
A Simple Method for Generating and Sharing
Pseudo-Random Functions, with Applications to

Clipper-like Key Escrow Systems

Silvio Micali’ and Ray Sidney2 *

’ MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139.

Glenwood, MD 21738. e-mail: sidneyatis.com.
Trusted Information Systems, Inc., 3060 Washington Rd. (Rt. 97),

Abstract. We present a very simple method for generating a shared
pseudo-random function from a poly-random collection of functions. We
discuss the applications of our construction to key escrow.

1 Introduction

Much work has been done towards the general goal of enabling parties to share
information and cryptographic capabilities. In particular) see Blakley ’s [4] and
Shamir’s [30] notion of secret sharing; Chor, Goldwasser, Micali, and Awer-
buch’s [8] notion of verifiable secret sharing; Desmedt and Frankel’s [12] notion
of shared authenticators and signatures; and De Santis, Desmedt, Frankel, and
Yung’s [9] notion of a shareable function. (A more extensive treatment of sharing
cryptographic capabilities can be found in Desmedt’s survey [13].)

In this paper, we describe a very simple method for generating and sharing
a pseudo-random function f(.) among la players. That is, we generate a function
f(.) such that:

- For all input t, any sufficiently large collection of players (at least u players)
can compute and reveal f(x).

- For all inputs x such that f(x) has never been revealed, no sufficiently small
collection of players (t or fewer players) is feasibly able to compute f(x).

If the number of players is not large, our method is particularly attractive.
Indeed, after a preprocessing step has been performed, each evaluation of f at
an input t is obtained by essentially the following procedure:

1.

2.
3.

Each player performs locally (i-e., noninteractively) some pseudo-random
function evaluations.
These local results are revealed (in a single round of communication).
The party evaluating the function takes majority and exclusive-0% of the
revealed results.

Our method is readily applicable to key-escrow systems.

* This research was performed while this author was at MIT, supported by a Fannie
and John Hertz Foundation Fellowship for Graduate Study.

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 ’95, LNCS 963, pp. 185-196, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

186

2 Background: Poly-Random Functions

We discuss briefly Goldreich, Goldwaaser, and Micah’s notion of a poly-random
collection offunctions [MI. For any j E IN, set lj = (0, l}j. Informally, a poly-
random collection offunctions is a collection F = {Fj(j E IN}, where Fj =
{f=lz E Ij} is a collection of 2j functions, each mapping Ij to itself, satisfying
the following properties:

- There is a polynomial-time algorithm A which, given inputs z and y satis-
fying 14 = Id, computes f&).

- If we choose x E I, at random, then the function fz : I, -+ Ij behaves (as
far as a tester limited to computational time which is polynomial in j can
tell) exactly like a “random” function mapping I, to itself.

The precise definition is in [18], as is an efficient construction of a poly-random
collection of functions from any cryptographically strong bit generator (CSB
generator). Since Levin [27] and Impagliazzo, Levin, and Luby [22] showed how
to construct CSB generators from one-way functions, we can m u m e that we have
a poly-random collection of functions at our disposal (to have secure encryption,
we require a one-way function).

In practice, something simpler and even easier to compute is often used as a
“random function” in implementing protocols. If we want a collection of random
functions mapping I, -+ l a , we take a secure hash function H with range It,, and
set fz(y) = H (x o y), where o denotes concatenation. If H is indeed a good hash
function, and z is chosen at random, then we would expect f’(y) to behave like
a random function.

3 Generating a Shared Pseudo-Random Function

Parts of our algorithms bear a resemblance to protocols developed in [32], [ti], [l],
and [16], which actually aimed at a somewhat different goal: namely, achieving
“common coin flipping” protocols in Byzantine agreement scenarios.

3.1 Resilient Collections

Our method is based on a combinatorial object which we call a resilient col-
lection. A resilient collection is what one gets by taking a classic combinatorial
covering design and complementing each set in it.
DEFINITION. Let 0 5 t < u 5 n. An (n,d,u)-resilienl collection of sets is a
collection s = {SI, . . . , s d } of subsets of (1,. . . , n } such that:

- J S i l = n - u + I f o r i = 1, ..., n.
- If S C (1,. . . , n} and 1st = t , then there is an Si such that Si n S = 8 .

In section 3.3, we discuss how to produce resilient collections.

