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Abstract

We consider a setting in which we have a treatment and a large number of covari-

ates for a set of observations, and wish to model their relationship with an outcome of

interest. We propose a simple method for modeling interactions between the treatment

and covariates. The idea is to modify the covariate in a simple way, and then fit a stan-

dard model using the modified covariates and no main effects. We show that coupled

with an efficiency augmentation procedure, this method produces valid inferences in a

variety of settings. It can be useful for personalized medicine: determining from a large

set of biomarkers the subset of patients that can potentially benefit from a treatment.

We apply the method to both simulated datasets and gene expression studies of cancer.

The modified data can be used for other purposes, for example large scale hypothesis

testing for determining which of a set of covariates interact with a treatment variable.

1 Introduction

To develop strategies for personalized medicine, it is important to identify the treatment
and covariate interactions in the setting of randomized clinical trial [Royston and Sauerbrei,
2008]. To confirm and quantify the treatment effect is often the primary objective of a
randomized clinical trial. Although important, the final result (positive or negative) of a
randomized trial is a conclusion with respect to the average treatment effect on the entire
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study population. For example, a treatment may be no better than the placebo in the overall
study population, but it may be better for a subset of patients. Identifying the treatment
and covariate interactions may provide valuable information for determining this subgroup
of patients.

In practice, there are two commonly used approaches to characterize the potential treat-
ment and covariate interactions. First, a panel of simple patient subgroup analyses, where
the treatment and control arms are compared in different patients subgroups defined a pri-
ori, such as male, female, diabetic and non-diabetic patients, may be performed following
the main comparison. Such an exploratory approach mainly focusses on simple interac-
tions between treatment and one dichotomized covariate. However it will often suffer from
false positive findings due to multiple testing and will not find complicated treatment and
covariates interaction.

In a more rigorous analytic approach, the treatment and covariates interactions can be
examined in a multivariate regression analysis where the product of the binary treatment
indicator and a set of baseline covariates are included in the regression model. Recent break-
throughs in biotechnology makes a vast amount of data available for exploring for potential
interaction effect with the treatment and assisting in the optimal treatment selection for
individual patients. However, it is very difficult to detect the interactions between treatment
and high dimensional covariates via direct multivariate regression modeling. Appropriate
variable selection methods such as Lasso are needed to reduce the number of covariates hav-
ing interaction with the treatment. The presence of main effect, which often have bigger
effect on the outcome than the treatment interactions, further compounds the difficulties in
dimension reduction since a subset of variables need to be selected for modeling the main
effect as well.

Recently, Bonetti and Gelber [2004] formalized the subpopulation treatment effect pat-
tern plot (STEPP) for characterizing interactions between the treatment and continuous
covariates. Sauerbrei et al. [2007] proposed a efficient algorithm for multivariate model-
building with flexible fractional polynomials interactions (MFPI) and compared the em-
pirical performance of MFPI with STEPP. Su et al. [2008] proposed the classification and
regression tree method to explore the covariates and treatment interactions in survival anal-
ysis. Tian and Tibshirani [2010] proposed an efficient algorithm to construct an index score,
the sum of selected dichotomized covariates, to stratify patients population according to
the treatment effect. In a more recent work, Zhao et al. [2012] proposed a novel approach
to directly estimate the optimal treatment selection rule via maximizing the expected clin-
ical utility, which is equivalent to a weighted classification problem. There are also rich
Bayesian literatures for flexible modeling nonlinear and nonadditive/interaction relationship
between covariates and responses [LeBlanc, 1995, Chipman et al., 1998, Gustafson, 2000,
Chen et al., 2012]. However, most of these existing methods excepting that proposed by
Zhao et al. [2012], are not designed to deal with high-dimensional covariates.

In this paper, we propose a simple approach to estimate the covariates and treatment
interactions without the need for modeling main effects. The idea is simple, and in a sense,
obvious. We simply code the treatment variable as ±1 and then include the products of this
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Figure 1: Example of the modified covariate approach, applied to gene expression data from
multiple myeloma patients who were given one of two treatments in a randomized trial. Our
procedure constructed a gene score based on 20 genes, to detect gene expression- treatment
interactions. The numerical score was constructed on a training set, and then categorized
into low, medium and high. The panels show the survival curves for a separate test set,
overall and stratified by the score.

variable with centered versions of each covariate in the regression model.
Figure 1 gives a preview of the results of our method. The data consist of gene ex-

pression measurements from multiple myeloma patients, who were randomized to one of
two treatments. Our proposed method constructs a numerical gene score on a training set
to reveal gene expression- treatment interactions. The panels show the estimated survival
curves for patients in a separate test set, overall and stratified by the score. Although there
is no significant survival difference between the treatments overall, we see that patients with
medium and high gene scores have better survival with treatment PS341 than those with
Doxyrubicin.

In section 2, we describe the methods for continuous, binary as well as survival type
of outcomes. We also establish a simple casual interpretation of the proposed method in
several cases. In section 3, the finite sample performance of the proposed method has been
investigated via extensive numerical study. In section 4, we apply the proposed method
to a real data example about the Tamoxifen treatment for breast cancer patients. Finally,
potential extensions and applications of the method were discussed in section 5.
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2 The proposed method

In the following, we let T = ±1 be the binary treatment indicator and Y (1) and Y (−1) be the
potential outcome if the patient received treatment T = 1 and −1, respectively. We only
observe Y = Y (T ), T and Z, a q−dimensional baseline covariate vector. We assume that
the observed data consist of N independent and identically distributed copies of (Y, T,Z),
{(Yi, Ti,Zi), i = 1, · · · , N}. Furthermore, we letW(·) : Rq → Rp be a p dimensional functions
of baseline covariates Z and always include an intercept. We denote W(Zi) by Wi in the
rest of the paper. Here the dimension of Wi could be large relative to the sample size N.
For simplicity, we assume that Prob(T = 1) = Prob(T = −1) = 1/2.

2.1 Continuous response model

When Y is continuous response, a simple multivariate linear regression model for character-
izing the interaction between treatment and covariates is

Y = β ′

0W(Z) + γ
′

0W(Z) · T/2 + ǫ, (1)

where ǫ is the mean zero random error. In this simple model, the interaction term γ
′

0W(Z)·T
models the heterogeneous treatment effect across the population and the linear combination
of γ ′

0W(Z) can be used for identifying the subgroup of patients who may or may not be
benefited from the treatment. Specifically, under model (1), we have

∆(z) = E(Y (1) − Y (−1)|Z = z)

= E(Y |T = 1,Z = z)− E(Y |T = −1,Z = z)

= γ
′

0W(z),

i.e., γ ′

0W(z) measures the causal treatment effect for patients with baseline covariate Z.With
observed data, γ0 can be estimated along with β0 via the ordinary least squares method.

