
Psychon Bull Rev (2018) 25:143–154

DOI 10.3758/s13423-016-1015-8

BRIEF REPORT

A simple introduction to Markov Chain Monte–Carlo

sampling

Don van Ravenzwaaij1,2
· Pete Cassey2

· Scott D. Brown2

Published online: 11 March 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Markov Chain Monte–Carlo (MCMC) is an

increasingly popular method for obtaining information

about distributions, especially for estimating posterior dis-

tributions in Bayesian inference. This article provides a

very basic introduction to MCMC sampling. It describes

what MCMC is, and what it can be used for, with simple

illustrative examples. Highlighted are some of the benefits

and limitations of MCMC sampling, as well as different

approaches to circumventing the limitations most likely to

trouble cognitive scientists.

Keywords Markov Chain Monte–Carlo · MCMC ·
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Over the course of the twenty–first century, the use of

Markov chain Monte–Carlo sampling, or MCMC, has

grown dramatically. But, what exactly is MCMC? And why

is its popularity growing so rapidly? There are many other

tutorial articles that address these questions, and provide

excellent introductions to MCMC. The aim of this article

is not to replicate these, but to provide a more basic intro-

duction that should be accessible for even very beginning
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researchers. Readers interested in more detail, or a more

advanced coverage of the topic, are referred to recent books

on the topic, with a focus on cognitive science, by Lee

(2013) and Kruschke (2014), or a more technical exposition

by Gilks et al. (1996).

MCMC is a computer–driven sampling method (Gamerman

and Lopes, 2006; Gilks et al., 1996). It allows one to charac-

terize a distribution without knowing all of the distribution’s

mathematical properties by randomly sampling values out

of the distribution. A particular strength of MCMC is that it

can be used to draw samples from distributions even when

all that is known about the distribution is how to calcu-

late the density for different samples. The name MCMC

combines two properties: Monte–Carlo and Markov chain.1

Monte–Carlo is the practice of estimating the properties of

a distribution by examining random samples from the distri-

bution. For example, instead of finding the mean of a normal

distribution by directly calculating it from the distribution’s

equations, a Monte–Carlo approach would be to draw a

large number of random samples from a normal distribution,

and calculate the sample mean of those. The benefit of the

Monte–Carlo approach is clear: calculating the mean of a

large sample of numbers can be much easier than calculating

the mean directly from the normal distribution’s equations.

This benefit is most pronounced when random samples are

easy to draw, and when the distribution’s equations are hard

to work with in other ways. The Markov chain property of

MCMC is the idea that the random samples are generated by

a special sequential process. Each random sample is used as

1For these and other definitions, please see the glossary at the end of

the paper.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13423-016-1015-8-x&domain=pdf
mailto:d.van.ravenzwaaij@rug.nl


144 Psychon Bull Rev (2018) 25:143–154

a stepping stone to generate the next random sample (hence

the chain). A special property of the chain is that, while each

new sample depends on the one before it, new samples do

not depend on any samples before the previous one (this is

the “Markov” property).

MCMC is particularly useful in Bayesian inference

because of the focus on posterior distributions which are

often difficult to work with via analytic examination. In

these cases, MCMC allows the user to approximate aspects

of posterior distributions that cannot be directly calculated

(e.g., random samples from the posterior, posterior means,

etc.). Bayesian inference uses the information provided by

observed data about a (set of) parameter(s), formally the

likelihood, to update a prior state of beliefs about a (set of)

parameter(s) to become a posterior state of beliefs about a

(set of) parameter(s). Formally, Bayes’ rule is defined as

p(µ|D) ∝ p(D|µ) · p(µ) (1)

where µ indicates a (set of) parameter(s) of interest and

D indicates the data, p(µ|D) indicates the posterior or the

probability of µ given the data, p(D|µ) indicates the like-

lihood or the probability of the data given µ, and p(µ)

indicates the prior or the a–priori probability of µ. The

symbol ∝ means “is proportional to”.