187

3.2
Collections

Constructing Shared Pseudo-Random Functions from Resilient

We now outline our method. We shall fill in the details of our protocols in
section 3.4.

Let F be a poly-random collection of functions, as discussed in section 2. Let
S = {Sl,. . .,&} be an (n,t,u)-resilient collection, and let j E IN. We wish to
produce a pseudo-random function mapping I, to l j , shared among n players.
We make the natural identification between players and elements of { 1, . . . , n}.

Seed Generation and Distribution. Each subset Sj E S of players jointly
runs a protocol GEN-SEED(~) which chooses at random a j-bit secret, Sj l and
makes it known to every player in S, (but to no other players). We call sj a
“random function seed,” or just “seed” for short.

Function Evaluation. The shared random function is just

That is, f (.) is the exclusive-OR of a group of pseudo-random functions (one
function for each random function seed). The values fa1 (y), fa2(y), . . . , faa(y)
are called the pieces of f(y).

Note that, as desired, the definition of a resilient collection ensures that any
u players have enough information to compute all values off(.), but no t players
have any information about the values of f(.). Even if the information that t
players have is combined with knowledge of previously evaluated values of f(.),
the properties of poly-random functions guarantee that the players have no useful
information about new values of f (.) .

What’s required to complete our description are a method to select the col-
lection S, and more precisely specified protocols.

3.3 Existence and Construction of Resilient Collections

We now discuss choosing the collection S used in our construction. Before we
give any constructions for S, we first recall a lower bound on d = IS1 due to
Schonheim. Define (a)b to be the falling factorial:

a!
(a - b)! (a) b = (a) (a - l) . . - (a - b + l) = -,

Theorem 1. If d is the number of subsets in an (n , t , u)-resilient collection, then

188

Proof. Let s = {Sl, . . .,&} be an (n,t,u)-resilient collection. Consider a par-
ticular subset s,. There are

(" ;'"I) = (n - (n - u + l)) = (a;')

subsets of { 1,. . . , n} of size t which are disjoint from S,. Since there are (:)
subsets of { 1 , . . . , n } of size t , each of which must be disjoint from some Si, the
number d of subsets in S must be at least

In the other direction, we now wish to derive an upper bound on how large
d must be. Bounds of this type exist in the combinatorics literature (see, for
instance, [31], for some asymptotic results), but for our purposes, we want the
following specific result:

Theorem 2. Set
$= -

Then there exists an (n , t , u)-resilient collection S of d sets, s = {&, . . . ,&}.

Proof. We perform a probabilistic construction. Choose the d subsets S1, . . . , s d

independently and uniformly at random to be subsets of size (n - u + 1) of
(1 , . . . , n}. Now, let S be any fixed t-element subset of (1,. . . , n}. Consider a
particular subset, Si.

Pr(S and Si are disjoint) = 4. (r T t)
(n - u + J

Since there are d subsets Si, all distributed independently,

Pr(S is not disjoint from any Si) =

Because there are (1) possibilities for S ,

d

Pr(There is an S which intersects every Si) 5

Taking natural logs of both sides of this inequality,

InPr(There is an S which intersects every Si)

189

= 0,

where the strict inequality arises from the fact that e” 2 1 + 2 , with equality if
and only if 2 = 0.

Hence, with nonzero probability, no subset of { 1, . . . , n } of size t intersects
every Si. So there must exist some particular S such that this is true; this S is
a (n, t , u)-resilient collection.

It is worth mentioning that since (1) < 2n, the lower bound and upper bound
which we have just shown differ from each other by at most a factor of (n ln2),
and so our randomized proof of an upper bound is actually not too far from
optimal. Now, it would be nice if, given legal values for n, t , and u, we could
easily come up with an (n,t,u)-resilient collection of as few sets as possible.
Unfortunately, we don’t know how to do this, and it seems to be a difficult
problem to solve in general. We give here two specific construction methods for
producing families of resilient collections; in each construction, values for n and
u can be specified, and an (n, f(n, u), u)-resilient collection is produced.

Method 1. Fix n and 1 5 u 5 n. Set

Here, each subset contains the next (n - u + 1) numbers, and we take enough
subsets that every number between 1 and n is in at least one subset. Note that
unless (n - u + 1) divides n, the last subset in this list will “wrap around” and
include numbers which are already in S1. It’s not difficult to see that this method
yields a collection of d = [&I subsets which is either (n , r-1 - 2, u)-
resilient (if (n-u+l) doesn’t divide n) or (n, *-1,~)-resilient (if (n-u+l)
does divide n).