On the other hand, noting the relationship that

E(2Y T |Z = z) = ∆(z),

one may estimate γ0 by directly minimizing

N−1
N
∑

i=1

(2YiTi − γ
′Wi)

2. (2)

We call this the modified outcome method, where 2Y T can be viewed as the modified out-
come,which has been first proposed in Ph.D thesis of James Sinovitch, Harvard University.

Under the simple linear model (1), both estimators are consistent for γ0, and the full
least squares approach in general is more efficient than the modified outcome method. In
practice, the simple multivariate linear regression model often is just a working model ap-
proximating the complicated underlying probabilistic relationship between the treatment,
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baseline covariates and outcome variables. It comes as a surprise, that even when model (1)
is misspecified, multivariate linear regression and modified outcome estimators still converge
to the same deterministic limit γ∗ and furthermore W(z)′γ∗ is still a sensible estimator for
the interaction effect in the sense that it seeks the “best” function of z in a functional space
F to approximate ∆(z) by solving the optimization problem:

min
f

E{∆(Z)− f(Z)}2,

subject to f ∈ F = {γ ′W(z)|γ ∈ Rp},
where the expectation is with respect to Z.

2.2 The Modified Covariate Method

The modified outcomes estimator defined above is useful for the Gaussian case, but does not
generalize easily to more complicated models. Hence we propose a new estimator which is
equivalent to the modified outcomes approach in the Gaussian case and extends easily to
other models. This is the main proposal of this paper.

We consider the simple working model

Y = α0 + γ
′

0

W(Z) · T
2

+ ǫ, (3)

where ǫ is the mean zero random error. Based on model (3), we propose the modified
covariate estimator γ̂ as the minimizer of

1

N

N
∑

i=1

(

Yi − γ
′
Wi · Ti

2

)2

. (4)

The fact that we can directly estimate γ0 in model (3) without considering the intercept α0

is due to the orthogonality between W(Zi) · Ti and the intercept, which is the consequence
of the randomization. That is, we simply multiply each component of Wi by one-half the
treatment assignment indicator (= ±1) and perform a regular linear regression. Now since

1

N

N
∑

i=1

{

Yi − γ
′
Wi · Ti

2

}2

=
1

4N

N
∑

i=1

{2YiTi − γ
′Wi}2 ,

the modified outcome and modified covariate estimates are identical and share the same
causal interpretation for the simple Gaussian model. Operationally, we can omit the intercept
and perform a simple linear regression with the modified covariates. In general, we proposed
the following modified covariate approach
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1. Modify the covariate

Zi → Wi = W(Zi) → W∗

i = Wi · Ti/2

2. Perform appropriate regression
Y ∼ γ

′

0W
∗ (5)

based on the modified observations

(W∗

i , Yi) = {(Wi · Ti)/2, Yi}, i = 1, 2, . . .N. (6)

3. γ̂
′
W(z) can be used to stratify patients for individualized treatment selection.

Figure 2 illustrates how the modified covariate method works for a single covariate Z, in
two treatment groups. The raw data is shown the left, and the data with modified covariate
is shown on the right. The slope of the regression line computed in the right panel estimates
the treatment-covariate interaction.

The advantage of this new approach is twofold: it avoids having to directly model the
main effects and it has a causal interpretation for the resulting estimator regardless of the
adequacy of the assumed working model (3). Furthermore, unlike modified outcome method,
it is straightforward to generalize the new approach to other types of outcome.

2.3 Binary Responses

When Y is a binary response, in the same spirit as the continuous outcome case, we propose
to fit a multivariate logistic regression model with modified covariates W∗ = W(Z) · T/2
generalized from (5):

Prob(Y = 1|Z, T ) = exp(γ ′

0W
∗)

1 + exp(γ ′

0W
∗)
. (7)

Noting that if model (7) is correctly specified, then

∆(z) = Prob(Y (1) = 1|Z = z)− Prob(Y (−1) = 1|Z = z)

= Prob(Y = 1|T = 1,Z = z)− Prob(Y = 1|T = −1,Z = z)

=
exp{γ ′

0W(z)/2} − 1

exp{γ ′

0W(z)/2}+ 1
,

and thus γ ′

0W(z) has an appropriate causal interpretation. However, even when model (7)
is not correctly specified, we still can estimate γ0 by treating (7) as a working model.

In general, the maximum likelihood estimator (MLE) of the working model, converges
to a deterministic limit γ

∗ and W(z)′γ∗/2 can be viewed as the solution to the following
optimization problem

maxfE
{

Y f(Z)T − log(1 + ef(Z)T )
}

6
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Figure 2: Example of the modified covariate approach. The raw data is shown the left,
consisting of a single covariate Z and a treatment T = −1 or 1. The treatment-covariate
interaction has slope γ approximately equal to 1. On the right panel we have plotted the
response against Z · T/2. The the regression line computed in the right panel estimates the
treatment effect for each give value of covariate Z.
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subject to f ∈ F = {γ′W(z)/2|γ ∈ Rp},
where the expectation is with respect to (Y, T,Z). Therefore, where W(z) forms a “rich” set
of basis functions, W(z)′γ∗/2 is an approximation to the minimizer of E

{

Y f(Z)T − log(1 + ef(Z)T )
}

.
In the appendix, we show that the latter can be represented as

f ∗(z) = log

{

1−∆(z)

1 + ∆(z)

}

under very general assumptions. Therefore,

∆̂(z) =
exp{γ̂ ′W(z)/2} − 1

exp{γ̂ ′
W(z)/2}+ 1

may serve as an estimate for the covariate-specific treatment effect and used to stratify
patients population, regardless of the validity the working model assumptions.

As described above, the MLE from the working model (7) can always be used to construct
a surrogate to the personalized treatment effect measured by the “risk difference”

∆(z) = E(Y (1) − Y (−1)|Z = z).

On the other hand, different measures for individualized treatment effects such as relative
risk may also be of interest. For example, if we consider an alternative approach for fitting
the logistic regression working model (7) by letting

γ̂ = argmax
γ

n
∑

i=1

{

(1− Yi)γ
′W∗ − Yie

−γ
′
W

∗

i

}

,

then γ̂ converges to a deterministic limit γ̃∗ and W(z)′γ̃∗(z)/2 can be viewed as an approx-
imation to log{∆̃(z)}, where

∆̃(z) =
Prob(Y (1) = 1|Z = z)

Prob(Y (−1) = 1|Z = z)
,

which measures the treatment effect based on “relative risk” rather than “risk difference”.
The detailed justification is given in the Appendix 6.1.

