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Abstract. We present a very simple method for generating a shared 
pseudo-random function from a poly-random collection of functions. We 
discuss the applications of our construction to key escrow. 

1 Introduction 

Much work has been done towards the general goal of enabling parties to share 
information and cryptographic capabilities. In particular) see Blakley ’s [4] and 
Shamir’s [30] notion of secret sharing; Chor, Goldwasser, Micali, and Awer- 
buch’s [8] notion of verifiable secret sharing; Desmedt and Frankel’s [12] notion 
of shared authenticators and signatures; and De Santis, Desmedt, Frankel, and 
Yung’s [9] notion of a shareable function. (A more extensive treatment of sharing 
cryptographic capabilities can be found in Desmedt’s survey [13].) 

In this paper, we describe a very simple method for generating and sharing 
a pseudo-random function f(.) among la players. That is, we generate a function 
f( .)  such that: 

- For all input t, any sufficiently large collection of players (at least u players) 
can compute and reveal f(x). 

- For all inputs x such that f(x) has never been revealed, no sufficiently small 
collection of players (t  or fewer players) is feasibly able to  compute f(x). 

If the number of players is not large, our method is particularly attractive. 
Indeed, after a preprocessing step has been performed, each evaluation of f at 
an input t is obtained by essentially the following procedure: 

1. 

2. 
3. 

Each player performs locally (i-e., noninteractively) some pseudo-random 
function evaluations. 
These local results are revealed (in a single round of communication). 
The party evaluating the function takes majority and exclusive-0% of the 
revealed results. 

Our method is readily applicable to  key-escrow systems. 
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2 Background: Poly-Random Functions 

We discuss briefly Goldreich, Goldwaaser, and Micah’s notion of a poly-random 
collection offunctions [MI. For any j E IN, set lj = (0, l}j. Informally, a poly- 
random collection offunctions is a collection F = {Fj(j E IN}, where Fj = 
{f=lz E Ij} is a collection of 2j functions, each mapping Ij to itself, satisfying 
the following properties: 

- There is a polynomial-time algorithm A which, given inputs z and y satis- 
fying 14 = Id, computes f&). 

- If we choose x E I, at random, then the function fz : I, -+ Ij behaves (as 
far as a tester limited to computational time which is polynomial in j can 
tell) exactly like a “random” function mapping I, to itself. 

The precise definition is in [18], as is an efficient construction of a poly-random 
collection of functions from any cryptographically strong bit generator (CSB 
generator). Since Levin [27] and Impagliazzo, Levin, and Luby [22] showed how 
to construct CSB generators from one-way functions, we can m u m e  that we have 
a poly-random collection of functions at our disposal (to have secure encryption, 
we require a one-way function). 

In practice, something simpler and even easier to compute is often used as a 
“random function” in implementing protocols. If we want a collection of random 
functions mapping I, -+ l a ,  we take a secure hash function H with range It,, and 
set fz(y) = H ( x  o y), where o denotes concatenation. If H is indeed a good hash 
function, and z is chosen at random, then we would expect f’(y) to behave like 
a random function. 

3 Generating a Shared Pseudo-Random Function 

Parts of our algorithms bear a resemblance to protocols developed in [32], [ti], [l], 
and [16], which actually aimed at a somewhat different goal: namely, achieving 
“common coin flipping” protocols in Byzantine agreement scenarios. 

3.1 Resilient Collections 

Our method is based on a combinatorial object which we call a resilient col- 
lection. A resilient collection is what one gets by taking a classic combinatorial 
covering design and complementing each set in it. 
DEFINITION. Let 0 5 t < u 5 n. An (n,d,u)-resilienl collection of sets is a 
collection s = {SI, . . . , s d }  of subsets of (1,. . . , n }  such that: 

- J S i l = n - u + I f o r i =  1, ..., n. 
- If S C (1,. . . , n} and 1st = t ,  then there is an Si such that Si n S = 8 .  

In section 3.3, we discuss how to produce resilient collections. 
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3.2 
Collections 

Constructing Shared Pseudo-Random Functions from Resilient 

We now outline our method. We shall fill in the details of our protocols in 
section 3.4. 

Let F be a poly-random collection of functions, as discussed in section 2. Let 
S = {Sl,. . .,&} be an (n,t,u)-resilient collection, and let j E IN. We wish to 
produce a pseudo-random function mapping I, to l j  , shared among n players. 
We make the natural identification between players and elements of { 1, . . . , n}. 