Method 2. Again, fix n and 1 5 u 5 n. Set

s1 = (1 , . . . , (u - l)}“, sz = {(u - 1) + 1,. . ., 2(u - 1)}C, . . . ,

where A‘ denotes the complement (with respect to the set { 1,. . . , n}) of A. In
analogy with method 1, we take enough subsets that each number between 1 and
n is not contained in at least one subset, and we “wrap around” if (u - 1) doesn’t
divide n. This construction produces an (n , 1, u)-resilient collection consisting of

subsets.

190

3.4 Protocols

We now give more specific protocols for generating and evaluating shared pseude
random functions. We assume each player is capable of digitally signing its mes-
sages, and of communicating privately with every other player. We give protocols
for dealing with a single specific random function seed, s;; these protocols should
be executed concurrently for each seed. We assume that all players behave prop-
erly during the seed generation and distribution phase3.

Seed Generation and Distribution. We implement protocol GEN-SEED(~)
(to generate a random seed si and distribute it to the set S; of players) as
follows. Fix some particular player T E S; (for example, T could be the “first”
player in S;, in some ordering). T chooses si at random, and sends it to every
player in S;. Each player in Si then takes the value si that it receives, signs the
string Si o i, and sends this signed message to every player in Si.

Function Evaluation. To enable an entity E (E may or may not be one of
the players who shared the pseuderandom function) to evaluate f(.) at a point
g, each player in Si simply sends the value fSi(y) to E.

The definition of a resilient collection guarantees that E will receive each
piece of f(y). Nonetheless, this may not suffice to enable E to compute f(y). If
players can send spurious values for pieces of f(y), then E might receive multiple
candidates for a piece of f(y). In general, in fact, E could receive up to (n -u+ 1)
distinct candidates for each piece, which would lead to up to (n - ~ + l) ~ potential
values for f(y). We give two solutions to this problem:

1. If t < 2u - n, then we can modify our construction by basing our protocols
on an (n, t , 2u - n)-resilient collection, instead of on an (n, t , u)-resilient col-
lection. If u players cooperate to reveal fdr(g) to E, then this ensures that
more than half of the players in Si give E the correct value of f8,(y). So for
each piece of f(y), E can just take the most popular value sent to it. This
enables E to compute f(y).

2. If we do not wish to use the above solution (either because t 2 2u - n,
or because we are unwilling to allow the increase in the number of subsets
required to make an (n, t , 2u - n)-resilient collection), then we can have each
player give E a zero-knowledge proofof the correctness of each alleged piece
of f(y) that it sends. This proof enables E to ascertain what the correct
value for each key-piece is, and therefore, to reconstruct chip 2’s secret key.

The theoretical approach of the second solution requires some further elabora-
tion. If a player T E S, sends E the value c, how does he or she then give a
zero-knowledge proof that f a , (z) o i = c? The answer lies in the fact that T
has copies of 8; o i signed by each player in Si. Essentially, T needs to claim

The second method in Appendix B can be used if this assumption is unwarranted.

191

possession of values s i , h, h, . . ., Vn-"+1 such that fJ,(z) o i = c and V, is
a signature of si o a' relative to the public signing key of the player a in Si, for
all 1 5 a 5 n - u + 1. This claim is an NP statement, and hence, it is pot+
sible to perform a zero-knowledge proof of it, using the methods of Goldreich,
Micali, and Wigderson [21], Brassard, Chaum, and CrCpeau [A, or Feige, Fiat,
and Shamir [14]. Any honest player can convincingly execute the zero-knowledge
proof protocol, whereas a player who is trying to convince E of the correctness
of some false value will only be able to do so with negligible probability (since
it will not possess the digital signatures needed to perform the proof protocol
correctly, and will be unable to forge them).

We observe that the complexity of the zero-knowledge based protocol can be
reduced to one round by the adoption of non-interactive zero-knowledge proofs
(See [lo], [15], and [5] for more information), or by the idea of hashing to obtain
challenges to the prover (see, for example, [17] or [2]).

Notice also that the zero-knowledge proofs need be used only if absolutely
necessary. If all of the alleged values of fbr(y) that E receives agree with one
another, then E knows that it has the correct value for that piece of f(y). It
is only if E receives several distinct values for f3,(y) that there is any need to
engage in zero-knowledge proofs.