More information on this process can be found in Lee

(2013), in Kruschke (2014), or elsewhere in this special

issue. The important point for this exposition is that the

way the data are used to update the prior belief is by exam-

ining the likelihood of the data given a certain (set of)

value(s) of the parameter(s) of interest. Ideally, one would

like to assess this likelihood for every single combination

of parameter values. When an analytical expression for this

likelihood is available, it can be combined with the prior

to derive the posterior analytically. Often times in practice,

one does not have access to such an analytical expression.

In Bayesian inference, this problem is most often solved via

MCMC: drawing a sequence of samples from the posterior,

and examining their mean, range, and so on.

Bayesian inference has benefited greatly from the power of

MCMC. Even in just in the domain of psychology, MCMC

has been applied in a vast range of research paradimgs,

including Bayesian model comparison (Scheibehenne et al.,

2013), memory retention (Shiffrin et al., 2008), signal

detection theory (Lee, 2008), extrasensory perception

(Wagenmakers et al., 2012), multinomial processing trees

(Matzke et al., 2015), risk taking (van Ravenzwaaij et al.,

2011), heuristic decision making (van Ravenzwaaij et al.,

2014) and primate decision making (Cassey et al., 2014).

While MCMC may sound complex when described

abstractly, its practical implementation can be very simple.

The next section provides a simple example to demonstrate

the straightforward nature of MCMC.

Example: in–class test

Suppose a lecturer is interested in learning the mean of test

scores in a student population. Even though the mean test

score is unknown, the lecturer knows that the scores are nor-

mally distributed with a standard deviation of 15. So far,

the lecturer has observed a test score of a single student:

100. One can use MCMC to draw samples from the target

distribution, in this case the posterior, which represents the

probability of each possible value of the population mean

given this single observation. This is an over–simplified

example as there is an analytical expression for the posterior

(N(100, 15)), but its purpose is to illustrate MCMC.

To draw samples from the distribution of test scores,

MCMC starts with an initial guess: just one value that might

be plausibly drawn from the distribution. Suppose this ini-

tial guess is 110. MCMC is then used to produce a chain

of new samples from this initial guess. Each new sample is

produced by two simple steps: first, a proposal for the new

sample is created by adding a small random perturbation to

the most recent sample; second, this new proposal is either

accepted as the new sample, or rejected (in which case the

old sample retained). There are many ways of adding ran-

dom noise to create proposals, and also different approaches

to the process of accepting and rejecting. The following

illustrates MCMC with a very simple approach called the

Metropolis algorithm (Smith and Roberts, 1993):

1. Begin with a plausible starting value; 110 in this exam-

ple.

2. Generate a new proposal by taking the last sample (110)

and adding some random noise. This random noise is

generated from a proposal distribution, which should be

symmetric and centered on zero. This example will use

a proposal distribution that is normal with zero mean

and standard deviation of 5. This means the new pro-

posal is 110 (the last sample) plus a random sample

from N(0, 5). Suppose this results in a proposal of 108.

3. Compare the height of the posterior at the value of

the new proposal against the height of the posterior at

the most recent sample. Since the target distribution is

normal with mean 100 (the value of the single obser-

vation) and standard deviation 15, this means com-

paring N(100|108, 15) against N(100|110, 15). Here,

N(µ|x, σ ) indicates the normal distribution for the pos-

terior: the probability of value µ given the data x and

standard deviation σ . These two probabilities tell us

how plausible the proposal and the most recent sample

are given the target distribution.

4. If the new proposal has a higher posterior value than the

most recent sample, then accept the new proposal.

5. If the new proposal has a lower posterior value than the

most recent sample, then randomly choose to accept or
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reject the new proposal, with a probability equal to the

height of both posterior values. For example, if the pos-

terior at the new proposal value is one-fifth as high as

the posterior of the most recent sample, then accept the

new proposal with 20 % probability.

6. If the new proposal is accepted, it becomes the next sample

in the MCMC chain, otherwise the next sample in the

MCMC chain is just a copy of the most recent sample.

7. This completes one iteration of MCMC. The next iter-

ation is completed by returning to step 2.

8. Stop when there are enough samples (e.g., 500). Decid-

ing when one has enough samples is a separate issue,

which will be discussed later in this section.

