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Abstract

The heat shock response is a primordial defense mechanism against cell

stress and protein misfolding. It proceeds with the minimum number of

mechanisms that any regulatory network must include, a stress-induced

activation and a feedback regulation, and can thus be regarded as the

archetype for a cellular regulatory process. We propose here a simple

mechanistic model for the eukaryotic heat shock response, including its

mathematical validation. Based on numerical predictions of the model

and on its sensitivity analysis, we minimize the model by identifying the

reactions with marginal contribution to the heat shock response. As the

heat shock response is a very basic and conserved regulatory network,

our analysis of the network provides a useful foundation for modeling

strategies of more complex cellular processes.

Keywords: Heat shock response; heat shock protein; heat shock factor; heat
shock element; mathematical model; validation; regulatory network.

Introduction

The heat shock response is an ancient, evolutionary conserved regulatory mech-
anism that allows the cell to quickly react to elevated temperatures and other
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forms of physiological and environmental stress. The heat shock response has
been subject of active research, see [1–3], for at least two reasons. On one
hand, as it represents an exceptionally well-conserved signaling mechanism, it is
a good candidate for deciphering the mechanistic principles of gene regulatory
networks. On the other hand, heat shock proteins have essential roles in all as-
pects of protein biogenesis, regardless of the regulatory aspects of the heat shock
response, and have fundamental importance for many key biological processes.
Therefore, understanding the details of the heat shock response has broad ram-
ifications for the the biology of the cell and response to cellular insults and for
the onset and treatment of a number of diseases, including neurodegenerative
disorders, cancer, aging, and cardiovascular diseases, see [4, 5].

Despite intense research and a number of models that have been presented
to cover the heat shock response, a comprehensive mechanistic understanding of
this process is lacking. Here, we propose a simple model capturing in mechanistic
details all key aspects of the regulation: the heat-induced protein misfolding,
the chaperone activity of heat shock proteins, the transactivation of the genes
encoding heat shock proteins and the repression of their transcription once the
stress is removed. In contrast with previous attempts to model the eukaryotic
heat shock response, our model is based solely on well-documented molecular
reactions and does not include modeling “blackboxes” such as experimentally
unsupported components and biochemical reactions.

We also present a mathematical model associated with the model and its
experimental validation. For specific parameter estimation and model valida-
tion, we use already published data [6], as well as new experimental data. The
model predictions correlate well with experimental data on the heat-induced
transactivation of the genes encoding heat shock proteins at various tempera-
tures, its return to the original level once the stress is removed, and a lower
response to a second consecutive heat shock. We use the model to identify a
number of reactions that could be eliminated from the model without affecting
its quantitative behavior. We also identify the most significant reactions regu-
lating the levels of the heat shock proteins and those of the misfolded proteins.
This analysis deepens our understanding of where the significant control resides
in the network.

Results

Molecular model The heat shock protein (hsp) plays the central role as
a chaperone to prevent misfolding, to capture intermediates, and to facilitate
protein folding. Even though there are multiple classes of hsps, with various
molecular masses and different regulatory mechanisms, we treated them all uni-
formly in our model, with hsp 70 as the base denominator. The hsp-encoding
genes are transactivated through the binding of heat shock factors (hsf) to the
heat shock element (hse) found on the DNA upstream of the gene. Even though
several types of heat shock factors exist (HSFs1-4), see [7], we focused on HSF1
in our model. The binding of a heat shock factor trimer (hsf3) to a heat shock
element was denoted as hsf3: hse. Heat shock proteins may bind to heat shock
factors; we denoted such a bond as hsp: hsf. The drivers of the whole heat shock
response are the heat-induced misfolded proteins, denoted mfp. Binding of a
heat shock protein to a misfolded protein was denoted as hsp:mfp. We made no
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distinction among the many types of protein substrates that exist in the cell.
From the point of view of the heat shock response, we were only interested in
whether they are correctly folded (collected globally under the name prot), or
misfolded (collected globally under the name mfp). What drives the heat shock
response is the race to keep the level of misfolded proteins under control, in such
a way that they are not able to accumulate, form aggregates, and eventually
lead to cell death.

Our molecular model for the heat shock response consists of three parts: the
dynamic transactivation of the hsp-encoding genes, their backregulation, and the
chaperone activity of the hsp. In the absence of the heat stress, the heat shock
factors are present as monomers, mainly bounded to heat shock proteins. There
is insignificant variation in their concentration with stress. Upon heat stress
however, the heat shock factors form trimers, which are the active components,
able to bind to heat shock elements, see [8, 9]. Once hsf3 is bound to the
heat shock element, we assumed that the hsp-encoding gene is transcriptionally
active. We did not model explicitly the transcription machinery binding to the
promoter region of the hsp-encoding gene, the mRNA molecules being produced,
edited, transported, etc., but only represented that a transcriptionally active
hsp-encoding gene will eventually yield the synthesis of new hsp molecules, see
reaction (4) in Table 1. Heat shock proteins have an affinity for heat shock
factors and so, if present in sufficient amounts, are able to shut down their own
synthesis: a heat shock protein hsp contributes to unbinding a trimer hsf3 from
the heat shock element, see reaction (8) in Table 1 and [10,11].