Seed Generation and Distribution. Each subset Sj E S of players jointly 
runs a protocol GEN-SEED(~) which chooses at random a j-bit secret, Sj l  and 
makes it known to every player in S, (but to no other players). We call sj a 
“random function seed,” or just “seed” for short. 

Function Evaluation. The shared random function is just 

That is, f ( . )  is the exclusive-OR of a group of pseudo-random functions (one 
function for each random function seed). The values fa1 (y), fa2(y), . . . , faa(y) 
are called the pieces of f(y). 

Note that, as desired, the definition of a resilient collection ensures that any 
u players have enough information to compute all values off(.), but no t players 
have any information about the values of f(.). Even if the information that t 
players have is combined with knowledge of previously evaluated values of f(.), 
the properties of poly-random functions guarantee that the players have no useful 
information about new values of f ( . ) .  

What’s required to complete our description are a method to select the col- 
lection S, and more precisely specified protocols. 

3.3 Existence and Construction of Resilient Collections 

We now discuss choosing the collection S used in our construction. Before we 
give any constructions for S, we first recall a lower bound on d = IS1 due to 
Schonheim. Define (a)b to be the falling factorial: 

a! 
(a - b)! ( a ) b = ( a ) ( a - l ) . . - ( a - b + l ) =  -, 

Theorem 1. If d is the number of subsets in an ( n , t ,  u)-resilient collection, then 
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Proof. Let s = {Sl, . . .,&} be an (n,t,u)-resilient collection. Consider a par- 
ticular subset s,. There are 

(" ;'"I) = ( n - ( n - u + l ) )  = (a;') 

subsets of { 1,. . . , n} of size t which are disjoint from S,. Since there are (:) 
subsets of { 1 , .  . . , n }  of size t ,  each of which must be disjoint from some Si, the 
number d of subsets in S must be at  least 

In the other direction, we now wish to derive an upper bound on how large 
d must be. Bounds of this type exist in the combinatorics literature (see, for 
instance, [31], for some asymptotic results), but for our purposes, we want the 
following specific result: 

Theorem 2. Set 
$= - 

Then there exists an  (n , t ,  u)-resilient collection S of d sets, s = {&, . . . ,&}. 

Proof. We perform a probabilistic construction. Choose the d subsets S1, . . . , s d  

independently and uniformly at random to be subsets of size ( n  - u + 1) of 
( 1 , .  . . , n}. Now, let S be any fixed t-element subset of (1,. . . , n}. Consider a 
particular subset, Si. 

Pr(S and Si are disjoint) = 4. ( r T t  ) 
( n - u + J  

Since there are d subsets Si, all distributed independently, 

Pr(S is not disjoint from any Si) = 

Because there are (1) possibilities for S ,  

d 

Pr(There is an S which intersects every Si) 5 

Taking natural logs of both sides of this inequality, 

InPr(There is an S which intersects every Si) 
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= 0, 

where the strict inequality arises from the fact that e” 2 1 + 2 ,  with equality if 
and only if 2 = 0. 

Hence, with nonzero probability, no subset of { 1, .  . . , n }  of size t intersects 
every Si. So there must exist some particular S such that this is true; this S is 
a (n, t ,  u)-resilient collection. 

It is worth mentioning that since (1) < 2n, the lower bound and upper bound 
which we have just shown differ from each other by at most a factor of ( n  ln2), 
and so our randomized proof of an upper bound is actually not too far from 
optimal. Now, it would be nice if, given legal values for n, t ,  and u, we could 
easily come up with an (n,t,u)-resilient collection of as few sets as possible. 
Unfortunately, we don’t know how to do this, and it seems to be a difficult 
problem to solve in general. We give here two specific construction methods for 
producing families of resilient collections; in each construction, values for n and 
u can be specified, and an (n, f(n, u), u)-resilient collection is produced. 

Method 1. Fix n and 1 5 u 5 n. Set 

Here, each subset contains the next (n - u + 1) numbers, and we take enough 
subsets that every number between 1 and n is in at least one subset. Note that 
unless (n - u + 1) divides n, the last subset in this list will “wrap around” and 
include numbers which are already in S1. It’s not difficult to see that this method 
yields a collection of d = [&I subsets which is either (n ,  r-1 - 2, u)- 
resilient (if (n-u+l )  doesn’t divide n) or (n, *-1,~)-resilient (if (n-u+l)  
does divide n). 