This very simple MCMC sampling problem only takes

a few lines of coding in the statistical freeware program R,

available online at cran.r-project.org. Code to do this may

be found in Appendix A. The results of running this sampler

once are shown in the left column of Fig. 1. These samples

can be used for Monte–Carlo purposes. For instance, the

mean of the student population test scores can be estimated

by calculating the sample mean of the 500 samples.

The top–left panel of Fig. 1 shows the evolution of the

500 iterations; this is the Markov chain. The sampled values

are centered near the sample mean of 100, but also con-

tain values that are less common. The bottom–left panel

shows the density of the sampled values. Again, the values

center around the sample mean with a standard deviation

that comes very close to the true population standard devi-

ation of 15 (in fact, the sample standard deviation for this

Markov chain is 16.96). Thus, the MCMC method has cap-

tured the essence of the true population distribution with

only a relatively small number of random samples.

Limitations

The MCMC algorithm provides a powerful tool to draw

samples from a distribution, when all one knows about the
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Fig. 1 A simple example of MCMC. Left column: A sam-

pling chain starting from a good starting value, the mode of

the true distribution. Middle column: A sampling chain starting

from a starting value in the tails of the true distribution. Right

column: A sampling chain starting from a value far from the true

distribution. Top row: Markov chain. Bottom row: sample den-

sity. The analytical (true) distribution is indicated by the dashed

line

http://cran.r-project.org
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distribution is how to calculate its likelihood. For instance,

one can calculate how much more likely a test score of 100

is to have occurred given a mean population score of 100

than given a mean population score of 150. The method

will “work” (i.e., the sampling distribution will truly be the

target distribution) as long as certain conditions are met.

Firstly, the likelihood values calculated in steps 4 and 5 to

accept or reject the new proposal must accurately reflect

the density of the proposal in the target distribution. When

MCMC is applied to Bayesian inference, this means that the

values calculated must be posterior likelihoods, or at least

be proportional to the posterior likelihood (i.e., the ratio of

the likelihoods calculated relative to one another must be

correct). Secondly, the proposal distribution should be sym-

metric (or, if an asymmetric distribution is used, a modified

accept/reject step is required, known as the “Metropolis–

Hastings” algorithm). Thirdly, since the initial guess might

be very wrong, the first part of the Markov chain should

be ignored; these early samples cannot be guaranteed to be

drawn from the target distribution. The process of ignoring

the initial part of the Markov chain is discussed in more

detail later in this section.

The example MCMC algorithm above drew proposals

from a normal distribution with zero mean and standard

deviation 5. In theory, any symmetric distribution would

have worked just as well, but in practice the choice of pro-

posal distribution can greatly influence the performance of

the sampler. This can be visualised by replacing the standard

deviation for the proposal distribution in the above exam-

ple with a very large value, such as 50. Then many of the

proposals would be well outside the target distribution (e.g.,

negative test score proposals!) leading to a high rejection

rate. On the other hand, with a very small standard devia-

tion, such as 1, the sampler could take many iterations to

converge from the starting value to the target distribution.

One also runs the risk of getting stuck in local maxima:

areas where the likelihood is higher for a certain value than

for its close neighbors, but lower than for neighbors that are

further away.

The width of the proposal distribution is sometimes

called a tuning parameter of this MCMC algorithm. The

fact that the practical performance of the sampler can

depend on the value of the tuning parameter is a limitation

of the standard Metropolis–Hastings sampling algorithm,

although there are many augmented methods that remedy

the problem. For example, “auto-tuning” algorithms that

adapt the width of the proposal distribution to the nature of

the data and distribution (see Roberts & Rosenthal, 2009 for

an overview).

The third condition, the fact that initial samples should be

ignored as they might be very wrong, deals with a problem

known as convergence and burn-in. For example, suppose

the initial guess was one that was very unlikely to come

from the target distribution, such as a test score of 250,

or even 650. Markov chains starting from these values are

shown in the middle and right columns of Fig. 1. Examin-

ing the top–middle panel of Fig. 1 shows that the Markov

chain initially goes quickly down towards the true poste-

rior. After only 80 iterations, the chain is then centered on

the true population mean. Examining the top–right panel

of Fig. 1, which has an even more extreme starting point,

demonstrates that the number of iterations needed to get to

the true population mean — about 300 — is much larger

than for better starting points. These two examples make it

clear that the first few iterations in any Markov chain cannot

safely be assumed to be drawn from the target distribution.