Table 1: The list of reactions in the molecular model for the heat shock
response.

Reaction (Reaction number)

2 hsf ↔ hsf2 (1)

hsf + hsf2 ↔ hsf3 (2)

hsf3 + hse ↔ hsf3: hse (3)

hsf3: hse → hsf3: hse + hsp (4)

hsp+ hsf ↔ hsp: hsf (5)

hsp+ hsf2 → hsp: hsf + hsf (6)

hsp+ hsf3 → hsp: hsf +2 hsf (7)

hsp+ hsf3: hse → hsp: hsf + hse +2 hsf (8)

hsp → (9)

prot → mfp (10)

hsp+mfp ↔ hsp:mfp (11)

hsp:mfp → hsp+ prot (12)

The heat-induced misfolding of proteins was represented in our model as a
reaction switching an unfolded or native protein (prot) to misfolded (mfp). The
reaction rate depends exponentially on the temperature of the environment,
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see [12,13]. A heat shock protein may chaperone a misfolded protein and facil-
itate its refolding. The list of all reactions in our molecular model is given in
Table 1.

There are three conservation relations in our model. One concerns the total
amount of hsf:

[hsf] + 2 × [hsf2] + 3 × [hsf3] + 3 × [hsf3: hse] + [hsp: hsf] = constant. (C1)

The second concerns the total amount of proteins, other than hsp and hsf:

[prot] + [mfp] + [hsp:mfp] = constant. (C2)

The third concerns the total amount of heat shock elements:

[hse] + [hsf3: hse] = constant. (C3)

The only variable of the model not covered by the conservation relations is
hsp, which is the regulatory target of the heat shock response.

Mathematical model and parameter estimation In developing the math-
ematical model, we assumed for all reactions the principle of mass-action, that
can be briefly summarized as follows: the flux of each reaction is proportional to
the amount of input to the reaction, see [14], [15]. The reason why we preferred
a simple mass-action formalization rather than more sophisticated approaches
such as Michaelis-Menten or Hill equations was so that we could follow the ex-
plicit effect of each individual reaction to the overall response. We expressed
our model in terms of differential equations, with one function associated to
each component in the model. The resulting mathematical model consists of
ten differential equations and is shown in Table 2. Of these ten equations, based
on the conservation relations (C1)-(C3), only seven equations are independent.
In Table 2, we denoted by ki the reaction rate constant of the irreversible re-
action (i) in Table 1, by k+

i , the reaction rate constant corresponding to the
‘left-to-right’ direction of the reversible reaction (i) in the same table, while k−

i

denotes the rate constant corresponding to its ‘right-to-left’ direction, for all
1 ≤ i ≤ 12. We denoted by T the temperature of the environment.

The extent of heat-induced protein denaturation in CHL V79 cells has been
investigated in [13]. Based on that study, the fractional protein denaturation
per hour was deduced in [12]. Since our model uses the second as time unit, we
adapted the fractional protein denaturation per second φT from [12] to obtain
the temperature-dependant formula

φT =

(

1 −
0.4

eT−37

)

· 1.4T−37 · 1.45 · 10−5 s−1,

where T is the temperature of the environment in Celsius degrees. According
to [13], this formula is valid for temperatures between 37◦C and 45◦C.

There are 17 independent parameters in our model and 10 initial conditions
that must be specified or estimated. We had on the other hand the three con-
servation relations (C1)-(C3) that leave only seven initial conditions to specify.
In estimating our parameters we used experimental data of [6] on the rate of
hsf3: hse during a heat shock of HeLa cells at 42◦C. In addition, we also im-
posed the condition that with the same initial values and the same numerical
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Table 2: The differential equations of the associated mathematical
model.

Equation (Equation number)

d[hsf]/dt = −2k+
1 [hsf]2 + 2k−

1 [hsf2] − k+
2 [hsf][hsf2] + k−

2 [hsf3] (13)

− k+
5 [hsf][hsp] + k−

5 [hsp: hsf] + k6[hsf2][hsp]

+ 2k7[hsf3][hsp] + 2k8(hsf3: hse) hsp

d[hsf2]/dt = k+
1 [hsf]2 − k−

1 [hsf2] − k+
2 [hsf][hsf2] + k−

2 [hsf3] (14)

− k6[hsf2][hsp]

d[hsf3]/dt = k+
2 [hsf][hsf2] − k−

2 [hsf3] − k+
3 [hsf3][hse] + k−

3 [hsf3: hse] (15)

− k7[hsf3][hsp] (16)

d[hse]/dt = −k+
3 [hsf3][hse] + k−

3 [hsf3: hse] + k8[hsf3: hse][hsp] (17)

d[hsf3: hse]/dt = k+
3 [hsf3][hse] − k−

3 [hsf3: hse] − k8[hsf3: hse][hsp] (18)

d[hsp]/dt = k4[hsf3: hse] − k+
5 [hsf][hsp] + k−

5 [hsp: hsf] − k6[hsf2][hsp] (19)

− k7[hsf3][hsp] − k8[hsf3: hse][hsp] − k+
11[hsp][mfp]

+ (k−

11 + k12)[hsp:mfp] − k9[hsp]

d[hsp: hsf]/dt = k+
5 [hsf][hsp] − k−

5 [hsp: hsf] + k6[hsf2][hsp] (20)

+ k7[hsf3][hsp] + k8[hsf3: hse][hsp]

d[mfp]/dt = φT [prot] − k+
11[hsp][mfp] + k−

11[hsp:mfp] (21)

d[hsp:mfp]/dt = k+
11[hsp][mfp] − (k−

11 + k12)[hsp:mfp] (22)

d[prot]/dt = −φT [prot] + k12[hsp:mfp] (23)

parameters, the model is at steady state if the temperature is 37◦C (by defini-
tion, the heat shock response is triggered for temperatures upwards of 37◦C).
This yields 7 independent algebraic relations on the set of parameters and ini-
tial values. Thus, we have altogether 17 independent values that we need to
estimate.