Method 2. Again, fix n and 1 5 u 5 n. Set 

s1 = ( 1 , .  . . , (u - l)}“, sz = {(u - 1) + 1,. . ., 2(u - 1)}C, . . . , 

where A‘ denotes the complement (with respect to the set { 1,. . . , n}) of A.  In 
analogy with method 1, we take enough subsets that each number between 1 and 
n is not contained in at least one subset, and we “wrap around” if (u - 1) doesn’t 
divide n. This construction produces an (n ,  1, u)-resilient collection consisting of 

subsets. 
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3.4 Protocols 

We now give more specific protocols for generating and evaluating shared pseude 
random functions. We assume each player is capable of digitally signing its mes- 
sages, and of communicating privately with every other player. We give protocols 
for dealing with a single specific random function seed, s;; these protocols should 
be executed concurrently for each seed. We assume that all players behave prop- 
erly during the seed generation and distribution phase3. 

Seed Generation and Distribution. We implement protocol GEN-SEED(~) 
(to generate a random seed si and distribute it to the set S; of players) as 
follows. Fix some particular player T E S; (for example, T could be the “first” 
player in S;, in some ordering). T chooses si at random, and sends it to every 
player in S;. Each player in Si then takes the value si that it receives, signs the 
string Si o i, and sends this signed message to every player in Si. 

Function Evaluation. To enable an entity E (E may or may not be one of 
the players who shared the pseuderandom function) to evaluate f(.) at a point 
g, each player in Si simply sends the value fSi(y) to E. 

The definition of a resilient collection guarantees that E will receive each 
piece of f(y). Nonetheless, this may not suffice to enable E to compute f(y). If 
players can send spurious values for pieces of f(y), then E might receive multiple 
candidates for a piece of f(y). In general, in fact, E could receive up to (n -u+ 1) 
distinct candidates for each piece, which would lead to up to ( n - ~ + l ) ~  potential 
values for f(y). We give two solutions to this problem: 

1. If t < 2u - n, then we can modify our construction by basing our protocols 
on an (n, t ,  2u - n)-resilient collection, instead of on an (n, t ,  u)-resilient col- 
lection. If u players cooperate to reveal fdr(g) to E, then this ensures that 
more than half of the players in Si give E the correct value of f8,(y). So for 
each piece of f(y), E can just take the most popular value sent to it. This 
enables E to compute f(y). 

2. If we do not wish to use the above solution (either because t 2 2u - n, 
or because we are unwilling to allow the increase in the number of subsets 
required to make an (n, t ,  2u - n)-resilient collection), then we can have each 
player give E a zero-knowledge proofof the correctness of each alleged piece 
of f(y) that it sends. This proof enables E to ascertain what the correct 
value for each key-piece is, and therefore, to reconstruct chip 2’s secret key. 

The theoretical approach of the second solution requires some further elabora- 
tion. If a player T E S, sends E the value c,  how does he or she then give a 
zero-knowledge proof that f a , ( z )  o i = c? The answer lies in the fact that T 
has copies of 8; o i signed by each player in Si. Essentially, T needs to claim 

The second method in Appendix B can be used if this assumption is unwarranted. 
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possession of values s i ,  h, h, . . ., Vn-"+1 such that fJ,(z) o i = c and V, is 
a signature of si o a' relative to the public signing key of the player a in Si, for 
all 1 5 a 5 n - u + 1. This claim is an NP statement, and hence, it is pot+ 
sible to perform a zero-knowledge proof of it, using the methods of Goldreich, 
Micali, and Wigderson [21], Brassard, Chaum, and CrCpeau [A, or Feige, Fiat, 
and Shamir [14]. Any honest player can convincingly execute the zero-knowledge 
proof protocol, whereas a player who is trying to convince E of the correctness 
of some false value will only be able to do so with negligible probability (since 
it will not possess the digital signatures needed to perform the proof protocol 
correctly, and will be unable to forge them). 

We observe that the complexity of the zero-knowledge based protocol can be 
reduced to one round by the adoption of non-interactive zero-knowledge proofs 
(See [lo], [15], and [5] for more information), or by the idea of hashing to obtain 
challenges to the prover (see, for example, [17] or [2]). 

Notice also that the zero-knowledge proofs need be used only if absolutely 
necessary. If all of the alleged values of fbr(y) that E receives agree with one 
another, then E knows that it has the correct value for that piece of f(y). It 
is only if E receives several distinct values for f3,(y) that there is any need to 
engage in zero-knowledge proofs. 

