1), (1, 2), (3, 0)}, BG = {(0, 3), (2, 3)}, and sG = 0
Then

G |= 0 A?

→ 0 ∧ r
A?

→ 2 ∧ ¬r A
?

→ 3 .

The functions of L1(σ) mapping nodes to sets of nodes
are defined as follows,

DEFINITION 5.3. For each regular expression e ∈ R(σ)
the function symbols se, pe are available in L1(σ) and have
meaning,

se(i) =
{
j
∣∣ i e→ j

}
pe(i) =

{
j
∣∣ j e→ i

}
In words, se(i) is the set of e-successors of i, i.e., those
points reachable from i via a path of label L(e); and pe(i)
is the set of e-predecessors of i.

EXAMPLE 5.4. Using the graph G from Example 5.2,

• sA?(r) = {0, 1, 2}
• sA+(r) = {1, 2}
• sA?B(r) = {3}
• pB(3) = {0, 2}

Finally, we define the set of base formulas B1(σ) to be
the context-free language given by the grammar shown in
Table 3. L1(σ) is the set of conjunctions of base formulas in
B1(σ).

The symbol “d” is a boolean-valued constant that is true
iff the graph satisfies the specified property. Thus instances

6 2010/5/18



〈base〉 ::= 〈clause〉 → d | 〈clause〉 → ¬d |
¬〈clause〉 → d | ¬〈clause〉 → ¬d

〈clause〉 ::= 〈atom〉 | ∀v 〈atom〉 |
∀v (v 6= r → 〈atom〉)

〈atom〉 ::= 〈int〉 = 〈const〉 |
〈int〉 ≤ 〈const〉 | 〈set〉 = 〈set〉

〈int〉 ::= 〈const〉 | #〈set〉
〈const〉 ::= 0 | 1
〈set〉 ::= {r} | se(r) | pe(r) | e ∈ R(σ)

s`(v) | p`(v) ` ∈ S(σ)

Table 3. CFG for B1(σ), the base formulas of L1(σ).

satisfying the specification will have d true while instances
not satisfying the specification will have d false. The term,
“#A” denotes the cardinality of set A.

THEOREM 5.5. Every element of the language L1 runs in
expected linear time in the worst case.

Proof: This follows from the fact that each set se(r) or
pe(r) can be computed in linear time via a depth first search
starting at r. Furthermore, each set of sets s`(v) or p`(v),
v ∈ [n] has a total number of elements bounded by the
number of edges in the input graph, and can be computed in
linear time by examining each edge of label ` once. Finally,
by maintaining the sets via hash tables, we can test equality
of sets in expected linear time. �

5.3 Result Summary
The current implementation is Python-based and does not
meet high standards for efficiency, but still, the running time
is in the order of minutes rather than hours. The number of
instances shows how many examples were needed before the
correct formula was synthesized. We suspect that the reason
so many examples were needed in the case of TREERP
and TREEPP is that on small examples there were many
alternate characterizations of the extra pointers, P,R.

We are confident that this algorithm will be similarly
successful in quickly and automatically deriving linear-time
tests for many other simple properties of graphs and data
structures.

6. Finite Differencing
In his Ph.D. thesis, Bob Paige considered the common pro-
gramming situation in which an expression,

C = f(x1, . . . , xk) (2)

is repeatedly evaluated in a block of code after some of
the variables xi may have been slightly modified [Pai81].
It may be the case that a slight change to the variable xi,
xi = e, results in a slight change from C to C ′ so that it
is much easier to compute the change incrementally than to

recompute C ′ = f(x1, . . . , x
′
i, . . . , xk) from scratch. If so,

Paige says informally that C is “continuous” with respect
to this change, and he calls the code that incrementally
computes C ′ the “formal derivative” of C with respect to
the change.

Paige calls the part of the code that goes before the change
xi = e the pre-derivative (∂−(C, xi = e)) and the part of the
code that goes after the change he calls the post-derivative
(∂+(C, xi = e)). However, for simplicity we will assume
that we have access to the before and after values, xi and
x′i. Thus we will refer to the code to compute C ′ and thus
reestablish the invariant Eqn 2 as the derivative of C w.r.t.
the change xi = e, (∂(C, xi = e)).

See Table 4 for fourteen examples of formal derivatives,
the code we automatically synthesized to evaluate them, and
the required time. In each case the code — which is constant
time and thus asymptotically optimal — is equivalent to the
derivatives that Paige computed by hand and listed in tables
in his thesis.

