A Simple Local-Control Approximation Algorithm for Multicommodity Flow

#### BARUCH AWERBUCH & TOM LEIGHTON 1993 PRESENTER: ERIC KANGAS

# About the Authors

#### Some factoids about Baruch Awerbuch

- Professor of Computer Science at Johns Hopkins
- Has written or contributed to 180+ papers.
- Associate Editor of the Journal of Algorithms
- Winner of Edsger W. Dijkstra Prize in Distributed Computing 2008 along with David Peleg for a paper on sparse partitions.
- Has an Erdös number of 2.

# About the Authors

#### Some factoids about Tom Leighton

- Real name is Frank Thomson Leighton.
- Professor of Applied Mathematics.
- Co-founded Akamai Technologies and currently is Chief Scientist.
- Head of Algorithms group at MIT's Computer Science and Artificial Intelligence Lab since 1996.
- Served on the President's Information Technology Advisory Committee (PITAC) around 2005.
- Also has Erdös number of 2.



# About the Publication

- Appeared in the 34<sup>th</sup> IEEE Conference on Foundations of Computer Science in 1993.
- Supported by Air Force, DARPA, and IBM funding.
- Has been cited 103 times according to Google Scholar.

#### **Multicommodity Flow**

G = (N, M), where edge (u, v)  $\in E$  has capacity c(e). N nodes, M edges, and K commodities. Commodity i has a demand  $d_i$ . Each commodity has a single source and a single sink.

# Facts about Multicommodity Flow

- Has been well studied for several decades.
- Many useful applications, such as:
  - product distribution
  - traffic planning
  - o scheduling problems
  - o fault prone distributed networks.
- In addition, a lot of NP hard problems can be approximately solved through multicommodity flow problems, such as:
  - Graph partitioning
  - Minimum feedback arc set
  - Minimum cut linear arrangement
  - Minimum 2D area layout
  - Via minimization
  - Optimal matrix arrangement for nested dissection

# Motivations for discovery of a local-control online algorithm

• Solutions to other problems can be effectively approximated using local-control online multicommodity flow such as:

• Packet routing

• Communication problems.

• Previously, flow techniques were not commonly used for these problems.

# Additional motivations for the research

- Previously, most of the research has focused on 1commodity flow (Max flow).
- Most rely on finding augmented paths from source to sink.
- Best run in approximately O(NM) steps.
- "All exact algorithms for multicommodity flow are based on linear programming, all have horrendous running times (even though polynomial), and none are used for large networks in practice."

# Situation for Multicommodity flow

- Previous to this publication, P.M. Vaidya, in his 1989 paper titled *Speeding up linear programming using fast matrix multiplication*, developed a Polynomial Time Approximation Scheme (PTAS) for min-cost multicommodity flow.
- $O(K^{\overline{2}}NM^{\overline{2}}\log(DU\varepsilon^{-1}))$  steps approximately, where

D = largest demandU = largest capacity

# Situation for Multicommodity flow Part 2

- In 1991 Tom Leighton discovered a combinatorial PTAS algorithm for the 1 commodity min-cost flow problem.
- Runs in  $O(K^2 N M \varepsilon^{-2} \log(K) \log^3(N))$ steps.
- This can be improved by a factor of K by randomization.

### An abstract view of the solution

- Model the problem as a continuous flow problem. Each turn we add new flow to each source.
- Utilize an edge balancing technique, similar to natural fluid flow, which (simplifying the physics) distributes by the fluids eventually moving to areas of less pressure.
- Calculate the disparity of the queue size. Here, we use *queues* for both sides of each edge for each commodity,,
- Push flow across each edge to balance the queues.

 $\Delta_i(e) = q_i(tail(e)) - q_i(head(e))$ 

• Remove commodities when they reach their correct sinks.

#### Runtime

• The algorithm takes at most  $O(M^3K^{5/2}L\epsilon^{-3}logK)$ steps to find feasible flow, where

L = length of longest flow path

#### Justifications

- 1. They suspect that the run time is much better, but have not proved it.
- 2. The algorithm is simpler than previous Max flow algorithms.
- 3. It works well, and there are several variations which are comparable or superior to the best known algorithms in run time.
- 4. Can be used where not all information is known and global control is not possible.

# Algorithm in more detail

- Reduce a static problem to a continuous problem:

   (1 + ε)d<sub>i</sub> units of commodity *i* are pumped into each source at the start of each round.
  - We may move commodities through one edge only per round.
  - We may not exceed edge capacity constraints per round.
  - Flow that reaches the commodity's sink is removed at the end of the round.

# Finding a feasible solution to the continuous problem

• Run the continuous algorithm until the amount of each commodity in the queues is at most

 $(1 + \varepsilon)$  of the total amount that has been pumped into the network.

- After *R* rounds, an average of *d<sub>i</sub>* units of commodity *i* have been shipped through the network, and
- At most  $(1 + \varepsilon)d_i R$  units of *i* will remain.
- Solution = average of the solution for each round.