For instance, including the first 80 iterations in the top–

middle panel or those first 300 iterations in the top–right

panel leads to an incorrect reflection of the population dis-

tribution, which is shown in the bottom–middle and –right

panels of Fig. 1.

One way to alleviate this problem is to use better start-

ing points. Starting values that are closer to the mode of the

posterior distribution will ensure faster burn–in and fewer

problems with convergence. It can be difficult in practice to

find starting points near the posterior mode, but maximum–

likelihood estimation (or other approximations to that) can

be useful in identifying good candidates. Another approach

is to use multiple chains; to run the sampling many times

with different starting values (e.g. with starting values sam-

pled from the prior distribution). Differences between the

distributions of samples from different chains can indicate

problems with burn–in and convergence. Another element

of the solution is to remove the early samples: those samples

from the non–stationary parts of the chain. When examining

again the chains in the top row of Fig. 1, it can be seen that

the chain in the top–left has come to some sort of an equi-

librium (the chain is said to have “converged”). The chains

in the top–middle and –right panel also converge, but only

after about 80 and 300 iterations, respectively. The impor-

tant issue here is that all the samples prior to convergence

are not samples from the target distribution and must be

discarded.

Deciding on the point at which a chain converges can

be difficult, and is sometimes a source of confusion for

new users of MCMC. The important aspect of burn–in to

grasp is the post–hoc nature of the decision, that is, deci-

sions about burn–in must be made after sampling, and after

observing the chains. It is a good idea to be conservative:

discarding extra samples is safe, as the remaining samples

are most likely to be from the converged parts of the chain.

The only constraint on this conservatism is to have enough

samples after burn–in to ensure an adequate approximation

of the distribution. Those users desiring a more automated

or objective method for assessing burn–in might investigate

the R̂ statistic (Gelman & Rubin, 1992).
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MCMC applied to a cognitive model

We are often interested in estimating the parameters of cog-

nitive models from behavioral data. As stated in the intro-

duction, MCMC methods provide an excellent approach

for parameter estimation in a Bayesian framework: see Lee

(2013) for more detail. Examples of such cognitive models

include response time models (Brown and Heathcote, 2008;

Ratcliff, 1978; Vandekerckhove et al., 2011), memory mod-

els (Hemmer & Steyvers, 2009; Shiffrin & Steyvers, 1997;

Vickers & Lee, 1997) and models based on signal detec-

tion theory (SDT: Green & Swets, 1966). Models based on

SDT have had a seminal history in cognitive science, per-

haps in part due to their intuitive psychological appeal and

computational simplicity. The computational simplicity of

SDT makes it a good candidate for estimating parameters

via MCMC.

Suppose a memory researcher obtains data in the form

of hits and false alarms from a simple visual detection

experiment. Applying the SDT framework would allow the

researcher to understand the data from a process, rather than

descriptive (e.g. ANOVA) perspective. That is, estimating

the parameters of the SDT model allows the researcher to

gain an insight into how people make decisions under uncer-

tainty. SDT assumes that when making a decision under

uncertainty one needs to decide whether a certain pattern

is more likely to be “signal” (e.g. a sign post on a foggy

night) or merely “noise” (e.g. just fog). The parameters of

SDT provide a theoretical understanding of how people dis-

tinguish between just noise and meaningful patterns within

noise: sensitivity, or d ′, gives a measure of the ability of

the individual to distinguish between the noise and the pat-

tern; criterion, or C, gives a measure of an individual’s

bias, at what level of noise are they willing to call noise a

meaningful pattern.

One way to estimate SDT parameters from data would be

to use Bayesian inference and examine the posterior distri-

bution over those parameters. Since the SDT model has two

parameters (d ′ and C), the posterior distribution is bivari-

ate; that is, the posterior distribution is defined over all

different combinations of d ′ and C values. MCMC allows

one to draw samples from this bivariate posterior distribu-

tion, as long as one can calculate the density for any given

sample. This density is given by Eq. 1: the likelihood of

the hits and false alarms, given the SDT parameters, mul-

tiplied by the prior of those SDT parameters. With this

calculation in hand, the process of MCMC sampling from

the posterior distribution over d ′ and C is relatively sim-

ple, requiring only minor changes from the algorithm in

the in–class test example above. The first change to note

is that the sampling chain is multivariate; each sample in

the Markov chain contains two values: one for d ′ and one

for C.