As in §5, our algorithm follows the methodology de-
scribed in §3 and §4. The program was written in Python
making use of the built in implementation for sets.

6.1 Target Language, L2

For each input vocabulary, σ, the target language, L2(σ) is
similar to L1(σ) but somewhat simpler. We again have a sin-
gle domain variable, v. For each relation symbol R (or func-
tion symbol f ) from σ that may change, the vocabulary, σ′

of L2(σ) contains both R and R′ (or f and f ′) denoting the
value before and after the change. When the target formula is
the relationC, we model this inL2 as the boolean function c.
When the target formula is an integer, or boolean variable, c,
we model it as a domain valued, or boolean valued function
also called c.

DEFINITION 6.1. The base formulas B2(σ) consist of all
universally quantified literals or implications of literals from
σ′,B2(σ) =

{
∀v(`1),∀v(`1 → `2)

∣∣ `1, `2 literals from σ′
}

.
L2 consists of arbitrary conjunctions of base formulas from
B2(σ).

6.2 Results
We are pleased that for many examples we can automatically
generate formal derivatives that run in constant time and
are thus asymptotically optimal. This is a validation of our
methodology and will be useful in future work on synthesis.
As we sketch in the next section, the automatic derivation
of asymptotically optimal formal derivatives can be a useful
building block for the automatic synthesis of efficient data
structures and algorithms for a richer class of algorithmic
specifications.

7. Extensions
We are taking steps towards fulfilling Paige and Schwartz’s
dream of writing the specification ϕ in a very high level lan-
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Expression Change Synthesized Derivative Code Time

C = T + S T += {a} v = a → c′(v) = 1
v 6= a → c′(v) = c(v) C += {a} 121.88 sec

C = T + S S += {a} v = a → c′(v) = 1
v 6= a → c′(v) = c(v) C += {a} 121.94 sec

C = T + S T −= {a}
v 6= a → c′(v) = c(v)
¬T (a) → c′(a) = 0
T (a) → c′(a) = c(a)

if a 6∈ S : C −= {a} 87.95 sec

C = T + S S −= {a}
v 6= a → c′(v) = c(v)
¬S(a) → c′(a) = 0
S(a) → c′(a) = c(a)

if a 6∈ T : C −= {a} 96.5 sec

C = T − S T += {a}
v 6= a → c′(v) = c(v)
¬S(a) → c′(a) = 1
S(a) → c′(a) = 0

if a 6∈ S : C += {a} 69.85 sec

C = T − S T −= {a}
c(v) = 0 → c′(v) = 0
v 6= a → c′(v) = c(v)
v = a → c′(a) = 0

C −= {a} 115.57 sec

C = T − S S += {a}
c(v) = 0 → c′(v) = 0
v 6= a → c′(v) = c(v)
v = a → c′(a) = 0

C −= {a} 117.0 sec

C = T − S S −= {a}
v 6= a → c′(v) = c(v)
¬T (a) → c′(a) = 0
T (a) → c′(a) = 1

if a ∈ T : C += {a} 115.57 sec

C = f(S) S += {a} v 6= f(a) → c′(v) = c(v)
v = a → c′(f(a)) = 1 C += {f(a)} 100.91 sec

C = f−1(S) f(a) = b
v 6= a → c′(v) = c(v)
S(b) → c′(a) = 1
¬S(b) → c′(a) = 0

if b 6∈ S : C −= {a}
else : C += {a} 71.35 sec

cS = #S S += {a} S(a) → c′S = cS
¬S(a) → cS + 1 = c′S

if a 6∈ S : cS += 1 70.28 sec

cS = #S S −= {a} ¬S(a) → c′S = cS
S(a) → c′S + 1 = cS

if a ∈ S : cS −= 1 61.29 sec

c = (#S == 0) S += {a} v = a → c′ = 0 c = false 4.46 sec

c = (#S == 0) S −= {a}
cS 6= 1 → c′ = c
c′S = cS → c = c′

c′S = 0 → c′ = 1

if a ∈ S : cS −= 1
c = (cS == 0) 7.59 sec

Table 4. Finite differencing problems with their automatically synthesized, asymptotically optimal formal derivatives in L2,
assumed to be universally quantified conjuncts; When the expression is a set C, c and c′ are the characteristic functions of C
before and after the change, respectively.

guage and having a system to automatically choose good
data structures and algorithms that implement ϕ. This sec-
tion describes two examples that may give a sense of how
we are considering using our methodology to attack more
complicated problems.