By performing parameter estimation in COPASI [16], we obtained the values
shown in Table 3 that satisfy the conditions above. The model fit with respect
to the data in [6] is shown in Figure 1A.

Model validation In the final model, we obtained that protein misfolding
occurs at 37◦C at very low rate, that hsp are long-lived molecules, and that the
protein folding is a fast reaction, which is in accordance with [17, 18]. (We are
disregarding in the model folding intermediates.) Moreover, the model correctly
predicted, see [7], that under heat shock, the level of hsf trimers is transiently
increased. The model was also able to confirm that the hsf dimers are only a
transient state between monomers and trimers and that their level remains low
at all times, independent of the temperature.

In another validation test, we considered a heat shock applied in two stages,
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Table 3: The numerical values of the parameters and the initial valus
of the variables of the heat shock response model.

A B
Param. Value Units Variable Initial conc.

k+
1 3.49 ml

#·s
[hsf] 0.67

k−

1 0.19 s−1 [hsf2] 8.7 · 10−4

k+
2 1.07 ml

#·s
[hsf3] 1.2 · 10−4

k−

2 10−9 s−1 [hse] 29.73
k+
3 0.17 ml

#·s
[hsf3: hse] 2.96

k−

3 1.21 · 10−6 s−1 [hsp] 766.88
k4 8.3 · 10−3 s−1 [hsp: hsf] 1403.13
k+
5 9.74 ml

#·s
[mfp] 517.352

k−

5 3.56 s−1 [hsp:mfp] 71.65
k6 2.33 ml

#·s
[prot] 1.15 × 108

k7 4.31 · 10−5 ml
#·s

k8 2.73 · 10−7 ml
#·s

k9 3.2 · 10−5 s−1

k+
11 3.32 · 10−3 ml

#·s

k−

11 4.44 s−1

k12 13.94 s−1

A. The numerical values of the parameters. B. The initial values of all
variables.

with a recovery period between them, with the second shock applied after the
level of hsp has reached a maximum. We observed, similarly as in [12], that
the predicted response of the model to the second heat shock is much milder,
see Figure 2A. This is consistent with the expectation that due to the first heat
shock, the level of hsp is already raised, and so the cell may react to the second
shock, with a lower [hsf3: hse] peak.

We also considered a heat shock at 43◦C and compared our prediction to
that of [25]. Similarly as shown by the experimental data in [30], our model
was able to show prolonged transactivation, see Figure 2B, unlike the model
in [25]. An experiment where the heat shock at 42◦C is removed at the peak
of the response showed a faster attenuation phase, similarly as reported in [25],
see Figure 2B. Several sensitivity analysis experiments, where some parameters
are set to lower or higher values agreed with the predictions made in similar
experiments by [25].

For further verification of our model and its prediction abilities, we per-
formed a set of experiments. Specifically, we aimed to validate the numerical
prediction on the level of hsp over time. Our approach was to use a suitable
quantitative reporter system based on yellow fluorescent proteins (yfp). Our
setup was designed so that the kinetics of the reporter gene’s transactivation
mimics the results obtained in experimental studies on endogenous hsf target
genes. In this way, the dynamics of yfp partially reports on the dynamics of
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Figure 1: Comparison of the numerical predictions of the model with
two sets of experimental data. A. The model fit with respect to the exper-
imental data in [6]. The thick line is the model prediction regarding [hsf3: hse],
that is compared with the experimental data showed with crossed points. Both
plots are relative to their maximum value. B. Model validation based on fluo-
rescence intensity of cells transfected by hse-controlled genes coding for yellow
fluorescent proteins. The crossed dots are the mean values of the experimental
data, while the continuous line is the numerical integration of the benchmark
variable.

hsp. We did not make any assumptions on the stability of the yfp proteins.
Rather, this issue was dealt with in the mathematical validation process. To
this aim, we employed K562 cells, expressing a 712 bp fragment of the hsp70
promoter fused to a yellow fluorescent protein (yfp) reporter gene. The cells
were subjected to a continuous heat shock at 42◦C and samples were taken at
indicated time points (for details, see Materials and methods). hsp70 promoter
activity as a result of expression of yfp was analyzed by flow cytometry to give
a measure of the heat shock response in individual cells.