If the only way a player can fail to cooperate is to refuse to yield information
(as opposed to being able to maliciously present false data), then we can, of
course, forgo the zero-knowledge proofs. In addition, in this case, we do not
need to implement the second round of communication in the seed generation
and distribution phase, since there is no need for players to possess digitally
signed seeds if any information they send is known a priori to be correct.

4 Shared Pseudo-Random Functions and Key Escrow

4.1 Background: Key Escrow

The past two decades of progress in hardware and software have made (pre-
sumably) secure cryptography feasible for a large segment of the population.
Recently, this has generated much concern that governments and corporations
will soon be unable to make use of certain tools that have traditionally been
used to apprehend wrongdoers. In particular, it is feared that court-authorized
wiretapping will become essentially useless as a means of law enforcement [ll].

The obvious way to ensure that this doesn't happen is for governments or
corporations to arrange to possess every user's secret key; however, even legit-
imate users then enjoy no privacy. A better alternative that has recently been
proposed is key escrow (see [28], [29], [26], and [25] for examples). In a key escrow
scheme, a user's secret key is somehow split into shares held by trustees. The
intent is that these trustees may, under appropriate circumstances, enable the
reconstruction of a given secret key; however, sufficiently few trustees, behaving
maliciously, do not possess enough information to reconstruct any key.

192

The Clipper Chip. This scheme works in a “top-down” fashion. For every
user, z, two trustees each generate, randomly and independently, a secret string.
These two strings are then sent to z’s chip, which exclusive-Oh them together to
compute x’s secret key, c. c is stored in tamper-proof memory, so that no one (not
even z) has any information about what c is, except for the trustees. Whenever
2 wishes to send a message m to user y, using a common key Kzy (which z and
y have previously agreed upon), x’s chip sends not only the encryption of m
with key Kzl, but also the encryption of KZy with key c (the algorithm for this
latter encryption is classified, and is referred to as Skipjack). When presented
with authorization for a wiretap of z’s communications, the trustees each reveal
their share of c to the FBI, who is then able to decrypt first KSy, and then m.

4.2

we

1.

2.

3.

Bad Behavior of Trustees

distinguish three types of bad trustees in a key escrow scheme:

Gossipy trustees, who try to procure information that they should not have
about users’ keys, or who spread users’ key information about.
Withholding trustees, who do not cooperate with appropriate authorities to
recover a user’s secret key.
Obstructive trustees, who are so malicious that they may not even behave
properly during the set-up phase of a key escrow scheme (when users generate
or otherwise obtain their keys). We shall consider obstructive trustees to be
both gossipy and withholding.

For 0 5 t < u 5 n, we define an (n,t,u)-escrow scheme to be a method of
splitting a secret key among n trustees such that:

- If at most t trustees are gossipy, then reconstruction of a secret key is not

- If at most (n - u) trustees are withholding, then reconstruction of a secret
feasible without a court order.

key can easily be accomplished with a court order.

With this terminology, the Escrowed Encryption Standard is a (2,l ,2)-escrow
scheme.

4.3 Our Escrow Scheme

Using our shared pseudo-random functions, we can easily create a Clipper-like
(n, t , u)-escrow scheme, if no trustees behave obstr~ct ively~:

1. Each chip has a unique j-bit ID number.
2. The secret key of chip # z is the j-bit string f(z), where f(.) is a pseudo-

random function shared among the n trustees.

‘ We defer consideration of obstructive trustees until Appendix B.

193

3. To initialize a chip with its secret key, each trustee gives the chip all the
pieces of f (z) that it has (since no trustees are obstructive, no signatures or
zero-knowledge proofs are necessary here),

4. To permit wiretapping of a chip’s communications, the trustees perform a
pseudo-random function evaluation protocol (with the FBI playing the part
of the evaluator E). Two such protocols were presented earlier. However, if
(n - u + l)d is small (recall that this is an upper bound on the number of
candidate values of the pseudo-random function), then an alternative proto-
col exists: have eacli trustee send all its key pieces to the FBI, and then let
the FBI simply “cycle through” all possible secret keys, and see which one
decrypts the user’s messages.