2.4 Survival Responses

When the outcome variable is survival time, we often do not observe the exact outcome for
every subject in a clinical study due to incomplete follow-up. In this case, we assume that
the outcome Y is a pair of random variables (X, δ) = {X̃ ∧ C, I(X̃ < C)}, where X̃ is the
survival time of primary interest, C is the censoring time and δ is the censoring indicator.

Firstly, we propose to fit a Cox regression model

λ(t|Z, T ) = λ0(t)e
γ
′
W

∗

(8)
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where λ(t|·) is the hazard function for survival time X̃ and λ0(·) is a baseline hazard function
free of Z and T. When model (8) is correctly specified,

∆(z) = log

[

E{Λ0(X̃
(1))|Z = z}

E{Λ0(X̃(−1))|Z = z}

]

=

[

E{Λ0(X̃)|T = 1,Z = z}
E{Λ0(X̃)|T = −1,Z = z}

]

= exp{−γ
′

0W(z)}

and γ
′

0W(z) can be used to stratify patient population according to ∆(z), where Λ0(t) =
∫ t

0
λ0(u)du is a monotone increasing function (the baseline cumulative hazard function).

Under the proportional hazards assumption, the maximum partial likelihood estimator γ̂ is
a consistent estimator for γ0 and semiparametric efficient. Moreover, even when model (8)
is misspecified, we still can “estimate” γ0 by maximizing the partial likelihood function. In
general, the resulting estimator, γ̂, converges to a deterministic limit γ∗, which is the root
of a limiting score equation [Lin and Wei, 1989]. More generally, W(z)′γ∗/2 can be viewed
as the solution of the optimization problem

max
f

E

∫ τ

0

[

f(Z)T − log{
N
∑

j=1

ef(Z)T I(X̃ ≥ u)}
]

dN(u)

subject to f ∈ F = {γ ′W(z)/2|γ ∈ Rp},
where N(t) = I(X̃ ≤ t)δi and the expectation is with respect to (Y, T,Z). Therefore,
W(z)′γ∗/2 can be viewed as an approximation to

f ∗(z) = argmaxfE

∫ τ

0

[

f(Z)T − log{
N
∑

j=1

ef(Z)T I(X̃ ≥ u)}
]

dN(u).

In appendix 6.1, we shown that the minimizer f ∗ satisfies

ef
∗(z)E{Λ∗(X̃(1))|Z = z} − e−f∗(z)E{Λ∗(X̃(−1))|Z = z} = E(∆(1)|Z = z)− E(∆(−1)|Z = z)

for a monotone increasing function Λ∗(u). Thus, when censoring rates are balanced between
two arms,

f ∗(z) ≈ −1

2
log

[

E{Λ∗(X̃(1))|Z = z}
E{Λ∗(X̃(−1))|Z = z}

]

can be used for characterizing the covariate-specific treatment effect and stratifying the
patient population even when the working model (8) is misspecified.
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2.5 Regularization for high dimensional data

When the dimension of W∗, p, is high, we can easily apply appropriate variable selection
procedures based on the corresponding working model. For example, L1 penalized (Lasso)
estimators proposed by Tibshirani [1996] can be directly applied to the modified data (6).
In general, one may estimate γ by minimizing

1

N

N
∑

i=1

l(Yi,γ
′W∗

i ) + λ0

p
∑

j=1

|γj|, (9)

where

l(Yi,γ
′W∗

i ) =















1
2
(Yi − γ

′W∗

i )
2 for continuous response

−{Yiγ
′W∗

i − log(1 + eγ
′
W

∗

i )} for binary response

−
[

γ
′W∗

i − log{
∑N

j=1 e
γ
′
W

∗

i I(Xj ≥ Xi)}
]

∆i for survival response

.

It might be reasonable to suppose that the covariates interacting with the treatment will
more likely be the ones exhibiting important main effects themselves. Therefore, one could
also apply the adaptive Lasso procedure [Zou, 2006] with feature weights ŵj proportional to
the reciprocal of the univariate “association strength” between the outcome Y and the jth
component of W(Z). Specifically, one may modify the penalty in (9) as

λ0

p
∑

j=1

|γj|
ŵj

, (10)

where ŵj = |θ̂i|−1 or (|θ̂−1i| + |θ̂1i|)−1, where θ̂j1, θ̂j(−1) and θ̂j , are the estimated regression
coefficients of the jth component of W(Z) in appropriate univariate regression analysis with
observations from the group T = 1 only, from the group T = −1 only, and from both
groups, respectively. Other regularization methods such as elastic net may also be used
[Zou and Hastie, 2005].

Interestingly, one can treat the modified data (6) just as generic data and hence couple
it with other statistical learning techniques. For example, one can apply a classifier such
as prediction analysis of microarrays (PAM) to the modified data for the purpose of finding
subgroup of samples in which the treatment effect is large. We also can do large scale
hypothesis testing on the modified data to determine which gene-treatment interactions
have a significant effect on the outcome.

2.6 Efficiency Augmentation

When the models (5, 7 and 8) with modified covariates is correctly specified, the MLE
estimator for γ

∗ is the most efficient estimator asymptotically. However, when models are
treated as working models subject to mis-specification, a more efficient estimator can be
obtained for estimating the same deterministic limit γ

∗. To this end, noting the fact that

10



in general γ̂ is defined as the minimizer of an objective function motivated from a working
model:

γ̂ = argmin
γ

1

N

N
∑

i=1

l(Yi,γ
′W∗

i ) (11)

Noting that for any function a(z) : Rq → Rp, E{Tia(Zi)} = 0 due to randomization, the
minimizer of the augmented objective function

1

N

N
∑

i=1

{l(Yi,γ
′W∗

i )− Tia(Zi)
′
γ}

converges to the same limit as γ̂, when N → ∞. Furthermore, by selecting an optimal
augmentation term a0(·), the minimizer of the augmented objective function can have smaller
variance than that of the minimizer of the original objective function.

In appendix 6.2, we show that

a0(z) = −1

2
W(z)E(Y |Z = z)

and

a0(z) = −1

2
W(z){E(Y |Z = z)− 0.5}

are optimal choices for continuous and binary responses, respectively. Therefore, we proposed
the following two-step procedures for estimating γ

∗ :

11



1. Estimate the optimal a0(z) :

(a) For continuous response, fit the linear regression model E(Y |Z) = ξ′B(Z) for
appropriate function B(Z) with OLS. Appropriate regularization will be used if
the dimension of B(Z) is high. Let

â(z) = −1

2
W(z)× ξ̂′B(z).

(b) For binary response, fit the logistic regression model logit{Prob(Y = 1|Z)} =
ξ′B(Z) for appropriate function B(Z) by maximizing the likelihood function. Ap-
propriate regularization will be used if the dimension of B(Z) is high. Let

â(z) = −1

2
W(z)×

{

eξ̂
′B(z)

1 + eξ̂′B(z)
− 1

2

}

.