In three independent biological repeats, we measured the fluorescence in-
tensity of 10000 cells for each time point (15 of them up to 36 hours). Our
assumption was that the fluorescence intensity is roughly linear with respect
to the level of the yellow fluorescent proteins (yfp) in our sample. Given that
the transactivation of the yfp genes is controlled by their own heat shock ele-
ments hse′, transcription/translation and degradation kinetics k′

4 and k′

9, resp.,
we obtained that

d[yfp]/dt = k′

4[hsf3: hse′] − k′

9[yfp],

for some positive constants k′

4, k
′

9 standing for the kinetic rate constants of the
yfp synthesis and of the yfp degradation, respectively. The numerical values of
parameters were not deduced from the basic model to underline that we made
no assumptions on the stability of yfp, or on their gene transcription rates. The
idea of the validation was to extend the already fit basic model so as to include
also yfp. In the extended model we re-used all the kinetic rate constants of the
basic model. We then looked for numerical values for parameters k′

4 and k′

9 and
for initial values of all variables of the model so that the numerical prediction
for yfp fit well with the experimental data. The result of the validation is
shown in Figure 1B, where the crossed points represent the mean values of the
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Figure 2: Numerical predictions of the model. A. The model correctly
predicts that DNA binding peaks at a much lower level in a second consecutive
heat shock. The experiment with a single heat shock is shown with a dashed
line. B. The model correctly predicts longer transactivation with higher heat
shock: the behaviors at 41◦C, 42◦C, and 43◦C are shown. We also plot on
the same graph the correct prediction that the DNA binding attenuates more
rapidly in an experiment where the heat shock at 42◦C is removed at the peak
of the response.

experimental data at each time point and the continuous line is the numerical
integration of yfp.

Model analysis We estimated the scaled steady state sensitivity coefficients,
see [32], of all variables of the model with respect to reaction rate constants
and with respects to initial concentrations. For a variable X of the model
and a parameter p, the scaled steady state sensitivity coefficient of X with
respect to p is limt→∞ ∂ ln(X)/∂ ln(p)(t). These coefficients measure the relative
change in steady state when some parameter is changed with an infinitesimally
small amount. They help identify the most important steps in the heat shock
response network. A first observation was that the sensitivity coefficients of
all variables of the model with respect to reaction rate constants k−

1 , k−

2 , k−

3 ,
and k7 are negligible. This suggested that the respective reactions may have
negligible effect on the overall behavior of the model. To test this prediction,
we removed reaction (7) and the right-to-left directions of reactions (1), (2)
and (3). The reactions of the reduced model are in Table 4 and their kinetic
constants are unchanged with respect to the basic model. It turned out that the
reduced model performs equally well as the basic model in all validation tests
described above. Our model thus predicted that hsf dimers and trimers are very
stable and do not break spontaneously at a significant rate. The spontaneous
unbinding of an hsf trimer from hse (without the involvement of hsp) was also
insignificant. Interestingly, while reaction (7) (hsp breaking hsf trimers) did not
have a significant role and could be eliminated from the model, reaction (6) (hsp

breaking hsf dimers) did have a significant influence on several variables of the
model, including hsp and mfp.

We focused on the sensitivity coefficients of hsp and mfp, the main drivers of
the response. They showed a direct correlation between variations in the steady
state levels of hsp and mfp, not surprising given the chaperoning role of hsp.
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Table 4: The list of reactions in the reduced molecular model. Re-
actions (1) (right-to-left), (2)(right-to-left), (3)(right-to-left), and (7)
were eliminated from the basic model in Table 1 without affecting its
numerical behavior.

Reaction

2 hsf → hsf2

hsf + hsf2 → hsf3

hsf3 + hse → hsf3: hse

hsf3: hse → hsf3: hse + hsp

hsp+ hsf ↔ hsp: hsf

hsp+ hsf2 → hsp: hsf + hsf

hsp+ hsf3: hse → hsp: hsf + hse +2 hsf

hsp →

prot → mfp

hsp+mfp ↔ hsp:mfp

hsp:mfp → hsp+ prot

Their largest sensitivity coefficients are in Table 5 and can be interpreted as
follows. The coefficients with respect to k+

5 and k−

5 being the largest identified
reaction (5) in Table 1 as the most important feedback loop in our model. In one
direction of reaction (5), hsf is sequestrated, leading eventually to a suppression
of the transcription, in concert with reaction (8), and consequently, to a reduc-
tion in hsp and an increase in mfp. In the other direction of reaction (5), hsp

and hsf levels are increased, both leading to increasing hsp and decreasing mfp.
The next largest coefficients are with respect to k+

1 , k+
2 and k4: reactions (1),

(2), and (4) all contribute to increasing the level of transcription and by conse-
quence, the level of hsp as follows: hsf dimers or trimers form at a higher rate, or
hsf3 binds to hse at a higher rate. Reactions (6), (8) and (9) (see the sensitivity
coefficients with respect to k6, k8, k9) have a countering effect on the level of
transcription or directly on that of hsp: hsf: dimers are dissipated at a higher
rate and are less able to form trimers, hsf3 unbinds from hse at a higher rate,
or hsp degrades at a higher rate. The only reactions that influenced the level of
mfp but not that of hsp are (11) and (12), see the sensitivity coefficients with
respect to k+

11, k−

11, and k12 in Table 5. These reactions control the chaperoning
and the refolding of mfp, while not consuming hsp.