• For each commodity *i*, evenly distribute  $(1 + \varepsilon)d_i$ units of *i* to each queue corresponding to the edge incident to *source<sub>i</sub>*.

Δ<sub>i</sub>(e) = q<sub>i</sub>(tail(e)) - q<sub>i</sub>(head(e)) is the imbalance for commodity<sub>i</sub> along edge e.
q<sub>i</sub>(tail(e)) is the height of q<sub>i</sub> at the tail end of e, where q<sub>i</sub>(head(e)) is the height for the head.
Find the commodity where Δ<sub>i</sub>(e)/d<sub>i</sub> is maximized.

Phase 2 continued:  
• Push 
$$f_i$$
 units of  $i$  along  $e$  for each commodity, where  $f_1, f_2, \dots, f_K$  are chosen to maximize  

$$\sum_{1 \le i \le K} f_i (\Delta_i(e) - f_i) d_i^{-2}$$
s.t.  
1)  $f_i \ge 0$  for all  $1 \le i \le K$ ,  
2)  $\sum_{1 \le i \le K} f_i \le c(e)$ ,  
3)  $f_i = 0$  if  $c(e) \le \frac{\varepsilon d_i}{M}$ 

Remove all flow for commodity*i* which has reached *sink<sub>i</sub>*.

 "Rebalance the nodes: Reallocate each commodity within each node so that the queues for commodity *i* are all equal within each node (1 ≤ *i* ≤ *K*)."

## Cost

- Each round is implemented in O(MKlogK) steps.
- Phases 1 & 3 take  $K\delta$  steps,
  - $\delta = maximum node degree$
- Phase 2 takes O(MKlogK) steps.
- Phase 4 takes *2MK* steps.

# **Results of Analysis**

- Max of  $O(M^2K^{3/2}L\varepsilon^{-2}d_i)$  units of *i* in network at any time.
- At most  $O(M^3K^{5/2}L\varepsilon^{-3})$  rounds required to compute feasible solution, so
- $O(M^3K^{5/2}L\varepsilon^{-3}\log K)$  steps to solve the static problem with demand  $d_i$ .
- Also works for directed networks, but it's slower by  $O(\sqrt{M})$ .

#### "Nasty example"

- 4 nodes, 4 edges, 4 commodities.
- The source for *i* is node *i* and the sink is node *i*+ 2.
- Demand for each commodity is 4 and capacity for each edge in each direction is 1.





# An Extension to this work

- In '94, Awerbuch and Leighton published a following work, "Improved approximation algorithms for the multi-commodity flow problem and local competitive routing in dynamic networks," which had 2 added benefits.
  - The new algorithm has a better run time
  - It works "even in networks where edge capacities can vary in an unpredictable and unknown fashion."
  - The runtime for this algorithm is

$$O\left(\frac{\mathrm{KL}^2\,\mathrm{M}}{\mathrm{\epsilon}^3}\ln^3 M/\mathrm{\epsilon}\right)$$

steps, which "is competitive with

(and in some case superior to) the best previous bound for deterministic algorithms.

#### Sources

- Baruch Awerbuch and Tom Leighton, "A Simple Local-Control Approximation Algorithm for Multicommodity Flow," *Foundations of Computer Science*, no. 34 (November 3, 1993): 459-468.
- P.M. Vaidya, "Speeding-up linear programming using fast matrix multiplication," *Annual Symposium on Foundations of Computer Science* 30 (1989): 332-337.
- "Executive Insights Tom Leighton," n.d., <u>http://www.akamai.com/html/perspectives/insight\_tl.html</u>.
- "a simple local-control approximation algorithm for multicommodity flow - Google Scholar," n.d., <u>http://scholar.google.com/scholar?q=a+simple+local-</u> <u>control+approximation+algorithm+for+multicommodity+flow&hl=</u> <u>en&btnG=Search&as\_sdt=800000000001&as\_sdtp=on</u>.
- "Multi-commodity flow problem Wikipedia, the free encyclopedia," n.d., <u>http://en.wikipedia.org/wiki/Multi-</u> <u>commodity flow problem</u>.

# A few publications extending the cited work.

- Sankar, A.; Zhen Liu; , "Maximum lifetime routing in wireless adhoc networks," *INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies*, vol.2, no., pp. 1089-1097 vol.2, 7-11 March 2004 doi: 10.1109/INFCOM.2004.1356995
   URL: <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1356995&isnumber=29790">http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1356995&isnumber=29790</a>
- Baruch Awerbuch and Tom Leighton, "Improved approximation algorithms for the multi-commodity flow problem and local competitive routing in dynamic networks," in *Proceedings of the twenty-sixth annual ACM symposium on Theory of computing STOC '94* (presented at the the twenty-sixth annual ACM symposium, Montreal, Quebec, Canada, 1994), 487-496, <a href="http://portal.acm.org/citation.cfm?doid=195058.195238">http://portal.acm.org/citation.cfm?doid=195058.195238</a>.