Here B(z) = {B1(z), · · · , BS(z)} and Bk(z) : R
q → R1 is selected basis function.

2. Estimate γ
∗

(a) For continuous response, we minimize

1

N

N
∑

i=1

{

1

2
(Yi − γ

′W∗

i )
2 − γ

′â(Zi)Ti

}

with appropriate regularization if needed.

(b) For binary response, we minimize

1

N

N
∑

i=1

[

−{Yiγ
′W∗

i − log(1 + eγ
′W∗

i )} − γ
′â(Zi)Ti

]

with appropriate regularization if needed.

For survival outcome, the log-partial likelihood function is not a simple sum of i.i.d terms.
However, in Appendix 6.2 we show that the optimal choice of a(z) is

a0(z) = −1

2

[

1

2
W(z) {G1(τ ; z) +G2(τ ; z)} −

∫ τ

0

R(u){G1(du; z)−G2(du; z)}
]

,

where G1(u; z) = E{M(u)|Z = z, T = 1}, G2(u; z) = E{M(u)|Z = z, T = −1},

M(t,W∗,γ∗) = N(t)−
∫ t

0

I(X ≥ u)eγ
′W∗

dE{N(u)}
E{eγ ′W∗I(X ≥ u)}

12



and

R(u;γ∗) =
E{W∗eγ

′W∗

I(X ≥ u)}
E{eγ ′W∗I(X ≥ u)} .

Unfortunately, a0(z) depends on the unknown parameter γ
∗. On the other hand, on high-

dimensional case, the interaction effect is usually small and it is not unreasonable to assume
that γ

∗ ≈ 0. Furthermore, if the censoring patterns are similar in both arms, we have
G1(u, z) ≈ G2(u, z). Using these two approximations, we can simplify the optimal augmen-
tation term as

a0(z) = −1

4
W(z) {G1(τ ; z) +G2(τ ; z)} = −1

2
W(z)× E{M(τ)|Z = z)

where

M(t) = N(t)−
∫ t

0

I(X ≥ u)dE{N(u)}
E{I(X ≥ u)} .

Therefore, we propose to employ the following approach for implementing the efficiency aug-
mentation procedure,:

1. Calculate

M̂i(τ) = Ni(τ)−
∫ τ

0

I(Xi ≥ u)d{
∑N

j=1Nj(u)}
∑N

j=1 I(Xj ≥ u)

for i = 1, · · · , N and fit the linear regression model E(M̂(t)|Z) = ξ′B(Z) for appropri-
ate function B(Z) with OLS and appropriate regularization if needed. Let

â(z) = −1

2
W(z)× ξ̂′B(z).

2. Estimate γ
∗ by minimizing

1

N

N
∑

i=1

(

−
[

γ
′W∗

i − log{
N
∑

j=1

eγ
′W∗

i I(Xj ≥ Xi)}
]

∆i − γ
′â(Zi)Ti

)

with appropriate penalization if needed.

Remarks 1

When the response is continuous, the efficient augmentation estimator is the minimizer
of

N
∑

i=1

[

1

2

{

Yi −
1

2
γ
′W(Zi)Ti/2

}2

− γ
′â(Zi)Ti

]

=

N
∑

i=1

1

2

{

Yi − ξ̂′B(Zi)−
1

2
γ
′W(Zi)Ti

}2

+ constant.

13



This equivalence implies that this efficiency augmentation procedures is asymptotically
equivalent to that based on a simple multivariate regression with main effect ξ̂′B(Zi) and
interaction γ

′W(Z) · T. This is not a surprise. As we pointed out in section 2.1, the choice
of the main effect in the linear regression does not affect the asymptotical consistency of
estimating the interactions. On the other hand, a good choice of main effect model can help
to estimate the interaction, i.e., personalized treatment effect, more accurately.

Another consequence is that one may directly use the same algorithm solving standard
optimization problem to obtain the augmented estimator when lasso penalty is used. For
binary or survival response, the augmented estimator under lasso regularization can be ob-
tained with slightly modified algorithm designed for lasso optimization as well. The detailed
algorithm is given in the appendix 6.3.

Remarks 2

For nonlinear models such as logistic and Cox regressions, the augmentation method
is NOT equivalent to the full regression approach including main effect and interaction
terms. In those cases, different specification of the main effects in the regression model result
in asymptotically different estimates for the interaction term, which, unlike the proposed
modified covariate estimator, in general can not be interpreted as the personalized treatment
effect.

Remarks 3

With binary response, the estimating equation targeting on approximating the relative
risk is

N
∑

i=1

W∗

i {(1− Yi)− Yie
−γ

′W∗

i }

and the optimal augmentation term a0(z) can be be approximated by

−1

2
W(z)

{

E(Y |Z = z)− 1

2

}

when γ
∗ ≈ 0. The efficiency augmentation algorithm can be carried out accordingly.

Remarks 4

The similar technique can also be used for improving other estimators such as that
proposed by Zhao et al. [2012], where the surrogate objective function for the weighted mis-
classification error can be written in the form of (2.6) as well. The optimal function a0(z)
needs to be derived case by case.
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3 Numerical Studies

In this section, we perform an extensive numerical study to investigate the finite sample
performance of proposed method in various settings: the treatment may or may not have
marginal main effect between two groups; the personalized treatment effect may depend
on complicated function of covariates such as interactions among covariates; the regression
model for detecting the interaction may or may not be correctly specified. Due to the
limitation of the space, we only present simulation results from the selected representive
cases. The results for other scenarios are similar to those presented.

3.1 Continuous responses

For continuous responses, we generated N independent Gaussian samples from the regression
model

Y =

p
∑

j=1

βjZj +

p
∑

j=1

γjZjT + σ0 · ǫ, (12)

where the covariate (Z1, · · · , Zp) follows a mean zero multivariate normal distribution with
a compound symmetric variance-covariance matrix, (1−ρ)Ip+ρ1′1, and ǫ ∼ N(0, 1). We let
(γ1, γ2, γ3, γ4, γ5, · · · , γp) = (1/2,−1/2, 1/2,−1/2, 0, · · · , 0), σ0 =

√
2, N = 100, and p = 50

and 1000 representing high and low dimensional cases, respectively. The treatment T was
generated as ±1 with equal probability at random. We consider four sets of simulations:

1. βj = (−1)j+1I(3 ≤ j ≤ 10)/4 and ρ = 0;

2. βj = (−1)j+1I(3 ≤ j ≤ 10)/4 and ρ = 0.5;

3. βj = (−1)j+1I(3 ≤ j ≤ 10)/2 and ρ = 0;

4. βj = (−1)j+1I(3 ≤ j ≤ 10)/2 and ρ = 0.5.