The most significant sensitivity coefficient of hsp and of mfp with respect
to initial concentrations was that depending on hsp: hsf(0), where hsp: hsf(0)
denotes the initial level of hsp: hsf, with similar notations for the other variables
of the model. On the other hand, the sensitivity coefficients of both hsp and of
mfp on the other forms of hsf (monomer, dimer, trimer) were negligible. This is a
direct consequence of the fact that almost all initial amount of hsf is sequestered
by hsp, while the initial levels of dimers and trimers are very low (in line with
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Table 5: The largest scaled steady state sensitivity coefficients of hsp

and mfp. The coefficients are identical at 37◦C and 42◦C.

Description p Sensitivity
∂ ln(hsp)
∂ ln(p) |t→∞

Sensitivity
∂ ln(mfp)
∂ ln(p) |t→∞

Sequestration of hsf by hsp k+
5 -0.50 0.50

Dissipation of hsp: hsf k−

5 0.50 -0.50
Formation of hsf dimers k+

1 0.17 -0.17
Formation of hsf trimers k+

2 0.17 -0.17
Transcription, translation k4 0.17 -0.17
Affinity of hsp for hsf2 k6 -0.17 0.17
Affinity of hsp for hsf3: hse k8 -0.17 0.17
Degradation of hsp k9 -0.17 0.17
Affinity of hsp for mfp k+

11 0.00 -1.00
Dissipation of hsp:mfp k−

11 0.00 0.24
Refolding k12 0.00 -0.24
Initial level of hsp: hsf hsp: hsf(0) 0.50 -0.50

experimental observations of [7]). As such the dependency on hsp: hsf(0) should
rather be interpreted as a dependency on the total initial amount of hsf. This
interpretation was supported by the following numerical experiment. We set
hsp: hsf(0) to 0 and increase correspondingly hsp(0) and hsf(0) (or, alternatively,
hsf2(0), or hsf3(0)) in such a way that the initial total amount of hsp and of
hsf is unchanged. Then hsp and mfp got significant sensitivity coefficients with
respect to hsf(0) (hsf2(0), or hsf3(0), respectively) and negligible with respect
to hsp: hsf(0). Distributing the initial amount of hsf among its various forms
had however a crucial effect on the speed and on the peak of the response.

The scaled steady state sensitivity coefficients of both hsp and mfp with
respect to hse(0) were negligible. This result is explained by the fact that we
considered the sensitivities around the steady state. For example, with fewer
hse(0), the response will eventually be able to approach the same steady state,
albeit the transcription stays at the 100% level for a longer time (because a
lower [hse] becomes a bottleneck of the response). Interestingly, with a higher
hse(0), the time evolution of the response remained unchanged, indicating that
as long as hse(0) was higher than a certain threshold, its numerical value was
irrelevant for the model prediction. This was indeed confirmed by numerical
simulations.

The sensitivities of both hsp and mfp (and in fact those of all variables) with
respect to hsp(0) were also negligible. The reason for this is that the system
was able to self-regulate a lower/higher hsp(0) and eventually approach the same
steady state. On the other hand, a lower/higher hsp(0) did have an impact on
the time evolution of the response.

Alternative numerical model fits The reaction rate constant values of our
mathematical model were obtained by performing parameter estimation with
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respect to the experimental data of [6]. We address in this section the question
of the uniqueness of the set of parameters that fulfill the imposed conditions,
a problem that is also known as the model identifiability. By repeating from
scratch the whole parameter estimation procedure, we obtained several different
sets of parameter values that result both in a good fit of the model to the
experimental data, as well as in initial values that are steady-states of the model
at 37 ◦C. It turned out however that all these parameter sets failed the model
validation tests discussed above with respect to the qualitative observations
concerning the behavior of cells under stress. This does not prove that our
heat shock response model is uniquely identifiable. However, it does suggest
that fitting the model to the experimental data in [6] and to the steady-state
condition for the initial values is a difficult numerical problem.

A thorough method of searching for alternative numerical model fits is to
perform a systematic parameter scan in the space determined by the considered
ranges of parameter values. This means that for each parameter, one parti-
tions its value range into a large number of subintervals (say, tens of thousands
of them) and samples values for the parameter from all of them. One then
tests the quality of the model fit for all possible combinations of parameter
samples to yield a thorough sampling of the model behavior throughout the
multi-dimensional parameter space. Unfortunately, the direct implementation
of this idea is intractable for models with more than a few parameters due to
the combinatorial explosion of the number of simulations that need to be run. A
fast, practical solution to this problem is to apply the Latin Hypercube Sampling

method (LHS), first introduced in [34]. This method provides samples which
are uniformly distributed over each parameter while the number of samples is
independent of the number of parameters, see also [35–37] for applications of
this method. We describe the sampling scheme briefly in the following, in the
simpler case when the parameter values are uniformly distributed in their range
interval. One first chooses the desired size N of the sampling set. The range
interval of each parameter is then partitioned into N non-overlapping intervals
of equal length. For each parameter, we randomly select N numerical values,
one from from each interval of the partition. We collect the N sampled values
for the i-th parameter of the model on the i-th column of a N ×p matrix, where
p is the number of parameters. One then randomly shuffles the values on each
column. The result of the procedure is read from the rows of the matrix: each of
the N rows of the matrix contains numerical values for each of the p parameters.
For a detailed description of this sampling scheme we refer to [34].