5 Conclusion

We have presented a simple method of generating and sharing a pseudo-random
function among a group of players. Our procedure can be used with any type of
collection of pseudo-random functions: poly-random collections, hash functions,
DES, etc. After an initial set-up phase, in which a shared function is generated,
evaluating the function requires only one round of communication. Of course,
communications grow in length as we increase the number of random function
seeds; in some situations, exponentially many (in the number of trustees) seeds
are needed.

Our shared pseudo-random functions can be readily applied to produce key
escrow schemes. Since escrow schemes generally have a rather small number of
trustees, the exponential number of seeds mentioned above is not a real problem
for this application.

Like the Clipper Chip proposal, our escrow scheme also combines well with
the key distribution scenarios suggested by Leighton and Micali in [26] t o achieve
a conventional cryptosystem which achieves many of the gains of public-key
cryptography without requiring the complexity-theoretic assumptions needed
for public-key cryptography.

References

1. B. Awerbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement
Bracha’s O(lg n) Byzantine agreement algorithm. Submitted to 1985 Principles of
Distributed Computing Conference.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security. ACM, 1993.

3. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In Advances in Cryptology- CRYPT0 ’88, pages 27-35. Springer-Verlag, 1988.

4. G. R. Blakley. Safeguarding cryptographic keys. ,In Proceedings of the AFIPS 1979
National Computer Conference, pages 313-317, June 1979. New York, NY.

5 . M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-
knowledge. Siam Journal of Computing, 20(6):1084-1118, December 1991.

194

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

G. Bracha. An O(lg n) expected rounds randomized Byzantine generals protocol.
In Proceedings of the 17th Annual A CM Symposium on Theory of Computing, pages
316-326. ACM, 1985.
G. Brassard, D. Chaum, and C, CrBpeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer a n d System Sciences, 37(2):156-189, 1988.
B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In Proceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Science, pages 383-395. IEEE,
1985.
A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proceedings of the 26th Annual ACM Symposium on Theory of Com-
puting, pages 522-533. ACM, 1994.
A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof-
systems. In Advances in Cryptology- CRYPTO '87, pages 52-72. Springer-Verlag,
1987.
D. Denning. To tap or not to tap. Communications of the ACM, 36(3):25-44,
March 1993.
Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures.
In Advances in Cryptology- CRYPTO '91, pages 457-469. Springer-Verlag, 1991.
Y. G. Desmedt. Threshold cryptography. European Tmnsactions on Telecommu-
nications a n d Related Technologiea, 5(4):449-457, 1994.
U. Feige, A. Fiat, and A. Shamir. Zereknowledge proofs of identity. Journal of
Cryptology, 1(2):77-94, 1988.
U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs based on a single random string. In Proceedings of the $1 s t Annual IEEE
Symposium on Foundations of Computer Science, pages 308-317. IEEE, 1990.
P. Feldman and S. Micali. Byzantine agreement in constant expected time (and
trustine no one). In Proceedings of the 26th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 267-276. IEEE, 1985.
A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology- CRYPTO '86, pages 186-
194. Springer-Verlag, 1986.
0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33(4):792-807, October 1986.
0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In Proceedings of
the 27th Annual IEEE Symposium on Foundations of Computer Science, pages

0. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, pages 218-229. ACM,
1987.
0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zereknowledge proof systems. Journal of the
Association for Computing Machinery, 38(1):691-729, July 1991.
R. Impagliazzo, L. Levin, and M. Luby. Pseud*random generation from oneway
functions. In Proceedings of the 2136 Annual ACM Symposium on Theory of Com-
puting, pages 12-24. ACM, 1989.

174-187. IEEE, 1986.

23. J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
AnnuaZ ACM Symposium on Theory of Computing, pages 20-31. ACM, 1988.

195

24. J. Kilian. Uses of Randomness in Algorithms and Protocols. ACM Distinguished
Dissertations. MIT Press, 1990.

25. J. Kilian and T. Leighton. Failsafe key escrow. Technical Report TR-636, MIT,
August 1994.

26. T. Leighton and S. Micali. Secret-key agreement without public-key cryptography.
In Advances in Cryptology- CRYPT0 ’93, pages 456-479. Springer-Verlag, 1993.

27. L. Levin. One-way functions and pseudorandom generators. In Proceedings of the
17th Annual ACM Symposium on Theory of Computing, pages 363-365. ACM,
1985.

28. S. Micali. Fair cryptosystems. Technical Report TR-579.b, MIT, November 1993.
29. National Institute for Standards and Technology. Escrowed Encryption Standard

(EES), 1994. Federal Information Processing Standards Publication (FIPS PUB)
185.

30. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
November 1979.

31. J. Spencer. Asymptotically good coverings. Pacific Journal of Mathematics,

32. A. Yao. On the succession problem for Byzantine generals. Manuscript, Stanford
University.

33. A. Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, pages 162-167. IEEE,
1986.

118(2):575-586, 1985.

Appendix A: Oblivious Trustees

In [28], MiCali brings up an idea which he calls oblivious trustee- namely, that
trustees who are cooperating with the FBI to reveal a user’s secret key should
not know whose secret key they are revealing. This prevents them from giving
advance warning to the party whose line will be tapped. By using an oblivious
circuit evaluation protocol5, we can make our scheme have oblivious trustees.
Note that oblivious circuit evaluation is a somewhat complicated process, and
so this feature may be more theoretical than practical.

We assume that there is some court which is capable of signing authorizations
for wiretaps. That is, if chip z is to be tapped, then the court signs z and gives
this signature to the FBI. It is enough for us to consider how the FBI gets a
hold of a single value fa,(%) from a trustee T E Si.

Define

fs,(z) If SIGS consists of legal signatures of sj
by all trustees in Si and AUTH is a legal
signature of z by the court.

“ERROR” Otherwise.

g (s i , SIGS, z, AUTH) =

~

Oblivious circuit evaluation is a way for two parties, A and B, who hold private
inputs I and I, respectively, to interact to compute a value f (2, y). After they have
finished interacting, B has learned f(z,y), but nothing else about 2, and A has
learned nothing about y. See [33], [20], [23], and [24] for more information about
oblivious circuit evaluation, including protocols for accomplishing it.

196

Then we perform an oblivious circuit evaluation in which the FBI computes g,
where T supplies inputs s, and SIGS, and the FBI supplies inputs z and AUTH.
This gives the FBI precisely the information it deserves and needs to know.

Observe that to make our scheme have oblivious trustees, we needed to use
the fact that users’ secret keys are chosen using poly-random functions. If secret
keys were not chosen in this fashion, there would be no underlying algebraic
connection between them- that is, if users were given keys completely indepen-
dently of each other, then there would be no small circuit which could compute
chip 2’s secret key from the value z- and so trustees could not be made oblivious
like this.

Appendix B: Obstructive Trustees

We now sketch methods for dealing with obstructive trustees. There are two
possibilities to consider:

1. We merely want to be aware of the presence of obstructive trustees, so that
we can abort setting up our cryptosystem (and possibly start over again,
with different trustees). In this case, the protocols we presented work, as
long as we insist that at each stage, each trustee and each chip checks the
data i t has and makes certain that it is consistent. For example, in the chip
initialization phase, each chip should ensure that for each 1 5 i 5 d, it
received a common value s, from every trustee in Sj. If it didn’t, then the
chip should complain that there is a malicious trustee present.

2. We need to ensure that even if some trustees are obstructive, we can nev-
ertheless go about setting up our cryptosystem. This is more complicated.
In this case, we do something similar t o what was done in the second so-
lution from section 3.4. That is, we require that t < 2u - n, and base our
key escrow scheme on an (n, t , 2u - n)-resilient collection. Since obstructive
trustees are withholding (by definition), this means that in each Si, the ob-
structive trustees are in the minority. Thus, the trustees in each Si can use
a general secure multi-party computation protocol (see [19], for example)
t o produce a common seed in the generate and distribute seeds phase. In
addition, we modify the chip initialization phase so that for each seed i, the
chip uses whichever alleged value has the most trustees claiming that it’s
correct; similarly, in the wiretapping phase, the FBI also t,akes the majority
value for each individual key-piece. No digital signatures or zero-knowledge
proofs are required.

	A Simple Method for Generating and Sharing Pseudo-Random Functions, with Applications to Clipper-like Key Escrow Systems
	Introduction
	Background: Poly-Random Functions
	Generating a Shared Pseudo-Random Function
	Resilient Collections
	Constructing Shared Pseudo-Random Functions from Resilient Collections
	Existence and Construction of Resilient Collections
	Protocols

	Shared Pseudo-Random Functions and Key Escrow
	Background: Key Escrow
	Bad Behavior of Trustees
	Our Escrow Scheme

	Conclusion
	References
	Appendix A: Oblivious Trustees
	Appendix B: Obstructive Trustees