The other important change is that the target distribu-

tion is a posterior distribution over the parameters. This

allows the researcher to answer inferential questions, such

as whether d ′ is reliably greater than zero, or whether C

is reliably different from an unbiased value. To make the

target distribution a posterior distribution over the parame-

ters, the likelihood ratio in Step 3 above must be calculated

using Eq. 1. A simple working example of such an MCMC

sampler for an SDT model may be found in Appendix B.

An important aspect of the SDT example that has not

come up before is that the model parameters are correlated.

In other words, the relative likelihood of parameter values

of d ′ will differ for different parameter values of C. While

correlated model parameters are, in theory, no problem for

MCMC, in practice they can cause great difficulty. Cor-

relations between parameters can lead to extremely slow

convergence of sampling chains, and sometimes to non-

convergence (at least, in a practical amount of sampling

time). There are more sophisticated sampling approaches

that allow MCMC to deal efficiently with such correlations.

A simple approach is blocking. Blocking allows the sepa-

ration of sampling between certain sets of parameters. For

example, imagine the detection experiment above included a

difficulty manipulation where the quality of the visual stim-

ulus is high in some conditions and low in others. There will

almost surely be strong correlations between the two SDT

parameters within different conditions: within each condi-

tion, high values of d ′ will tend to be sampled along with

high values of C and vice versa for low values. Problems

from these correlations can be reduced by blocking: that is,

separating the propose-accept-reject step for the parameters

from the two difficulty conditions (see e.g., Roberts & Sahu,

1997).

Sampling beyond basic metropolis–hastings

The Metropolis–Hastings algorithm is very simple, and

powerful enough for many problems. However, when

parameters are very strongly correlated, it can be beneficial

to use a more complex approach to MCMC.

Gibbs sampling

Given a multivariate distribution, like the SDT example

above, Gibbs sampling (Smith & Roberts, 1993) breaks

down the problem by drawing samples for each parame-

ter directly from that parameter’s conditional distribution,

or the probability distribution of a parameter given a spe-

cific value of another parameter. An example of this type

of MCMC is called Gibbs sampling, which is illustrated in

the next paragraph using the SDT example from the pre-

vious section. More typically Gibbs sampling is combined
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with the Metropolis approach, and this combination is often

referred to as “Metropolis within Gibbs”. The key is that

for a multivariate density, each parameter is treated sepa-

rately: the propose/accept/reject steps are taken parameter

by parameter. This algorithm shows how Metropolis within

Gibbs might be employed for the SDT example:

1. Choose starting values for both d ′ and C, suppose these

values are 1 and 0.5, respectively.

2. Generate a new proposal for d ′, analogous to the second

step in Metropolis–Hastings sampling described above.

Suppose the proposal is 1.2.

3. Accept the new proposal if it is more plausible to have

come out of the population distribution than the present

value of d ′, given the present C value. So, given the C

value of 0.5, accept the proposal of d ′ = 1.2 if that is a

more likely value of d ′ than 1 for that specific C value.

Accept the new value with a probability equal to the

ratio of the likelihood of the new d ′, 1.2, and the present

d ′, 1, given a C of 0.5. Suppose the new proposal (d ′ of

1.2) is accepted.

4. Generate a new proposal for C. For this a second pro-

posal distribution is needed. This example will use a

second proposal distribution that is normal with zero

mean and standard deviation of 0.1. Suppose the new

proposal for C is 0.6.

5. Accept the new proposal if it is more plausible to have

come out of the population distribution than the C

value, given the present d ′ value. So, given the d ′ value

of 1.2, accept the proposal of C = 0.6 if that is a more

likely value of C than 0.5 for that specific value of d ′.
Accept the new value with a probability equal to the

ratio of the likelihood of the new C, 0.6, and the present

C, 0.5, given a d ′ of 1.2. Suppose in this case that the

proposal for C (0.6) is rejected. Then the sample for C

stays at 0.5.