If the only way a player can fail to cooperate is to refuse to yield information 
(as opposed to being able to maliciously present false data), then we can, of 
course, forgo the zero-knowledge proofs. In addition, in this case, we do not 
need to implement the second round of communication in the seed generation 
and distribution phase, since there is no need for players to possess digitally 
signed seeds if any information they send is known a priori to be correct. 

4 Shared Pseudo-Random Functions and Key Escrow 

4.1 Background: Key Escrow 

The past two decades of progress in hardware and software have made (pre- 
sumably) secure cryptography feasible for a large segment of the population. 
Recently, this has generated much concern that governments and corporations 
will soon be unable to make use of certain tools that have traditionally been 
used to apprehend wrongdoers. In particular, it is feared that court-authorized 
wiretapping will become essentially useless as a means of law enforcement [ll]. 

The obvious way to ensure that this doesn't happen is for governments or 
corporations to arrange to possess every user's secret key; however, even legit- 
imate users then enjoy no privacy. A better alternative that has recently been 
proposed is key escrow (see [28], [29], [26], and [25] for examples). In a key escrow 
scheme, a user's secret key is somehow split into shares held by trustees. The 
intent is that these trustees may, under appropriate circumstances, enable the 
reconstruction of a given secret key; however, sufficiently few trustees, behaving 
maliciously, do not possess enough information to reconstruct any key. 
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The Clipper Chip. This scheme works in a “top-down” fashion. For every 
user, z, two trustees each generate, randomly and independently, a secret string. 
These two strings are then sent to z’s chip, which exclusive-Oh them together to 
compute x’s secret key, c. c is stored in tamper-proof memory, so that no one (not 
even z) has any information about what c is, except for the trustees. Whenever 
2 wishes to send a message m to user y, using a common key Kzy (which z and 
y have previously agreed upon), x’s chip sends not only the encryption of m 
with key Kzl, but also the encryption of KZy with key c (the algorithm for this 
latter encryption is classified, and is referred to as Skipjack). When presented 
with authorization for a wiretap of z’s communications, the trustees each reveal 
their share of c to the FBI, who is then able to decrypt first KSy, and then m. 

4.2 

we 

1. 

2. 

3. 

Bad Behavior of Trustees 

distinguish three types of bad trustees in a key escrow scheme: 

Gossipy trustees, who try to procure information that they should not have 
about users’ keys, or who spread users’ key information about. 
Withholding trustees, who do not cooperate with appropriate authorities to 
recover a user’s secret key. 
Obstructive trustees, who are so malicious that they may not even behave 
properly during the set-up phase of a key escrow scheme (when users generate 
or otherwise obtain their keys). We shall consider obstructive trustees to be 
both gossipy and withholding. 

For 0 5 t < u 5 n, we define an (n,t,u)-escrow scheme to be a method of 
splitting a secret key among n trustees such that: 

- If at most t trustees are gossipy, then reconstruction of a secret key is not 

- If at  most (n - u)  trustees are withholding, then reconstruction of a secret 
feasible without a court order. 

key can easily be accomplished with a court order. 

With this terminology, the Escrowed Encryption Standard is a (2,l  ,2)-escrow 
scheme. 

4.3 Our Escrow Scheme 

Using our shared pseudo-random functions, we can easily create a Clipper-like 
(n, t ,  u)-escrow scheme, if no trustees behave obstr~ct ively~:  

1. Each chip has a unique j-bit ID number. 
2. The secret key of chip # z  is the j-bit string f(z), where f(.) is a pseudo- 

random function shared among the n trustees. 

‘ We defer consideration of obstructive trustees until Appendix B. 
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3. To initialize a chip with its secret key, each trustee gives the chip all the 
pieces of f ( z )  that it has (since no trustees are obstructive, no signatures or 
zero-knowledge proofs are necessary here), 

4. To permit wiretapping of a chip’s communications, the trustees perform a 
pseudo-random function evaluation protocol (with the FBI playing the part 
of the evaluator E). Two such protocols were presented earlier. However, if 
(n - u + l)d is small (recall that this is an upper bound on the number of 
candidate values of the pseudo-random function), then an alternative proto- 
col exists: have eacli trustee send all its key pieces to the FBI, and then let 
the FBI simply “cycle through” all possible secret keys, and see which one 
decrypts the user’s messages. 