Settings 1 and 2 presents relative moderate main effect, where the variability in response
contributable to the main effect is the same as that to the interaction. Settings 3 and 4
represent relative big main effect, where the variability in response contributable to the
main effect is twice as big as that to the interaction. For each of the simulated data set, we
implemented three methods:

• full regression: The first method is to fit a multivariate linear regression with full main
effect and covariate/treatment interaction terms, i.e., the dimension of the covariate
matrix was 2(p+ 1). The Lasso was used to select the variables.

• new: The second method is to fit a multivariate linear regression with the modified
covariateW∗ = (1,Z)′·T/2 as the covariates, i.e., the dimension of the covariate matrix
is p+ 1. Again, the Lasso is used for selecting variables having treatment interaction.
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• new/augmented: the proposed method with efficiency augmentation, where E(Y |Z) is
estimated with lasso-regularized ordinary least squared method and B(z) = z.

For all three methods, we selected the Lasso penalty parameter via 20-fold cross-validation.
To evaluate the performance of the resulting score measuring the individualized treatment
effect, we estimated the Spearman’s rank correlation coefficient between the estimated score
and the “true” treatment effect

∆(Z) = E(Y (1) − Y (−1)|Z) = (Z1 − Z2 + Z3 − Z4)

in an independently generated set with a sample size of 10000. Based on 500 sets of sim-
ulations, we plotted the boxplots of the rank correlation coefficients between the estimated
scores γ̂

′Z and ∆(Z) under simulation settings (1), (2), (3) and (4) in top left, top right,
bottom left and bottom right panels of Figure 3, respectively. When the main effect is mod-
erate and covariates are independent (setting 1), the performance of the proposed method
is better than that of the full regression approach. However, when the main effect is rel-
atively big compared to interactions (settings 3 and 4), the proposed method is unable to
estimate the correct individualized treatment effect well and is actually inferior to the simple
regression method. On the other hand, the performance of the “new/augmented” is the best
or nears the best across all the four settings and is sometimes substantially better than its
competitors.

3.2 Binary responses

For binary responses, we used the same simulation design as that for the continuous response.
Specifically, we generated N independent binary samples from the regression model

Y = I

(

p
∑

j=1

βjZj +

p
∑

j=1

γjZjT + σ0 · ǫ ≥ 0

)

, (13)

where all the model parameters were the same as those in the case of continuous response.
Noting that the logistic regression model is misspecified under the chosen simulation design.
We also considered the same four settings with different combinations of βj and ρ. For each
of the simulated data set, we implemented three methods:

1. full regression: The first method is to fit a multivariate logistic regression with full main
effect and covariate/treatment interaction terms, i.e., the dimension of the covariate
matrix was 2(p+ 1). The Lasso was used to select the variables.

2. new: The second method is to fit a multivariate logistic regression (without intercept)
with the modified covariate W∗ = (1,Z)′ ·T/2 as the covariates. Again, the Lasso was
used for selecting variables having treatment interaction.

3. new/augmented: the proposed method with efficiency augmentation, where E(Y |Z) is
estimated with Lasso-penalized logistic regression.
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To evaluate the performance of the resulting score measuring the individualized treatment
effect, we estimated the Spearman’s rank correlation coefficient between the estimated score
and the “true” treatment effect

∆(Z) = E(Y (1) − Y (−1)|Z)

= Φ

(

∑p
j=1(βj + γj)Zj

σ0

)

− Φ

(

∑p
j=1(βj − γj)Zj

σ0

)

where Φ was the cumulative distribution function of standard normal. Although the scores
measuring the interaction from the first and second/third methods were different even when
the sample size goes to infinity, the rank correlation coefficients put them on the same footing
in comparing performances.

In top left, top right, bottom left and bottom right panels of Figure 4, we plotted the
boxplots of the correlation coefficients between the estimated scores γ̂

′Z and ∆(Z) under
simulation settings (1), (2), (3) and (4), respectively. The patterns are similar to that for the
continuous response. The “new/augmented method” performed the best or close to the best
in all the four settings. The efficiency gain of the augmented method in setting 4 where the
main effect was relative big and covariates were correlated was more significant than that in
other settings.

In additional simulation study, we also evaluated the empirical performance of the gen-
eralized modified covariate approach with nearest shrunken centroid classifier. In one set
of the simulation, the binary response is simulated from model (13) with p = 50, n = 200,
βj = I(j ≤ 20)/2, γj = I(j ≤ 4)/2 and σ0 =

√
2. Here the first four predictors have covariate

treatment interaction. We applied the nearest shrunken centroid classifier [Tibshirani et al.,
2001] to the modified data (6) with the shrinkage parameter selected via 10 fold cross-
validation. This produced a posterior probability estimator for {Y = 1}. We then applied
this estimated posterior probability interaction score, to a independently generated test set
of size 400. We dichotomized the observations in the test set into high and low score groups
according to the median value and calculated the differences between two treatment arms in
high and low score groups separately. With 100 replications, the boxplots of the differences
in high and low score groups were shown in the right panel of Figure 5. For comparison
purposes, the empirical differences between two arms in high and low score groups deter-
mined by the true interaction score

∑p
j=1 γjZj were shown in the left panel of figure 5. It can

be seen that modified covariate approach, coupled with nearest shrunken centroid classifier,
provided reasonable stratification for differentiating the treatment effect.

3.3 Survival Responses

For survival responses, we used the same simulation design as that for the continuous and
binary responses. Specifically, we generated N independent survival time from the regression
model

X̃ = exp

(

p
∑

j=1

βjZj +

p
∑

j=1

γjZjT + σ0 · ǫ
)

, (14)
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where all the model parameters were the same as in the previous subsections. The censoring
time was generated from uniform distribution U(0, ξ0), where ξ0 was selected to induce 25%
censoring rate. For each of the simulated data set, we implemented three methods:

1. full regression: The first method was to fit a multivariate Cox regression with full main
effect and covariate/treatment interaction terms, i.e., the dimension of the covariate
matrix was 2p+ 2. The Lasso was used to select the variables

2. new: The second method was to fit a multivariate Cox regression with the modified
covariate W∗ = (1,Z)′ · T/2 as the covariates. Again, the Lasso was used for selecting
variables having treatment interaction.

3. new/augmented: the proposed method with efficiency augmentation. To model the
E{M(τ)|Z}, we used linear regression with lasso regularization method.