7.1 Bipartite Graphs
The following SO∃ sentence expresses the bipartite property
for undirected graphs.

Φbp = ∃S1∀xy(E(x, y)→ (S(x)↔ ¬S(y))) .

Φbp suggests the abstract algorithm for testing bipartite-
ness shown in Fig. 5. This algorithm starts with the empty
graph, for which S = ∅ is a witness for bipartiteness. Then
while not all edges have been added, we add a new edge and
try to update S so that it is still a witness for bipartiteness. If
that is not possible we answer that the graph is not bipartite.
If we succeed in adding all the edges without failure then we
answer that the graph is bipartite.

It is trivial to automatically generate the algorithm shown
in Fig. 5, including the “bipartiteness invariant” β which is
just the first-order part of Φbp,
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0. On input G = ([n], E),

1. H = ([n], F, S) = ([n], ∅, ∅).

2. while (F 6= E)

3. F+ = e = 3(E − F )

4. if (¬ updatePreservingβ(S, e)):
return(not bipartite)

5. return(bipartite)

Figure 5. An abstract bipartiteness algorithm. Line 3
chooses an element e from E − F and adds it to F .

β ≡ ∀xy(E(x, y)→ (S(x)↔ ¬S(y))) .

In the base case, H = ([n], F, S) = ([n], ∅, ∅), we have
that H |= β, i.e., S = ∅ is a witness for the bipartiteness of
the empty graph. At line 3 we inductively add a new edge.
The operator 3 chooses some element e ∈ (E−F ) to add to
F . This is one place that inductive synthesis will apply: we
want to learn a good order in which to add the edges of the
graph, i.e., one that makes it easy to update S in a way that
preserves the invariant β. The second place we use inductive
synthesis is in choosing the updatePreservingβ method.

We now point out informally that a good choice of either
the order in which to add edges, or the updatePreservingβ
method will give us an optimal algorithm for testing bi-
partitenss. This is related to the concept of angelic nonde-
terminism in which a good choice — also achieved by a
form of inductive synthesis — will give us a good algorithm
[BCG+10].
Ordering: If the angels tell us to insert the edges via a
depth first search traversal of the graph, then an obvious
updatePreservingβ method works correctly in constant time
per edge, resulting in a linear and thus optimal bipartiteness
algorithm. The method upon adding edge e = (i, j) is: if
S(j) = S(i), then fail, else if S(j) is undefined then set it to
1− S(i).
updatePreservingβ method: Even if we have no control
over the order that the edges are inserted, there is a natural
choice of the updatePreservingβ method that leads to an
essentially optimal bipartiteness algorithm.

Inductively assume that H = ([n], F, S) satisfies β, and
that edge e = (i, j) is added to F . The first question is
whether now that H has been updated it still satisfies β
with S unchanged. This holds iff (H, i/x, j/y) |= (S(x)↔
¬S(y)). If so, then we can let leave S unchanged and β is
maintained.

Otherwise, we have that (H, i/x, j/y) |= (S(x) ↔
S(y)). In this case, in order to make β true again, we have
to change the value of one of S(i), S(j).

The situation is symmetrical so WLOG assume that we
have to change the value of S(i). In order to preserve β

we will then have to change all neighbors of i and thus all
neighbors of neighbors of i, and so on. A naive incremental
algorithm is thus suggested which changes the value of S(k)
for all k in the connected component of i with respect the
the edge set F − {e}. Furthermore, if j is in this connected
component then it is impossible to make β true for any
choice of S and we must report failure. This naive algorithm
takes time O(nm) where m = |E| is the number of edges in
the whole graph.

In order to synthesize a more efficient algorithm we look
more closely at the change that must be made: We have to
change the value of S on every element of i’s connected
component. Let S(i) be the part of i’s connected component
that is in S and S(i) be the part of i’s connected component
not in S. Then we want to flip S(i) and S(i) and merge them
with the corresponding parts of j’s connected component,
i.e.,

1. if (S(i) = S(j)): return(not bipartite)
2. S(j) = S(j) ∪ S(i); S(j) = S(j) ∪ S(i)

With the sets S, S instantiated using Union/Find, the
complexity of this incremental algorithm is then essentially
linear [AH74].