Based on the LHS method we have implemented the following strategy to
look for alternative models fits that are in agreement with the experimental data
of [6], and satisfy the steady-state condition for the initial values. First, by ap-
plying the LHS method, we sampled N = 100.000 sets of parameter values. For
each set, we estimated numerically the steady state of the model for a tempera-
ture value of 37 ◦C. We then set the initial state of the model as the calculated
steady state. We simulated the model for 14400 seconds at a temperature of
42 ◦C. Finally, we classified as non-responsive those parameter samples that
led to low DNA binding level at the peak of the response, and excluded them
from further analysis. We obtained that only 31.506 out of the 100.000 samples
were responsive, already a result pointing to difficulties in finding satisfactory
alternative numerical fits. We analyzed each of these models as follows. For
each model, we made a scatter plot for each variable and each parameter where
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we plotted the steady state values of each variable at 37 ◦C, against the values
of the parameter. We discuss here only a few of the plots. All plots are available
as supplementary materials at [38].

We compared the obtained results with the steady state values of our basic
model (called also reference model in the following) at 37 ◦C. As can be seen
in Figure 3a, only very few of the sampled models were capable of reaching low
levels of DNA binding at the steady state. This showed that most of the alter-
native fits predicted high levels of gene transcription in the absence of the heat
shock, a contradiction of the available biological evidence, see [7]. In the case of
hsf, none of the sampled models reached such a low level as the reference model,
see Figure 3b. Moreover, the reference model is one of the very few models in
which most of the hsf molecules are sequestered by hsp, see Figure 3c. This
indicates that at the temperature of 37 ◦C the response mechanism is turned
off, which is in excellent agreement with biological observations, see [7]. These
outcomes are also supported by the results obtained for hsf dimers presented
in Figure 3d, where the basic model reaches the lowest values. This is also in
agreement with the observation that hsf dimers are unnoticeable in biological
experiments.

We also compared the predictions of all the sampled models at 42 ◦C with
respect to the experimental data of [6]. The same score function which was used
in the case of parameter estimation, i.e. the sum of of squares of the residues,
was computed for all considered models. The results are depicted in the form of
a scatter plot and its zoomed in version in Figure 4a and Figure 4b, respectively.
Our reference model obtained the lowest score of around 12, while the 13 best
fits of the sampled models were in the range between 300 and 1000. All the
other models had much worse scores, of more than 1000.

While it is likely that a model of this size is not uniquely identifiable, our
parameter scan showed that finding parameter values satisfying our model con-
straints is far from being easy. This is evident both from the plots of the model
deviation from the experimental data under stress (as measured by the score
function, Figure 4a and Figure 4b) as well as from the plots of the model be-
havior in the absence of stress (Figure 3a–3d). Even more, about two thirds
of the parameter samples led to none-responsive models, i.e., models that yield
an insufficient response under stress.

Discussion

We presented a simple molecular model for the heat shock response, based on
standard molecular biology only. The mathematical model was validated based
both on existing data from the literature, as well as on our novel experimental
evidence. The numerical simulations of the model correlate well with predictions
reported elsewhere in the literature.

Using sensitivity coefficients we predict that a number of reactions have
a negligible effect on the model and could be removed without affecting its
numerical behavior. We also identify the reactions with the most significant
effect on hsp and on mfp. This is a useful, still not fully exploited potential of
mathematical modeling in biology. We have started from a molecular model
that incorporated a number of reactions that could in principle take place even
though no direct experimental evidence in their support exists: the dissipation
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Figure 3: Scatter plots of the steady state values at 37 ◦C of the sampled models
(blue crosses) and the basic model (red horizontal line). The red vertical line
indicates the parameter value of the basic model. The plots of hsf (b) and
hsf2 (d) are zoomed in, hence not all points are present, i.e. the values of the
remaining steady states were higher than the maximum value on the y-axes.

of dimers and of trimers, or the spontaneous unbinding of hsf3 from hse. The
mathematical analysis of the model points out to the fact that these reactions
have a negligible effect on the overall behavior of the model and it suggests
that they could be eliminated from the model. These results help simplify the
molecular model which in turn is important for further, more complex analy-
sis of the associated mathematical model and for their integration into larger
models. They can also be regarded as predictions that could be used in further
validation experiments. It is important to recognize however that these results
are dependent on the numerical values of the reaction rate constants and those
of the initial concentrations. Different numerical values for these parameters
may lead to different results. This is a general problem of any mathematical
modeling project, see [33] for a discussion on the computational difficulties of
this task. Clearly, having the model validated in a number of experimental
setups helps increase the confidence in the numerical values we report.