6. This completes one iteration of Metropolis within Gibbs

sampling. Return to step 2 to begin the next iteration.

R–code for this example can be found in Appendix C.

The results of running this sampler are shown in Fig. 2.

The left and middle columns show the d ′ and C variables

Fig. 2 An example of Metropolis within Gibbs sampling. Left column: Markov chain and sample density of d ′. Middle column: Markov chain

and sample density of C. Right column: The joint samples, which are clearly correlated
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respectively. Importantly, the right column shows samples

out of the joint posterior, which is a bivariate distribution.

It can be seen from this that the parameters are correlated.

Such a correlation is typical with the parameters of cognitive

models. This can cause a problem for Metropolis–Hastings

sampling, because the correlated target distribution is very

poorly matched by the proposal distribution, which does

not include any correlation between parameters; sampling

proposals from an uncorrelated joint distribution ignores

the fact that the probability distribution of each parame-

ter differs depending on the values of the other parameters.

Metropolis within Gibbs sampling can alleviate this prob-

lem because it removes the need to consider multivariate

proposals, and instead applies the accept/reject step to each

parameter separately.

Differential evolution

The previous section showed how Gibbs sampling is bet-

ter able to capture correlated distributions of parameters

by sampling from conditional distributions. This process,

while accurate in the long run, can be slow. The reason is

illustrated in the left panel of Fig. 3.

Figure 3 shows a bivariate density very similar to the pos-

terior distribution from the SDT example above. Suppose,

during sampling, that the current MCMC sample is the value

indicated by θt in Fig. 3. The MCMC approaches discussed

so far all use an uncorrelated proposal distribution, as repre-

sented by the circle around θt . This circle illustrates the fact

that high and low values of the parameter on the x-axis are

equally likely for any different value of the parameter on the

y-axis. A problem arises because this uncorrelated proposal

distribution does not match the correlated target distribution.

In the target distribution, high values of the x-axis parameter

tend to co-occur with high values of the y-axis parameter,

and vice versa. High values of the y-axis parameter almost

never occur with low values of the x-axis parameter.

Fig. 3 Left panel: MCMC sampling using a conventional symmet-

rical proposal distribution. Right panel: MCMC sampling using the

crossover method in Differential Evolution. See text for details

The mismatch between the target and proposal distribu-

tions means that almost half of all potential proposal values

fall outside of the posterior distribution and are therefore

sure to be rejected. This is illustrated by the white area in the

circle, in which proposals have high values on the y-axis but

low values on the x-axis. In higher dimensional problems

(with more parameters) this problem becomes much worse,

with proposals almost certain to be rejected in all cases. This

means that sampling can take a long time, and sometimes

too long to wait for.

One approach to the problem is to improve proposals

and have them respect the parameter correlation. There are

many ways to do this, but a simple approach is called “dif-

ferential evolution” or DE. This approach is one of many

MCMC algorithms that use multiple chains: instead of start-

ing with a single guess and generating a single chain of

samples from that guess, DE starts with a set of many ini-

tial guesses, and generates one chain of samples from each

initial guess. These multiple chains allow the proposals in

one chain to be informed by the correlations between sam-

ples from the other chains, addressing the problem shown in

Fig. 3. A key element of the DE algorithm is that the chains

are not independent – they interact with each other during

sampling, and this helps address the problems caused by

parameter correlations.

To illustrate the process of DE–MCMC, suppose there

are multiple chains: θ1, θ2, .... The DE–MCMC algorithm

works just like the simple Metropolis–Hastings algorithm

from above, except that proposals are generated by informa-

tion borrowed from the other chains (see the right panel of

Fig. 3):

1. To generate a proposal for the new value of chain θk ,

first choose two other chains at random. Suppose these

are chains n and m. Find the distance between the

current samples for those two chains, i.e.: θm − θn.

2. Multiply the distance between chains m and n by a

value γ . Create the new proposal by adding this multi-

plied distance to the current sample. So, the proposal so

far is: θk+γ (θm−θn). The value γ is a tuning parameter

of the DE algorithm.