5 Conclusion 

We have presented a simple method of generating and sharing a pseudo-random 
function among a group of players. Our procedure can be used with any type of 
collection of pseudo-random functions: poly-random collections, hash functions, 
DES, etc. After an initial set-up phase, in which a shared function is generated, 
evaluating the function requires only one round of communication. Of course, 
communications grow in length as we increase the number of random function 
seeds; in some situations, exponentially many (in the number of trustees) seeds 
are needed. 

Our shared pseudo-random functions can be readily applied to  produce key 
escrow schemes. Since escrow schemes generally have a rather small number of 
trustees, the exponential number of seeds mentioned above is not a real problem 
for this application. 

Like the Clipper Chip proposal, our escrow scheme also combines well with 
the key distribution scenarios suggested by Leighton and Micali in [26] t o  achieve 
a conventional cryptosystem which achieves many of the gains of public-key 
cryptography without requiring the complexity-theoretic assumptions needed 
for public-key cryptography. 
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Appendix A: Oblivious Trustees 

In [28], MiCali brings up an idea which he calls oblivious trustee- namely, that 
trustees who are cooperating with the FBI to reveal a user’s secret key should 
not know whose secret key they are revealing. This prevents them from giving 
advance warning to the party whose line will be tapped. By using an oblivious 
circuit evaluation protocol5, we can make our scheme have oblivious trustees. 
Note that oblivious circuit evaluation is a somewhat complicated process, and 
so this feature may be more theoretical than practical. 

We assume that there is some court which is capable of signing authorizations 
for wiretaps. That is, if chip z is to be tapped, then the court signs z and gives 
this signature to the FBI. It is enough for us to consider how the FBI gets a 
hold of a single value fa,(%) from a trustee T E Si. 

Define 

fs,(z) If SIGS consists of legal signatures of sj 
by all trustees in Si and AUTH is a legal 
signature of z by the court. 

“ERROR” Otherwise. 

g ( s i ,  SIGS, z, AUTH) = 

~ 

Oblivious circuit evaluation is a way for two parties, A and B, who hold private 
inputs I and I, respectively, to interact to compute a value f (2, y). After they have 
finished interacting, B has learned f(z,y), but nothing else about 2, and A has 
learned nothing about y. See [33], [20], [23], and [24] for more information about 
oblivious circuit evaluation, including protocols for accomplishing it. 
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Then we perform an oblivious circuit evaluation in which the FBI computes g, 
where T supplies inputs s, and SIGS, and the FBI supplies inputs z and AUTH. 
This gives the FBI precisely the information it deserves and needs to  know. 

Observe that to make our scheme have oblivious trustees, we needed to  use 
the fact that users’ secret keys are chosen using poly-random functions. If secret 
keys were not chosen in this fashion, there would be no underlying algebraic 
connection between them- that is, if users were given keys completely indepen- 
dently of each other, then there would be no small circuit which could compute 
chip 2’s secret key from the value z- and so trustees could not be made oblivious 
like this. 

Appendix B: Obstructive Trustees 

We now sketch methods for dealing with obstructive trustees. There are two 
possibilities to  consider: 

1. We merely want to  be aware of the presence of obstructive trustees, so that 
we can abort setting up our cryptosystem (and possibly start over again, 
with different trustees). In this case, the protocols we presented work, as 
long as we insist that at  each stage, each trustee and each chip checks the 
data i t  has and makes certain that it is consistent. For example, in the chip 
initialization phase, each chip should ensure that for each 1 5 i 5 d, it 
received a common value s, from every trustee in Sj. If it didn’t, then the 
chip should complain that there is a malicious trustee present. 

2. We need to ensure that even if some trustees are obstructive, we can nev- 
ertheless go about setting up our cryptosystem. This is more complicated. 
In this case, we do something similar t o  what was done in the second so- 
lution from section 3.4. That is, we require that t < 2u - n, and base our 
key escrow scheme on an (n, t ,  2u - n)-resilient collection. Since obstructive 
trustees are withholding (by definition), this means that in each Si, the ob- 
structive trustees are in the minority. Thus, the trustees in each Si can use 
a general secure multi-party computation protocol (see [19], for example) 
t o  produce a common seed in the generate and distribute seeds phase. In 
addition, we modify the chip initialization phase so that for each seed i, the 
chip uses whichever alleged value has the most trustees claiming that it’s 
correct; similarly, in the wiretapping phase, the FBI also t,akes the majority 
value for each individual key-piece. No digital signatures or zero-knowledge 
proofs are required. 
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