To evaluate the performance of the resulting score measuring the individualized treatment
effect, we estimated the Spearman’s rank correlation coefficient between the estimated score
and the “true” treatment effect based on survival probability at t0 = 5

∆(Z) = Prob(X̃(1) ≥ t0|Z)− Prob(X̃(−1) ≥ t0|Z)

= Φ

(

∑p
j=1(βj + γj)Zj − log(t0)

σ0

)

− Φ

(

∑p
j=1(βj − γj)Zj − log(t0)

σ0

)

.

In top left, top right, bottom left and bottom right panels of Figure 6, we plotted the
boxplots of the correlation coefficients between the estimated scores γ̂

′Z and ∆(Z) under
simulation settings, (1), (2), (3) and (4), respectively. The patterns were similar to those
for the continuous and binary responses and confirmed our findings that the “efficiency-
augmented method” performed the best among the three methods in general.

4 Examples

It has been known that the breast cancer can be classified into different subtypes using
gene expression profile and the effective treatment may be different for different subtypes of
the disease [Loi et al., 2007]. In this section, we apply the proposed method to study the
potential interactions between gene expression levels and Tamoxifen treatment in the breast
cancer patients.

The data set consists of 414 patients in the cohort GSE6532 collected by Loi et al. [2007]
for the purpose of characterizing ER-positive subtypes with gene expression profiles. The
dataset including demographic information and gene expression levels can be downloaded
from the website www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532. Excluding pa-
tients with incomplete information, there are 268 and 125 patients receiving Tamoxifen and
alternative treatments, respectively. In addition to the routine demographic information, we
have 44, 928 gene expression measurements for each of the 393 patients. The outcome of
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the primary interest here is the distant metastasis free survival time, which subjects to right
censoring due to incomplete follow-up. The metastasis free survival times in two treatment
groups are not statistically different with a two-sided p value of 0.59 based on the log-rank
test (Figure 7). The goal of the analysis is to construct a score using gene expression levels
for identifying subgroup of patients who may or may not be benefited from the Tamoxifen
treatment in terms of the distant metastasis free survival. To this end, we select the first 90
patients in the Tamxifen arm and an equal number of patients in the alternative treatment
arm to form the training set and reserve the rest 213 patients as the independent validation
set. In selecting the training and validation sets, we use the original order of the observations
in the dataset without additional sorting to ensure an objective analysis.

We first identify 5,000 genes with highest empirical variances and then construct an
interaction score by fitting the Lasso penalized Cox regression model with modified covariates
based on the 5,000 genes in the training set. The Lasso penalty parameter is selected via
20-fold cross-validation. The resulting interaction score is a linear combination of expression
levels of seven genes. Here, a low interaction score favors Tamoxifen treatment. We apply
the gene score to classify the patients in the validation set into high and low score groups
according to if her score is greater than the median level. In the high score group, the distant
metastasis free survival time in the Tamoxifen group is shorter than that in the alternative
group with an estimated hazard ratio of 3.52 for Tamoxifen versus non-Tamoxifen treatment
group (logrank test p = 0.064). In the low score group, the distant metastasis free survival
time in the Tamoxifen group is longer than that in the alternative group with an estimated
hazard ratio of 0.694 (p = 0.421). The estimated survival functions of both treatment groups
are plotted in the upper panels of Figure 8. The interaction between constructed gene score
and treatment is statistically significant in the multivariate Cox regression based on the
validation set (p = 0.004).

Furthermore, we implement the efficiency augmentation method and obtain a new score,
which is based on expression level of eight genes. Again, we classify the patients in the
validation set into high and low score groups based on the constructed gene score. In the
high score group, the distant metastasis free survival time in the Tamoxifen group is shorter
than that in the alternative group with a p value of 0.158. The estimated hazard ratio is 2.29
for Tamoxifen versus non-Tamoxifen treatment group. In the low score group, the distant
metastasis free survival time in the Tamoxifen group is longer than that in the alternative
group with an estimated hazard ratio of 0.828. The p value from the logrank test is not
significant (p = 0.697). The estimated survival functions of both treatment groups are
plotted in the middle panels of Figure 8. The separation is slightly worse than that based
the gene score constructed without augmentation. The interaction between constructed gene
score and treatment is also statistically significant at 0.05 level (p = 0.025).

For comparison purpose, we also fit a multivariate Cox regression model with treatment,
the gene expression levels, and all treatment-gene interactions as the covariates. Lasso
penalty is selected via 20-fold cross validation. The resulting gene score is a single gene
based on the estimated treatment-gene interaction term of the Cox model. However, the
interaction score fails to stratify the population according to the treatment effect in the
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validation set. The results are shown in the lower panel of Figure 8. The interaction between
the constructed gene score and treatment is not statistically significant (p = 0.29).

To further objectively examine the performance of the proposal in this data set, we
randomly split the data into training and validation sets and construct the score mea-
suring individualized treatment effect in the training sets with three methods: “new”,
“new/augmented” and “full regression”. Patients in the test set are then stratified into
high and low score groups. We calculate the difference in log hazard ratio for Tamoxifen
versus non-Tamoxifen treatment between high and low score groups. A positive number in-
dicates that women in low score group benefitted more from Tamoxifen treatment than those
in high score group as the model indicates. In Figure 9, we plot the boxplot of the differences
in the log hazard ratio based on 100 random splitting. To speed the computation, all scores
are constructed using only 2500 genes with top empirical variances. The results indicate that
the proposed and the corresponding augmented methods tend to perform better than the
common full regression method and this observation is consistent with our previous findings
based on simulation studies.

As a limitation of this example, the treatment is not randomly assigned to the patients
as in a standard randomized clinical trial. Therefore, the results need to be interpreted with
caution. In addition, the sample size is limited and further verification of the constructed
gene score with independent data sets is needed.

5 Discussion

In this paper we have proposed a simple method to explore the potential interactions between
treatment and a set of high dimensional covariates. The general idea is to use W(Z) ·T/2 as
new covariates in a regression or generalized regression model to predict the outcome variable.
The resulting linear combination γ̂

′W(Z) is then used to stratify the patient population. A
simple efficiency augmentation procedure can be used to improve the performance of the
method.

The proposed method can be used in much broader way. For example, after creating the
modified covariates W(Z) · T/2, other data mining techniques such as PAM and support
vector machines can also be used to link the new covariates with the outcomes [Friedman,
1991, Tibshirani et al., Hastie and Zhu, 2006]. Most dimension reduction methods in the
literature can be readily adapted to handle the potentially high dimensional covariates. For
univariate analysis, we also may perform large scale hypothesis testing on the modified data,
to identify a list of covariates having interaction with the treatment; one could for example
directly use the Significance Analysis of Microarrays (SAM) method [Gilbert et al., 2002] for
this purpose. Extensions in these directions are promising and warrant further research.