Finally, since we have changed the data structure for
storing S we must revisit the case where S(i) ↔ ¬S(j).
The invariant β is not violated by adding the edge (i, j)
but we must still update the data structure, i.e., execute the
following command:
S(j) = S(j) ∪ S(i); S(j) = S(j) ∪ S(i).
Note that in this second case since we constructed an al-

gorithm that works for any insertion order, we have given an
essentially optimal incremental algorithm for bipartiteness.

7.2 Topological Sort
The Topological Sort problem asks us to compute an order-
ing of a directed graph that honors all edge constraints. To
express this in SO∃ note that a new ordering on the set [n] of
vertices can be specified as an injective (and thus bijective)
function g : [n]→ [n]. Let Inj(g) mean that g is an injective
function,

Inj(g) ≡ ∀xy (g(x) = g(y) → x = y) .

Using this notation, a natural formulation of topological
sort is,

Φts ≡ ∃g1
(
Inj(g) ∧ ∀x y (E(x, y)→ g(x) < g(y))

)
.

Again we can read the invariant we must maintain di-
rectly from the specification,

τ ≡ Inj(g) ∧ ∀x y (E(x, y)→ g(x) < g(y)) .
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0. On input G = ([n], E),

1. H = ([n], E, g, S) = ([n], E, ∅, ∅).

2. while (S 6= [n])

3. S+ = i = 3([n]− S)

4. if (¬ updatePreservingτ (g, i)): return(cyclic)

5. return(acyclic, g)

Figure 6. An abstract topological sort algorithm. S is the
initially empty domain of the function g.

Fig. 6 shows an abstract topological sort algorithm which
could again be derived easily from the specification. In this
case we incrementally add the vertices to the domain S of the
function g. As for the abstract bipartite algorithm, we can
synthesize an optimal algorithm if an angel tells us which
order to insert vertices into S.
best ordering: It is well known that if we do a depth first
search of G and then insert the vertices into S in order of
reverse finish time, then that is a topological sort, so with a
trivial updatePreservingτ method we get an optimal, linear-
time algorithm.
more interesting ordering: It is also well known that if we
choose vertices to add to S that have no incoming edges from
[n]− S, then we get a topological sort. If the angel suggests
this ordering, then we are very happy, because that lets us
automatically use the finite differencing algorithms that we
derived in Section 6. In this case we can derive code to au-
tomatically maintain the indegree of each vertex in [n]− S,
and to maintain a set of those vertices that have indegree
zero. Thus the kth iteration of the updatePreservingτ (g, i)
method simply lets g(k) = i. If before the end of the while
loop there are no vertices of indegree 0, then we report fail-
ure, i.e., G was cyclic. Fig. 7 shows a modified topological
sort algorithm that includes the hint from the angel: “add
vertices of indegree 0”. From here we can automatically de-
rive the constant-time finite differencing code to maintain
the definitions of f(v) as the indegree of v and Z as the
set of vertices of indegree 0, and thus synthesize an optimal
topological sort algorithm.

8. Related Work
Counterexample Guided Inductive Synthesis Inductive
synthesis refers to the process of generating a system from
input-output examples. This process involves using each
new input-output example to refine the hypothesis about
what the correct system should be until convergence is
reached. Inductive synthesis had its origin in the pioneer-
ing work by Gold on language learning [Gol67] and by
Shapiro on algorithmic debugging and its application to au-
tomated program construction [Sha83]. The inductive ap-
proach [Mug92, FP94] for synthesizing a program involves
debugging the program with respect to positive and negative

0. On input G = ([n], E),

1. H = ([n], E, g, S) = ([n], E, ∅, ∅).

2. f(v) = #
{
u ∈ [n]− S

∣∣ (u, v) ∈ E
}

for v ∈ [n]

3. Z =
{
u ∈ [n]− S

∣∣ f(u) = 0
}

4. while (S 6= [n])

5. if (Z = ∅): return(cyclic)

6. S+ = i = 3Z
7. updatePreservingτ ′(g, i)

8. return(acyclic, g)

Figure 7. Revision of the abstract topological sort algorithm
from Fig. 6 with anglelic hint; τ ′ ≡ τ ∧ (2) ∧ (3).

examples until the correct program is synthesized. The nega-
tive examples can be counterexamples discovered while try-
ing to prove a program’s correctness. Counterexamples have
been used in incremental synthesis of programs [SLTB+06]
and discrete event systems [BMM04]. The technique pre-
sented in this paper is also a form of inductive synthesis, but
applied in a novel program synthesis setting.

