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Abstract

Many problems in natural language processing can be viewed as lin�
guistic classi�cation problems� in which linguistic contexts are used to pre�
dict linguistic classes� Maximum entropy models o�er a clean way to com�
bine diverse pieces of contextual evidence in order to estimate the proba�
bility of a certain linguistic class occurring with a certain linguistic con�
text� This report demonstrates the use of a particular maximum entropy
model on an example problem� and then proves some relevant mathemat�
ical facts about the model in a simple and accessible manner� This report
also describes an existing procedure called Generalized Iterative Scaling�
which estimates the parameters of this particular model� The goal of this
report is to provide enough detail to re�implement the maximum entropy
models described in �Ratnaparkhi� ����� Reynar and Ratnaparkhi� ���	�
Ratnaparkhi� ���	
 and also to provide a simple explanation of the max�
imum entropy formalism�

� Introduction

Many problems in natural language processing �NLP� can be re�formulated as
statistical classi�cation problems� in which the task is to estimate the probability
of �class� a occurring with �context� b� or p�a� b�� Contexts in NLP tasks usually
include words� and the exact context depends on the nature of the task� for
some tasks� the context b may consist of just a single word� while for others� b
may consist of several words and their associated syntactic labels� Large text
corpora usually contain some information about the cooccurrence of a	s and b	s�
but never enough to completely specify p�a� b� for all possible �a� b� pairs� since
the words in b are typically sparse� The problem is then to �nd a method for
using the sparse evidence about the a	s and b	s to reliably estimate a probability
model p�a� b��






Consider the Principle of Maximum Entropy �Jaynes� 
�
�� Good� 
�����
which states that the correct distribution p�a� b� is that which maximizes en�
tropy� or �uncertainty�� subject to the constraints� which represent �evidence��
i�e�� the facts known to the experimenter� �Jaynes� 
�
�� discusses its advan�
tages�

���in making inferences on the basis of partial information we must
use that probability distribution which has maximum entropy sub�
ject to whatever is known� This is the only unbiased assignment we
can make� to use any other would amount to arbitrary assumption
of information which by hypothesis we do not have�

More explicitly� if A denotes the set of possible classes� and B denotes the set
of possible contexts� p should maximize the entropy

H�p� � �
X
x�E

p�x� log p�x�

where x � �a� b�� a � A� b � B� and E � A � B� and should remain consistent
with the evidence� or �partial information�� The representation of the evidence�
discussed below� then determines the form of p�

� Representing Evidence

One way to represent evidence is to encode useful facts as features and to impose
constraints on the values of those feature expectations� A feature is a binary�
valued function on events� fj � E � f�� 
g� Given k features� the constraints
have the form

Epfj � E�pfj �
�

where 
 � j � k� Epfj is the model p	s expectation of fj �

Epfj �
X
x�E

p�x�fj�x�

and is constrained to match the observed expectation� E�pfj �

E�pfj �
X
x�E

�p�x�fj�x�

where �p is the observed probability of x in some training sample S� Then� a
model p is consistent with the observed evidence if and only if it meets the k
constraints speci�ed in �
�� The Principle of Maximum Entropy recommends
that we use p��

P � fp j Epfj � E�pfj � j � f
 � � � kgg

p� � argmax
p�P

H�p�

�



p�a� b� � 

x � �
y � �

total �� 
��

Table 
� Task is to �nd a probability distribution p under constraints p�x� �� �
p�x� 
� � ��� and p�x� �� � p�x� 
� � p�y� �� � p�y� 
� � 


� 

x �
 �

y �
 ��

total �� 
��

Table �� One way to satisfy constraints

since it maximizes the entropy over the set of consistent models P � Section 

shows that p� must have a form equivalent to�

p��x� � �

kY
j��

�
fj �x�
j � � � �j �� ���

where � is a normalization constant and the �j 	s are the model parameters�
Each parameter �j corresponds to exactly one feature fj and can be viewed as
a �weight� for that feature�

� A Simple Example

The following example illustrates the use of maximum entropy on a very simple
problem� Suppose the task is to estimate a probability distribution p�a� b��
where a � fx� yg and b � f�� 
g� Furthermore suppose that the only fact known
about p is that p�x� �� � p�y� �� � ��� �The constraint that

P
a�b p�a� b� � 
 is

implicit since p is a probability distribution�� Table 
 represents p�a� b� as �
cells labelled with ���� whose values must be consistent with the constraints�
Clearly there are �in�nitely� many consistent ways to �ll in the cells of table

� one such way is shown in table �� However� the Principle of Maximum
Entropy recommends the assignment in table �� which is the most non�committal
assignment of probabilities that meets the constraints on p�

Formally� under the maximum entropy framework� the fact

p�x� �� � p�y� �� � ��

is implemented as a constraint on the model p	s expectation of a feature f �

Epf � �� ���

�



� 

x �� ��
y �� ��

total �� 
��

Table �� The most �uncertain� way to satisfy constraints

where
Epf �

X
a�fx�yg�b�f���g

p�a� b�f�a� b�

and where f is de�ned as follows�

f�a� b� �

�

 if b � �
� otherwise

The observed expectation of f � or E�pf � is ��� The objective is then to maximize