Related models Several mathematical models for the heat shock response,
both for prokaryotes and for eukaryotes have been proposed in [12, 25–29]. We
compare in here our model with the ones in [12] and [25] that seem most related
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Figure 4: Scatter plot (a) and its zoomed in version (b) of the score measuring
the fit of the sampled models (blue crosses) and the basic model (red horizontal
line) with respect to the experimental data. The red vertical line indicates the
parameter value of the basic model.

to ours.
The model in [12] considers, as we do, hsf and its dimerization and trimeriza-

tion, heat-induced misfolding, but it also considers other components: mRNA
molecules and nascent proteins chains, including their interactions with HSP.
The model was tested against experimental data obtained from Reuber H35
rat hepatoma cells on the synthesis of the hsp70 family members. One of the
shortcomings of the model in [12] is that it does not consider the details of the
hsp-regulated transcription. Instead the control is realized in the model through
hsp-blocking of mRNA and through hsp: hsf bindings. Another concern has to
do with the treatment of mRNA: it is not produced as a result of DNA tran-
scription and it is not used directly in a model for protein synthesis, the crucial
feedback regulatory motif in our model. Instead, mRNA is used in a hypotheti-
cal reaction of binding to misfolded proteins. Such a reaction leaves only part of
mRNA molecules as “healthy” and their proportion is then used to model the
slowing reaction rate of hsp binding to nascent protein chains. (Many of these
steps lack experimental support.) The same effect can however be obtained, as
suggested in our model, based on the observation that hsp molecules are com-
peted on, according to the mass-action principle, both by misfolded proteins
(present on a massive scale under stress), and by nascent proteins chains.

The model in [25] examines the eukaryotic heat shock response based on
hsp, hsf and hse, as we have, but also includes hsp mRNA molecules, a stimulus
signal, and a stress kinase. The hsp synthesis is controlled through hsp-regulated
DNA transcription, through hsp: hsf binding, but also through the fact that the
stability of hsp mRNA molecules is increased due to stress. Moreover, the
model considers the activation of hsf molecules when bounded to hse, mediated
by the stress kinase. In turn, the stress kinase is activated by the stimulus
signal. On the other hand, dimerization and trimerization of hsf molecules is
not considered, and neither is the degradation of hsp. The model is tested
against experimental data from HeLa cells [6]. The main difference with respect
to our model is the fact that the heat shock is modeled in an abstract way
through the stimulus signal and the stress kinase, rather than mechanistically
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through mfp as the initiating signal, as we do.
A recent paper, [28], takes a completely different modeling approach. Start-

ing from available experimental data on the response of Chinese hamster ovary
cells to heat shock, rather than a set of reactions, they develop a stochastic the-
oretical model accounting for the observed mean response. Interestingly, they
rediscover in this way the hsf-regulated transactivation of hsp-encoding genes.

In another recent paper, [29], the molecular model (summarized from [21])
includes several of the reactions in our model. Importantly, they do not con-
sider the heat-induced protein misfolding. Also, in the associated mathematical
model, only a part of the molecular model is analyzed.

A molecular model that is similar to the one we consider in this paper has
been recently presented in [39]. Some of the molecular details of the model
in [39] are however different and in fact, their model includes reactions (such as
the concomitant binding of three different molecules) whose kinetics are highly
unfavorable. The major differences however are in the numerical evaluations
of the model. While the authors of [39] have an ad-hoc choice of parameter
values, the bulk of our work is in extensive parameter estimation and numerical
validation of the model, based both on literature data, as well as on novel
experiments.

Extensions The current model can be extended to include several other as-
pects of the heat shock response. For example, one may include in the model
the heat-induced misfolding and chaperon-assisted refolding of both hsp and hsf.
Indeed, since both hsp and hsf are proteins, they are exposed to heat-induced
misfolding. This extension includes in the model a most attractive feature of
living cells: the repair mechanism is subject to failure, but it has capabilities to
repair itself. In terms of the molecular model, the model extension consists of
adding 6 reactions:

Misfolding: hsp → mhsp

hsf → mhsf

Sequestration: hsp+mhsp ↔ hsp:mhsp

hsp+mhsf ↔ hsp:mhsf

Refolding: hsp:mhsp → 2 hsp

hsp:mhsf → hsp+ hsf

One way to include this model extension in the mathematical model is to
assign each reaction a new kinetic parameter and measure or estimate their nu-
merical values in such a way that the fit and the model validation with respect to
experimental data remain excellent. Another way, that we adopted, is to assume
a principle of uniform biochemistry: every two similar reactions in the model
should be driven by the same kinetic constants. We observe that each of the
reactions in the model extension above has a correspondent in the basic model:
the misfolding reactions are similar to reaction (10), the sequestration reactions
are similar to (11) and the refolding reactions are similar to (12). Therefore, we
can use for the model extension similar kinetics as in the basic model: φT as re-
action rate coefficient for the misfolding reactions, k+