SAT/SMT Based Program Synthesis Recent advances
in SAT/SMT technologies have revived interest in pro-
gram synthesis techniques. Recent work shows how to
user SMT constraint based program verification techniques
for synthesizing programs from first order logic specifi-
cations [SGF10]. In contrast, we allow for more expres-
sive second order logic constraints and use a very different
methodology based on inductive synthesis. Sketching[SLTB+06]
uses SAT solvers to implement the inductive program syn-
thesis technique, but requires the programmer to write a par-
tial program whose holes are limited to taking values over
finite domains. Though our inductive synthesis based tech-
nique also uses SAT solvers, it searches for full programs
(as opposed to values for holes) over the space of their rep-
resentations as logical formulas (as opposed to small finite
set of values for holes).

Finite Differencing This paper was inspired in part by
Bob Paige’s work on transformational program. He used
finite differencing to try to automatically derive efficient
data structures and algorithms for high level specifications
in SETL [Pai81, CP87]. Annie Liu is doing some notable
work pushing this methodology forward [LT95, LS09].

9. Conclusion
We have shown that a simple, general inductive synthesis
algorithm can automatically translate high-level algorithmic
specifications into asymptotically optimal code. There is
much further work to do. In particular,
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• This methodology as presented is widely applicable and
should be used and tested in many settings to see how far
it can go in this simple form.

• Once these limits are better understood, there is room to
test richer learning algorithms on richer target languages.

• Most exciting to us is the idea very slightly hinted at in
§7 that building blocks such as the automatic finite dif-
ferencing can let us take second order existential speci-
fications and derive efficient algorithms to maintain their
implied invariants as we start with the empty graph and
add edges incrementally until we have the entire input
graph. This might also be an approach for synthesizing
incremental algorithms.

A. Propositional Encoding of First and
Second-Order Formulas

In this appendix, we explain how to use a SAT solver to test
whether there exists a model of a given size for a second-
order exsitential formula, Ψ. Our construction is immediate
from the proof of Cook’s Theorem from Fagin’s Theorem in
[Imm99, Thms 7.8, 7.16].

PROPOSITION A.1. Given a second-order existenital for-
mula Ψ and a positive integer n, we can construct a boolean
formula ϕ such that ϕ ∈ SAT iff Φ has a model of size n.

Proof: Let’s take as an example Φ ≡ ∃R1ψ with first-
order part ψ ≡ ∀x∃y(E(x, y) ∧ R(y)). We want to know
if there exists a structure A = ([n], EA) that satisfies Ψ.
That is the same question as whether there exists a structure
B = ([n], EB, RB) that satisfies ψ.

To guess such a structure, B, we must guess the an-
swers to n2 +n binary questions, i.e, whether E(0, 0) holds,
whether E(1, 0) holds, . . . , whether E(n− 1, n− 1) holds,
whether R(0), . . . , whether R(n − 1) holds. Thus in the
boolean formula ϕ that we construct there will be n2 + n
boolean variables: E(0, 0), E(1, 0), . . . , E(n − 1, n − 1);
R(0), . . . , R(n− 1). The boolean formula ϕ will assert that
the chosen structure B satisfies ψ:

ϕ ≡
n−1∧
i=0

n−1∨
j=0

(E(i, j) ∧R(j)) .

We believe that the reader will be able to synthesize the
general algorithm from this one example1. Note that the
formula ϕ can be constructed in time linear in its size. The

1 One of us has been accused of being too terse in his writing. For him, the
elegance and simplicity of Proposition A.1 is embedded in the simple ex-
ample given. Other coauthors said, “What about the cases when a function
or a numeric relation occurs in ψ?” Well, each value of a function is de-
termined by logn bits, so we need n logn boolean variables to encode a
unary function. For numeric relations, if x < y occurs in ψ, then in ϕ it
would be replaced by i < j for each fixed value of i and j. For example,
3 < 7 would then be replaced by true and 5 < 2 would be replaced by
false.

size of ϕ is O(nmax(a,r)|ψ|) where a is the maximum arity
of the relations existentialy quantified, and r is the depth of
nesting of first-order quantifiers in ψ. �
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