3. Add a very small amount of random noise to the result-

ing proposal, to avoid problems with identical samples

(“degeneracy”). This leads to the new proposal value,

θ∗.

Because DE uses the difference between other chains to

generate new proposal values, it naturally takes into account

parameter correlations in the joint distribution. To get an

intuition of why this is so, consider the right panel of Fig. 3.

Due to the correlation in the distribution, samples from dif-

ferent chains will tend to be oriented along this axis. For

example, very few pairs of samples will have one pair with a
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higher x-value but lower y-value than the other sample (i.e.

the white area in the circle of the left panel of Fig. 3). Gen-

erating proposal values by taking this into account therefore

leads to fewer proposal values that are sampled from areas

outside of the true underlying distribution, and therefore

leads to lower rejection rates and greater efficiency. More

information on MCMC using DE can be found in ter Braak

(2006).

Like all MCMC methods, the DE algorithm has “tuning

parameters” that need to be adjusted to make the algo-

rithm sample efficiently. While the Metropolis-Hastings

algorithm described earlier has separate tuning parameters

for all model parameters (e.g. a proposal distribution width

for the d ′ parameter, and another width for the C parame-

ter), the DE algorithm has the advantage of needing just two

tuning parameters in total: the γ parameter, and the size of

the “very small amount of random noise”. These parameters

have easily–chosen default values (see, e.g., Turner et al.,

2013). The default values work well for a very wide variety

of problems, which makes the DE–MCMC approach almost

“auto–tuning” (ter Braak, 2006). Typically, the random

noise is sampled from a uniform distribution that is centered

on zero and which is very narrow, in comparison to the size

of the parameters. For example, for the SDT example, where

the d ′ and C parameters are in the region of 0.5–1, the ran-

dom noise might be sampled from a uniform distribution

with minimum -0.001 and maximum +0.001. The γ param-

eter should be selected differently depending on the number

of parameters in the model to be estimated, but a good guess

is 2.38/
√

(2K), where K is the number of parameters in the

model.

An example of cognitive models that deal with corre-

lated parameters in practice is the class of response time

modeling of decision making (e.g. Brown & Heathcote,

2008; Ratcliff, 1978; Usher & McClelland, 2001). As such,

they are the kind of models that benefit from estimation of

parameters via DE–MCMC. This particular type of MCMC

is not trivial and as such a fully worked example of DE–

MCMC for estimating response time model parameters is

beyond the scope of this tutorial. The interested reader may

find an application of DE–MCMC to estimating parame-

ters for the Linear Ballistic Accumulator model of response

times in Turner et al. (2013).

Summary

This tutorial provided an introduction to beginning

researchers interested in MCMC sampling methods and

their application, with specific references to Bayesian

inference in cognitive science. Three MCMC sampling

procedures were outlined: Metropolis(–Hastings), Gibbs,

and Differential Evolution.2 Each method differs in its

complexity and the types of situations in which it is most

appropriate. In addition, some tips to get the most out of

your MCMC sampling routine (regardless of which kind

ends up being used) were mentioned, such as using multiple

chains, assessing burn–in, and using tuning parameters. Dif-

ferent scenarios were described in which MCMC sampling

is an excellent tool for sampling from interesting distri-

butions. The examples focussed on Bayesian inference,

because MCMC is a powerful way to conduct inference on

cognitive models, and to learn about the posterior distribu-

tions over their parameters. The goal of this paper was to

demystify MCMC sampling and provide simple examples

that encourage new users to adopt MCMC methods in their

own research.
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Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix A: Metropolis R–Code

Code for a Metropolis sampler, based on the in–class test

example in the main text. In R, all text after the # symbol

is a comment for the user and will be ignored when execut-

ing the code. The first two lines create a vector to hold the

samples, and sets the first sample to 110. The loop repeats

the process of generating a proposal value, and determining

whether to accept the proposal value, or keep the present

value.

Appendix B: SDT R–Code

Code for a Metropolis sampler for estimating the parame-

ters of an SDT model. Given a specified number of trials

with a target either present or absent, and given (fake)

behavioral data of hits and false alarms, the code below eval-

uates the joint likelihood of SDT parameters, d ′ and C. New

proposals for both parameters are sampled and evaluated

simultaneously.