11, k
−

11 for the sequestration
reactions, and k12 for the refolding reactions (with the same numerical values
as for the basic model). Remarkably, the fit and the validation of the extended
model remains essentially unchanged. For details we refer to [31].
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Including the phosphorylation of hsf and its role on the hsf activity is attrac-
tive, but it appears to be very challenging. The difficulty is in distinguishing all
phosphorylation states of all known phosphorylation sites (currently at least 14
of them, see [3, 7]) of hsf. This leads to an exponential increase in the number
of variables in our model. To start with, we have considered only one phos-
phorylation site for each hsf. We also asked in the extended model that an
hsf trimer is only able to promote gene transcription if it has at least two of
its three sites phosphorylated. The extended model includes all possible phos-
phorylation states of hsf, hsf2, hsf3, hsp: hsf, as well as protein kinases and
phosphatases (which may be misfolded/refolded). The new model consists of 61
reactions and 26 reactants (I.Petre et al, unpublished data).We succeeded fitting
the model to the data on DNA binding from [6] in such a way that the rate
constants of the reactions of the basic model remain unchanged. When consid-
ering also the phosphorylation data of [6], the combined fit was very poor. This
may indicate that the rate constants of the basic model should be re-estimated
in this case, leading to a very challenging computational task. This difficulty
points also to an intrinsic problem of modeling with differential equations: they
are describing explicitly all variables in the model, even when many of them
are essentially just duplicates of each other. A novel mathematical modeling
methodology able to describe models in terms of various independent compo-
nents and the communication between them (such as done in concurrency in
Computer Science), may be more suitable in such setups.

Parameter scanning as a local optimization method A major difficulty
we have encountered when performing parameter estimation was to fit the time-
dependent behavior of the model with respect to experimental data, while mak-
ing sure that the initial values are an approximation of a steady state of the
model. Indeed, the steady state of the model is a function of the parameters
(and of other variables, such as total mass of various species). Once a good fit
with respect to experimental data was found, our approach was to replace the
initial values with the steady state of the obtained model at 37 ◦C and hope that
the model fit at 42 ◦C is not destroyed. This is the main reason why parameter
estimation was the most time-consuming part of the work.

The parameter scanning method that we have used when analyzing our
model could in fact be used as a local optimization method that takes into
consideration simultaneously the steady state condition and the stress-induced
response of the model. The idea is that for a model that is continuous in all
of the parameters (as ours is), the procedure identifies a region in the multi-
dimensional parameter space where a local minimum of the score function is
found. Iterating this procedure yields a realization of a local minimum of the
score function, while the initial state of the model is a steady state for a tem-
perature of 37 ◦C.

Applicability Mathematical modeling of biological processes may allow rea-
soning about uncertain or incomplete subparts of the process. For example,
when constructing our molecular model, see Table 1, all reactions were consid-
ered reversible, unless they were definitely known to be unidirectional. E.g., we
decided to include also reaction hsf3 → hsf + hsf2, although arguments based
on the stability of trimers and the transient nature of dimers could be used

16



against it. The corresponding mathematical model and its fitting help handle
such incomplete information. It turns out that our model fit gives a very low
rate constant for that reaction, suggesting that the reaction could be omitted
altogether from the model. Arguments based on sensitivity analysis help iden-
tify more reactions that can be eliminated from the model without affecting its
time evolution.

The heat shock response was amongst the primordial gene networks given
the fluctuating environment and the necessity to establish proteostasis networks.
The minimal mathematical model we proposed in this paper, based on stress-
induced activation and feedback regulation only, may be useful also for the
understanding of other forms of stress signalling or gene expression. The nu-
merical techniques that we have used in this paper for identifying the essential
components of the regulatory network may also be applicable in other mathe-
matical modeling projects.

Materials and methods

Construct information. To make the hsp70promoter700-yfp construct, the
CMV promoter was removed from pEYFP-N1 (Clontech) by inserting an XhoI
site before the start of the CMV promoter by site directed mutagenesis using
the primer 5’-TCTGTGGATAAGATCTCGAGCGCCATGCAT-3’ and its com-
plement. The CMV promoter was deleted by digesting with XhoI, which cleave
the new plasmid both in front of the CMV sequence and after this sequence
in the MCS. The cleaved fragments were separated by electrophoresis, and the
4.1 kb fragment lacking the CMV promoter sequence was isolated and ligated
to form pEYFP∆CMV. To add the hsp70 promoter in front of yfp, the 712 bp
fragment of the hsp70 promoter was digested from pGL-712-hsp70 (a kind gift
from A. Stanhill and D. Engelberg, Jerusalem, Israel) using XhoI and HindIII,
and subcloned into the pEYFP∆CMV plasmid.

Cell culture and heat shock experiments. K562 cells were maintained
in RPMI-1640 medium supplemented with 10% fetal calf serum, 2 mM L-
glutamine, penicillin and streptomycin at 37◦C in a 5% CO2 humidified atmo-
sphere. 5.0×106 K562 cells were transfected with hsp70promoter700-yfp plasmid
by electroporation (250V per 975 µF; GenePulser II electroporator, BioRad lab-
oratories). hsp70promoter700-yfp stable cell pools were selected with geneticin.
For heat shock treatments, 0.5 × 106 ml−1 hsp70promoter700-yfp stably ex-
pressing K562 cells were transferred to RPMI-1640 medium with supplements
pre-warmed to 42◦C. Heat shock was induced at 42◦C in a 5% CO2 humidified
atmosphere for the following time points prior to sampling: 36hr, 33hr, 30hr,
27hr, 24hr, 21hr, 18hr, 12hr, 10hr, 8hr, 6hr, 4hr, 2hr, 1hr and 0hr (control).
Cells were allowed to recover post-heat shock for 2hrs at 37◦C. Fluorescence
intensity of yfp was measured by flow cytometry with FACScan (Becton Dickin-
son). Samples from heat-shocked cells were lysed and separated by SDS-PAGE
and analyzed by western bloting.
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