Lastly, the proposed method can also be used to analyze data from observational studies.
However, the constructed interaction score may lose the corresponding causal interpreta-
tion. On the other hand, if a reasonable propensity score model is available, then we still
can implement the modified covariate approach on matched or reweighted data such that
the resulted score still retains the appropriate causal interpretation [Rosenbaum and Rubin,
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1983].
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6 Appendix

6.1 Justification of the objective function based on the working

model

Under the linear working model for continuous response, we have

E{l(Y, f(Z)T )|Z, T = 1} =
1

2

[

E{(Y (1))2|Z} − 2m1(Z)f(Z) + f(Z)2
]

and

E{l(Y, f(Z)T )|Z, T = −1} =
1

2

[

E{(Y (−1))2|Z}+ 2m−1(Z)f(Z) + f(Z)2
]

,

where mt(z) = E(Y (t)|Z = z) for t = 1 and -1. Therefore

L(f) =E{l(Y, f(Z)T )}

=EZ

[

1

2
EY {l(Y, f(Z)T )|Z, T = 1}+ 1

2
EY {l(Y, f(Z)T )|Z, T = −1}

]

=EZ

(

[

1

2
{m1(Z)−m−1(Z)} − f(Z)

]2
)

+ constant.
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Therefore, the minimizer of this objective function

f ∗(z) =
1

2
{m1(z)−m−1(z)} =

1

2
∆(z)

for all z ∈ Support of Z.

Under the logistic working model for binary response, we have

E{l(Y, f(Z)T )|Z, T = 1} = m1(Z)f(Z)− log(1 + ef(Z)),

and
E{l(Y, f(Z)T )|Z, T = −1} = −m−1(Z)f(Z)− log(1 + e−f(Z)).

Thus

L(f) =E{l(Y, f(Z)T )}

=EZ

[

1

2
EY {l(Y, f(Z)T )|Z, T = 1}+ 1

2
EY {l(Y, f(Z)T )|Z, T = −1}

]

=
1

2
EZ

[

∆(Z)f(Z)− log(1 + ef(Z))− log(1 + e−f(Z))
]

.

Therefore
∂L(f)
∂f

=
1

2
EZ

[

∆(Z)− 1− ef(Z)

1 + ef(Z)

]

,

which implies that the minimizer of L(f)

f ∗(z) = log
1−∆(z)

1 + ∆(z)

for all z ∈ Support of Z or equivalently

∆(z) =
1− ef

∗(z)

1 + ef∗(z)
.

Alternatively, under the logistic working model with binary response, we may focus on
the objective function

l̃(Y, f(Z)T ) = (1− Y )f(Z)T − Y e−f(Z)T .

Therefore
E{l̃(Y, f(Z)T )|Z, T = 1} = {1−m1(Z)}f(Z)−m1(Z)e

−f(Z),

and
E{l̃(Y, f(Z)T )|Z, T = −1} = −{1−m−1(Z)}f(Z)−m−1(Z)e

f(Z).
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Thus

L(f) =E{l̃(Y, f(Z)T )}

=EZ

[

1

2
EY {l(Y, f(Z)T )|Z, T = 1}+ 1

2
EY {l(Y, f(Z)T )|Z, T = −1}

]

=EZ

[

1

2
{m1(Z)−m−1(Z)}f(Z)−

1

2
m1(Z)e

−f(Z) −m−1(Z)e
f(Z)

]

Therefore

∂L(f)
∂f

=
1

2
EZ

[

{m1(Z)−m−1(Z)} +m1(Z)e
−f(Z) −m−1(Z)e

f(Z)
]

which implies that the minimizer of L(f)

f ∗(z) = log
m1(z)

m−1(z)

for all z ∈ Support of Z.

Under the Cox working model for survival outcome, we have

EY {l(Y, f(Z)T )|Z, T} =EY

(
∫ τ

0

[

Tf(Z)− log{E(eTf(Z)I(X̃ ≥ u))}
]

dN(u)|Z, T
)

=

∫ τ

0

[

f(Z)− log{E(eTf(Z)I(X̃ ≥ u))}
]

E
{

I(X̃ ≥ u)|Z, T
}

λT (u;Z)du

where λt(u;Z) is the hazard function for X̃(t) given Z for t = 1/− 1. Since

L(f) = EZ

[

1

2
EY {l(Y, f(Z)T )|Z, T = 1}+ 1

2
EY {l(Y, f(Z)T )|Z, T = −1}

]

∂L(f)
∂f

=
1

2
E

∫ τ

0

{

I(X̃(1) ≥ u)λ1(u;Z)− I(X̃(−1) ≥ u)λ−1(u;Z)

− ef(Z)I(X̃(1) ≥ u)Λ(u; f) + e−f(Z)I(X̃(−1) ≥ u)Λ(u; f)

}

du,

where

Λ(t; f) =
E[I(X̃ ≥ u){λ1(u;Z) + λ−1(u;Z)}]

E{eTf(Z)I(X̃ ≥ u)}
.

Setting the derivative at zero, the minimizer f ∗(z) satisfies

ef
∗(z)E{Λ∗(X̃(1))|Z = z} − e−f∗(z)E{Λ∗(X̃(−1))|Z = z}

=Prob(C(1) > X(1)|Z = z)− Prob(C(−1) > X(−1)|Z = z)
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for all z ∈ Support of Z, where Λ∗(u) = Λ(u, f ∗). When censoring rates are the same in two
arms for all given z,

f ∗(z) = −1

2
log

[

E{Λ∗(X̃(1))|Z = z}
E{Λ∗(X̃(−1))|Z = z}

]

6.2 Justification of the optimal a0(z) in the efficient augmentation

Let S(y,w∗,γ) be the derivative of the objective function l(y,γ ′w∗) with respect to γ. γ̂ is
the root to an estimating equation

Q(γ) = N−1
N
∑

i=1

S(Yi,W
∗

i ,γ) = 0.