H�p� � �
X

a�fx�yg�b�f���g

p�a� b� log p�a� b�

subject to the constraint ����
Assuming that features always map an event �a� b� to either � or 
� a con�

straint on a feature expectation is simply a constraint on the sum of certain
cells in the table that represents the event space� While the above constrained
maximum entropy problem can be solved trivially �by inspection�� an iterative
procedure is usually required for larger problems since multiple constraints may
overlap in ways that prohibit a closed form solution�

Features typically express a cooccurrence relation between something in the
linguistic context and a particular prediction� For example� �Ratnaparkhi� 
����
estimates a model p�a� b� where a is a possible part�of�speech tag and b contains
the word to be tagged �among other things�� A useful feature might be

fj�a� b� �

�

 if a �DETERMINER and currentword�b� � �that�
� otherwise

The observed expectation E�pfj of this feature would then be the number of
times we would expect to see the word �that� with the tag DETERMINER in the
training sample� normalized over the number of training samples�

The advantage of the maximum entropy framework is that experimenters
need only focus their e�orts on deciding what features to use� and not on how
to use them� The extent to which each feature fj contributes towards p�a� b��
i�e�� its �weight� �j � is automatically determined by the Generalized Iterative
Scaling algorithm� Furthermore� any kind of contextual feature can be used in
the model� e�g�� the model in �Ratnaparkhi� 
���� uses features that look at tag
bigrams and word pre�xes as well as single words�

�



Section � discusses preliminary de�nitions� section 
 discusses the maximum
entropy property of the model of form ���� section � discusses its relation to max�
imum likelihood estimation� and section � describes the Generalized Iterative
Scaling algorithm�

� Preliminaries

De�nitions 
 and � introduce relative entropy and some relevent notation� Lem�
mas 
 and � describe properties of the relative entropy measure�

De�nition � �Relative Entropy� or Kullback�Liebler Distance�� The rel�
ative entropy D between two probability distributions p and q is given by�

D�p� q� �
X
x�E

p�x� log
p�x�

q�x�

De�nition ��

A � set of possible classes

B � set of possible contexts

E � A�B

S � �nite training sample of events

�p�x� � observed probability of x in S

p�x� � the model p�s probability of x

fj � A function of type E � f�� 
g

Epfj �
X
x�E

p�x�fj�x�

E�pfj �
X
x�E

�p�x�fj�x�

P � fp j Epfj � E�pfj � j � f
 � � � kgg

Q � fp j p�x� � �

kY
j��

�
fj �x�
j � � � �j ��g

H�p� �
X
x�E

p�x� log p�x�

L�p� �
X
x�E

�p�x� log p�x�

Here E is the event space� p always denotes a probability distribution de�ned on
E� P is the set of probability distributions consistent with the constraints ����
Q is the set of probability distributions of form ���� H�p� is the entropy of p�
and L�p� is proportional to the log�likelihood of the sample S according to the
distribution p	






Lemma �� For any two probability distributions p and q� D�p� q� � �� and
D�p� q� � � if and only if p � q	

Proof� See �Cover and Thomas� 
��
��

Lemma � �Pythagorean Property�� Given P and Q from De�nition �� if
p � P � q � Q� and p� � P �Q� then

D�p� q� � D�p� p�� �D�p�� q�

This fact is discussed in �Csiszar� 
��
� and more recently in �Della Pietra et al�� 
��
��
The term �Pythagorean� re�ects the fact that this property is equivalent to the
Pythagorean theorem in geometry if p�p��and q are the vertices of a right triangle
and D is the squared distance function�

Proof	 Note that for any r� s � P � and t � Q�

X
x�E

r�x� log t�x� �

X
x

r�x��log � �
X
j

fj�x� log�j � �

log ��
X
x

r�x�� � �
X
j

log�j
X
x

r�x�fj�x�� �

log��
X
x

s�x�� � �
X
j

log�j
X
x

s�x�fj�x�� �

X
x

s�x��log � �
X
j

fj�x� log�j � �

�
X
x

s�x� log t�x�

Use the above substitution� and let p � P � q � Q� and p� � P �Q�

D�p� p�� �D�p�� q� �X
x

p�x� log p�x��
X
x

p�x� log p��x� �
X
x

p��x� log p��x��
X
x

p��x� log q�x� �

X
x

p�x� log p�x��
X
x

p�x� log p��x� �
X
x

p�x� log p��x� �
X
x

p�x� log q�x� �

X
x

p�x� log p�x� �
X
x

p�x� log q�x� � D�p� q�

� Maximum Entropy

Lemmas 
 and � derive the maximum entropy property of models of form ���
that satisfy the constraints �
��

�



Theorem �� If p� � P � Q� then p� � argmaxp�P H�p�	 Furthermore� p� is
unique	

Proof	 Suppose p � P and p� � P � Q� Let u � Q be the uniform distribution
so that �x � E u�x� � �

jEj �

	 Show that H�p� � H�p���

By Lemma ��
D�p� u� � D�p� p�� �D�p�� u�

and by Lemma 
�

D�p� u� � D�p�� u�

�H�p�� log



jEj
� �H�p��� log




jEj

H�p� � H�p��

	 Show p� is unique�

H�p� � H�p�� �
 D�p� u� � D�p�� u� �
 D�p� p�� � � �
 p � p�

� Maximum Likelihood

Secondly� models of form ��� that satisfy �
� have an alternate explanation under
the maximum likelihood framework�

Theorem �� If p� � P � Q� then p� � argmaxq�Q L�q�	 Furthermore p� is
unique	

Proof	 Let �p�x� be the observed distribution of x in the sample S� �x � E �
Clearly �p � P �

Suppose q � Q and p� � P �Q�

	 Show that L�q� � L�p���

By Lemma ��
D��p� q� � D��p� p�� �D�p�� q�

and by Lemma 
�

D��p� q� � D��p� p��

�H��p�� L�q� � �H��p�� L�p��

L�q� � L�p��

�



	 Show p� is unique�

L�q� � L�p�� �
 D��p� q� � D��p� p�� �
 D�p�� q� � � �
 p� � q

Theorems 
 and � state that if p� � P � Q� then p� � argmaxp�P H�p� �
argmaxq�Q L�q�� and that p� is unique� Thus p� can be viewed under both the
maximum entropy framework as well as the maximum likelihood framework�
This duality is appealing� since p�� as a maximum likelihood model� will �t the
data as closely as possible� while as a maximum entropy model� will not assume
facts beyond those in the constraints �
��

� Parameter Estimation

Generalized Iterative Scaling �Darroch and Ratcli�� 
����� or GIS� is a procedure
which �nds the parameters f�� � � � �kg of the unique distribution p� � P �Q�

The GIS procedure requires the constraint that

�x � E

kX
j��

fj�x� � C

where C is some constant� If this is not the case� choose C to be

C � max
x�E

kX
j��

fj�x�

and add a �correction� feature fl� where l � k � 
� such that

�x � E fl�x� � C �

kX
j��

fj�x�

Note that unlike the existing features� fl�x� ranges from � to C� where C can
be greater than 
�

Furthermore� the GIS procedure assumes that all events have at least one
feature that is active�

�x � E �fj fj�x� � 


Theorem �� The following procedure will converge to p� � P �Q

�
���
j � 


�
�n���
j � �

�n�
j �

�Efj
E�n�fj

�
�

C ���

�



where

E�n�fj �
X
x�E

p�n��x�fj�x�

p�n��x� � �

lY
j��

��
�n�
j �fj�x�

See �Darroch and Ratcli�� 
���� for a proof of convergence� �Darroch and Ratcli�� 
����
also show that the likelihood is non�decreasing� i�e�� thatD��p� p�n���� � D��p� p�n���
which implies that L�p�n���� � L�p�n��� See �Della Pietra et al�� 
��
� for a de�
scription and proof of Improved Iterative Scaling� which �nds the parameters of
p� without the use of a �correction� feature� See �Csiszar� 
���� for a geometric
interpretation of GIS�

��� Computation

Each iteration of the GIS procedure requires the quantities E�pfj and Epfj �
The computation of E�pfj is straightforward given the training sample S �
f�a�� b��� � � � � �aN � bN �g� since it is merely a normalized count of fj �

E�pfj �
NX
i��

�p�ai� bi�fj�ai� bi� �



N

NX
i��

fj�ai� bi�

where N is the number of event tokens �as opposed to types� in the sample S�
However� the computation of the model	s feature expectation�

E�n�fj �
X
a�b�E

p�n��a� b�fj�a� b�

in a model with k �overlapping� features could be intractable since E could con�
sist of �k distinguishable events� Therefore� we use the approximation originally
described in �Lau et al�� 
�����

E�n�fj �

NX
i��

�p�bi�
X
a�A

p�n��ajbi�fj�a� bi� �
�

which only sums over the contexts in S� and not E � and makes the computation
tractable�

The procedure should terminate after a �xed number of iterations �e�g�� 
����
or when the change in log�likelihood is negligible�

The running time of each iteration is dominated by the computation of
�
� which is O�NPA�� where N is the training set size� P is the number of
predictions� and A is the average number of features that are active for a given
event �a� b��

�



� Conclusion

This report presents the relevant mathematical properties of a maximum en�
tropy model in a simple way� and contains enough information to reimplement
the models described in �Ratnaparkhi� 
���� Reynar and Ratnaparkhi� 
����
Ratnaparkhi� 
����� This model is convenient for natural language processing
since it allows the unrestricted use of contextual features� and combines them
in a principled way� Furthermore� its generality allows experimenters to re�use
it for di�erent problems� eliminating the need to develop highly customized
problem�speci�c estimation methods�
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