2For a visualization of Metropolis–Hastings and Gibbs sampling, see

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/
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Appendix C: Metropolis within Gibbs sampler

R–Code

Code for a Metropolis within Gibbs sampler for estimat-

ing the parameters of an SDT model. The following code

calculates the likelihood of the current d ′ and C parameter

values (the “posterior.density” function was omitted, but is

identical to the one defined in Appendix B). The key differ-

ence between the Metropolis sampler in the previous section

and the Metropolis within Gibbs sampler in this section is

that the proposal and evaluation occurs separately for each

parameter, instead of simultaneously for both parameters.

The loop over the number of parameters, “for ( j in row-

names(samples) )”, allows for parameter d ′ to have a new

value proposed and its likelihood evaluated while parameter

C is held at its last accepted value and vice versa.

Glossary

Accepting A proposal value that is evaluated as more

likely than the previously accepted value, or that is less

likely but is accepted due to random chance. This value

then becomes the value used in the next iteration.

Blocking Sampling only a subset of parameters at a time,

while keeping the remaining parameters at their last

accepted value.

Burn–In Early samples which are discarded, because the

chain has not converged. Decisions about burn–in occur

after the sampling routine is complete. Deciding on an

appropriate burn–in is essential before performing any

inference.

Chain One sequence of sampled values.

Conditional Distribution The probability distribution of

a certain parameter given a specific value of another

parameter. Conditional distributions are relevant when

parameters are correlated, because the value of one

parameter influences the probability distribution of the

other.

Convergence The property of a chain of samples in which

the distribution does not depend on the position within

the chain. Informally, this can be seen in later parts
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of a sampling chain, when the samples are meandering

around a stationary point (i.e., they are no longer coher-

ently drifting in an upward or downward direction, but

have moved to an equilibrium). Only after convergence

is the sampler guaranteed to be sampling from the target

distribution.

Differential Evolution A method for generating propos-

als in MCMC sampling. See section “Differential Evolu-

tion” for a more elaborate description.

Gibbs Sampling A parameter-by-parameter approach to

MCMC sampling. See section “Gibbs Sampling” for a

more elaborate description and an example.

Iteration One cycle or step of MCMC sampling, regard-

less of routine.

Local maxima Parameter values that have higher likeli-

hood than their close neighbors, but lower likelihood than

neighbors that are further away. This can cause the sam-

pler to get “stuck”, and result in a poorly estimated target

distribution.

Markov chain Name for a sequential process in which

the current state depends in a certain way only on its

direct predecessor.

MCMC Combining the properties of Markov chains and

Monte–Carlo. See their respective entries.

Metropolis algorithm A kind of MCMC sampling. See

section “In–Class Test” for a more elaborate description

and an example.

Monte–Carlo The principle of estimating properties of

a distribution by examining random samples from the

distribution.

Posterior Used in Bayesian inference to quantify a

researcher’s updated state of belief about some hypothe-

ses (such as parameter values) after observing data.

Prior Used in Bayesian inference to quantify a

researcher’s state of belief about some hypotheses (such

as parameter values) before having observed any data.

Typically represented as a probability distribution over

different states of belief.

Proposal A proposed value of the parameter you are sam-

pling. Can be accepted (used in the next iteration) or

rejected (the old sample will be retained).

Proposal Distribution A distribution for randomly gen-

erating new candidate samples, to be accepted or rejected.

Rejecting A proposal might be discarded if it is evaluated

as less likely than the present sample. The present sample

will be used on subsequent iterations until a more likely

value is sampled.

Rejection Rate The proportion of times proposals are

discarded over the course of the sampling process.

Starting Value The initial “guess” for the value of the

parameter(s) of interest. This is the starting point for the

MCMC sampling routine.

Target Distribution The distribution one samples from

in an attempt to estimate its properties. Very often this is

a posterior distribution in Bayesian inference.

Tuning Parameter Parameters which influence the

behavior of the MCMC sampler, but are not parameters

of the model. For example, the standard deviation of a

proposal distribution. Use caution when choosing this

parameter as it can substantially impact the performance

of the sampler by changing the rejection rate.
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