Similarly, the augmented estimator γ̂a can be viewed as the root of the estimating equation

Qa(γ) = N−1
N
∑

i=1

{S(Yi,W
∗

i ,γ)− Ti · a(Zi)} = 0,

Since E{Ti · a(Zi)} = 0 due to randomization, the solution of the augmented estimating
equation always converges to the γ

∗ in probability. It is straightforward to show that

γ̂ − γ
∗ = N−1A−1

0

N
∑

i=1

S(Yi,W
∗

i ,γ
∗) + oP (N

−1)

and

γ̂a − γ
∗ = N−1A−1

0

N
∑

i=1

{S(Yi,W
∗

i ,γ
∗)− Tia(Zi)}+ oP (N

−1)

where A0 is the derivative of E{S(Yi,W
∗

i ,γ)} with respect to γ at γ = γ
∗. Selecting the

optimal a(z) is equivalent to minimizing the variance of {S(Yi,W
∗

i ,γ
∗) − Tia(Zi)}. Noting

that

E
[

{S(Yi,W
∗

i ,γ
∗)− Tia(Zi)}⊗2

]

= E
[

{S(Yi,W
∗

i ,γ
∗)− Tia0(Zi)}⊗2

]

+E[{a(Zi)−a0(Zi)}⊗2],

where a0(z) satisfies the equation

E [{S(Y,W∗,γ∗)− Ta0(Z)}Tη(Z)] = 0

for any function η(·), a0(·) is the optimal augmentation term minimizing the variance of γ̂a.
Since a0(·) is the root of the equation

E

[

{S(Y,W∗,γ∗)− Ta0(Z)}′T
∣

∣

∣

∣

Z

]

= 0,
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a0(z) =
1

2
[E{S(Y,W(z)/2,γ∗)|Z = z, T = 1} − E{S(Y,−W(z)/2,γ∗)|Z = z, T = −1}] .

For continuous response,

S(Y,γ ′W∗) = −1

2
TW(Z)

{

Y − 1

2
TW(Z)′γ

}

and

a0(z) =
1

2
(E[−W(z){Y −W(z)′γ∗/2}/2|T = 1,Z = z]− E[W(z){Y +W(z)′γ∗/2}/2|T = −1,Z = z])

=−W(z)

{

1

4
E(Y |T = 1,Z = z) +

1

4
E(Y |T = −1,Z = z)

}

=− 1

2
W(z)E(Y |Z = z)

For binary response,

S(Y,γ ′W∗) = −1

2
W(Z)T

{

Y − eTW(Z)′γ/2

1 + eTW(Z)′γ/2

}

and

a0(z) =− 1

4
W(z)

[

E

{

Y − eW(z)′γ∗/2

1 + eW(z)′γ∗/2

∣

∣

∣

∣

T = 1,Z = z

}

+ E

{

Y − e−W(z)′γ∗/2

1 + e−W(z)′γ∗/2

∣

∣

∣

∣

T = −1,Z = z

}]

=− 1

4
W(z)

{

E(Y |T = 1,Z = z) + E(Y |T = −1,Z = z)−
(

eW(z)′γ∗/2

1 + eW(z)′γ∗/2
+

e−W(z)′γ∗/2

1 + e−W(z)′γ∗/2

)}

=− 1

2
W(z)

{

E(Y |Z = z)− 1

2

}

For survival response, the estimating equation based on the partial likelihood function is
asymptotically equivalent to the estimating equation N−1

∑N
i=1 S(Yi,W

∗

i ,γ) = 0, where

S(Y,W∗,γ) = −
∫ τ

0

[W∗ −R(u;γ∗)]M(du,W∗,γ∗).

Thus,

a0(z) = −1

2

[

1

2
W(z) {G1(τ ; z) +G2(τ ; z)} −

∫ τ

0

R(u){G1(du; z)−G2(du; z)}
]

,

26



6.3 Lasso algorithm in the efficient augmentation

In general, the augmentation term is in the form of a0(Zi) = W(Zi)
′r̂(Zi), where r̂(Zi) is a

simple scalar. The lasso regularized objective function can be written as

1

N

N
∑

i=1

{l(Yi,γ
′W∗

i )− γ
′W∗

i r̂(Zi)}+ λ|γ|.

In general, this lasso problem can be solved iteratively. For example, when l(·) is the log-
likelihood function of the logistic regression model, then with we may update γ̂ iteratively
by solving the standard OLS-lasso problem

1

N

N
∑

i=1

ŵi(ẑi − γ
′W∗

i )
2 + λ|γ|

where γ̂ is the current estimator for γ,

ẑi = γ̂
′
W∗

i + ŵ−1
i {Yi − p̂i − r̂(Zi)}, ŵi = p̂i(1− p̂i)

and

p̂i =
exp{γ ′W∗

i }
1 + exp{γ ′W∗

i }
.
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Figure 3: Boxplots for the correlation coefficients between the estimated score and true treat-
ment effect with three different methods applied to continuous outcomes. The empty and
filled boxes represent low and high dimensional (p = 50 and p = 1000) cases, respectively.
Left upper panel: moderate main effect and independent covariates; right upper panel: mod-
erate main effect and correlated covariates; left lower panel: big main effect and independent
covariates; right lower panel: big main effect and correlated covariates.
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Figure 4: Boxplots for the correlation coefficients between the estimated score and true treat-
ment effect with three different methods applied to binary outcomes. The empty and filled
boxes represent low and high dimensional (p = 50 and p = 1000) cases, respectively. Left
upper panel: moderate main effect and independent covariates; right upper panel: moder-
ate main effect and correlated covariates; left lower panel: big main effect and independent
covariates; right lower panel: big main effect and correlated covariates.
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Figure 5: Left panel: the boxplots for the group differences in Y in subgroups stratified by
the optimal score; right panel: the boxplots for the group differences in Y in subgroups strat-
ified by posterior probability based on the independently trained nearest shrunken centroid
classifier.
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Figure 6: Boxplots for the correlation coefficients between the estimated score and true treat-
ment effect with three different methods applied to survival outcomes. The empty and filled
boxes represent low and high dimensional (p = 50 and p = 1000) cases, respectively. Left
upper panel: moderate main effect and independent covariates; right upper panel: moder-
ate main effect and correlated covariates; left lower panel: big main effect and independent
covariates; right lower panel: big main effect and correlated covariates.

31



0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

days

P
ro

gr
es

si
on

 F
re

e 
S

ur
vi

va
l P

ro
ba

bi
lit

y

Figure 7: Survival functions of the Tamoxifen and alternative treatment groups in 393 breast
cancer patients. red line, Tamoxifen treatment group; black line, alternative treatment group
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Figure 8: Survival functions of the Tamoxifen and alternative treatment groups stratified
by the interaction score in the test sets: red line, Tamoxifen treatment group; black line,
alternative treatment group. Upper panels: the score based on the “new” method; middle
panels: the score based on “new/augmentated” method; lower panel: the score is based on
“full regression” method.
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Figure 9: Boxplots for differences in log(hazard ratio) between high and low risk groups based
on 100 random splitting on GSE6532. The big positive number represents high quality of
the constructed score in stratifying patients according to individualized treatment effect.
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