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A simple method for latency analysis
in signal detection tasks

DAVIDNAVON
University of California, San Diego, La Jolla; California 92037

It is proved that the difference between mean latency for incorrect responses and mean latency for
correct ones in signal detection situations can be used as a measure for the separation between SN and N
distributions, provided that certain plausible conditions are met. The applicability of this method to
various paradigms is briefly discussed.

Investigators of signal detection often neglect to
collect, analyze, or account for reaction time data. The
same is true for experiments in various areas that may be
analyzed within the framework of TSD terrninology.!
The investigators who have analyzed latencies or have
discussed latency analysis (e.g., Norman & Wickelgren,
1969; Thomas & Myers, 1972; Wickelgren, 1968; Yager
& Duncan, 1971) regarded latency as an inverse
reflection of the subject's confidence. Thus, they
obtained RT-ROC curves for "yes-no" tasks in basically
the same way that ROC curves are derived from
confidence rating (see Green & Swets, 1966, pp. 40-43),
only the RT scale was mapped into categories post hoc
by means of choosing some arbitrary cutoff points. This
technique requires that the experimenter record the
latency to each response and then categorize the
latencies, and that the final analysis will be done through
plotting ROC curves. I will propose here a simpler
technique that is straightforward to apply and will be
shown to be easily derived from a few reasonable
ass urn pt ions abo u t the psychological variables
underlying the experimental situation.

I will show, using a theorem proved by Thomas and
Myers (1972), that under certain conditions the larger
the separation between N (noise) and SN (signal plus
noise) distributions, the larger is the difference between
mean RT for false alarms (RT F A ) and mean RT for hits
(RTH), and so is the difference between mean RT for
misses (RTM ) and mean RT for correct rejections
(RTca).

ASSUMPTIONS

(1) There is a continuous decision axis, x.
(2) Each situation is represented by a pair of density

functions over x that satisfy the condition
_d 2 log f(x)/dx2 >0 (see Thomas, 1971). This property
characterizes a large class of density functions, including,
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for example, the normal, the gamma, and the
exponential distributions. These functions will be
denoted by fN(x) and fsN(x) for Nand SN, respectively.

(3) A unique criterion, c, corresponds to very
combination of payoff matrix and set of prior
probabilities.

(4) There exists a decreasing function, L(x - c),
defined over all positive real numbers that associates
mean reaction time with deviations of sensory values, x,
from the decision criterion, c. L(x - c) may be regarded
as the expectation of a distribution over all possible
latencies associated with x - c, or as a unique latency
associated with x - c, in which case a certain deviation
of the sensory value from the criterion will always yield
the same latency. It will be useful to associate with every
criterion, c, a latency function, RTc(x), defined over the
decision axis. An example of a symmetrical L function
and two RT functions corresponding to it are plotted in
Figure 1.

We will now prove that when we have different pairs
of (N ,SN) satisfying the condition that the N
distributions may differ only in their expectations and
the SN distributions may differ only in their
expectations, then, given a fixed false-alarm rate or a
fixed hit rate, the expression

r fsN(x) RTc(x) dx
e

is an increasing function of ds , where d, in this case is
defined as: {;1.SN -IlN)/aSN. That is, the larger the
separation between the distributions, the larger the
difference RTF A - RTH •

PROOF

Suppose we have two pairs of (N,SN) differing in d•.
Let us denote the distributions corresponding to the
larger d, by the superscript S (for "strong") and the
distributions corresponding to the smaller d, by the
superscript W(for "weak").
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Since the variances of t]N(x) and f~N(x) are equal.
we use the following notation:
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and

so that

o
x-c

f(x - .:1) = f~N (x).

The right side of the inequality equals

Rewriting Inequality 2, we obtain

(3)
{"'f(x -.:1) dx
c

c.-:J(x) RTc_A(x) dx

f-A f(x) dx

rf(x) dx
c
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Figure 1. An example of two latency functions, RTc (x) and
RTc (x), defined over the decision variable, X, for 'different
critei1a (c, and c2 ) . Both are derived from the same latency
function, L, defined over the deviations of X from the criterion.

and recalling also the definitions of RTCj, we may
rewrite Inequality 3 as

Since the first terms in both sides of the inequality are
equal, this reduces to

Equal false-alarm rates can arise from either of two
types of situations: (1) J,l~ = J,l't/ = J,lN, and the criterion
used in both cases is identical. (2) J,l~ *J,l't: and CW =
CS + (J,lJ: - J,l~).

We will restrict our proof to the first situation
without any loss of generality.2

We thus want to show that

(4)

t' f(x) L(x - c + .:1) dxc-A>---------
c-A f(x) dxrf(x) dx

c

f'°f(x) L(x - c) dx
c

Inequality 4 follows from a proof by Thomas and
Myers (1972, Theorem 10). Thus we have completed our
proof.

An analogous proof can be constructed for the case of
equal hit rates. It can be shown also that the difference
RTM - RT c R is positively related to ds. Thus the
difference between mean RT for incorrect responses and
mean RT for correct responses is also positively related
to ds .

If the variance of the signal is positively correlated
with its mean, namely stronger signals are associated
with larger variance, the situation becomes less clear.
Suppose we can show that RTH for a given signal is not
smaller than RTH for a signal with the same mean but
with larger variance. Then, since Inequality 2 is true for
"strong" signals with the same variance as the "weak"
ones, it must also hold for "strong" signals with larger
variance. Let fSV(x) and fLV(x) denote, respectively,
the densities of the signals with small and large variances.
We want to find the conditions under which

(1)

(2)

f oo W
fsN(x) dxc

Joo~N(X) dx
c

~~f~N(x) RTc(x) dx ~oof~N(x) RTc(x) dx
-------->--------

foofN(x) RTc(x) dx>_c _

rfN(x) dx
c



If the criterion lies at a point to the right of which
fLV(x) - fSV(x) is increasing in x (for the normal
distribution, the smallest value satisfying this
requirement is the mean), then Inequality 5 must be
true, because in fLv (x) large values of RTc(x) are
weighted by smaller densities. However, if the criterion
is lower, then the truth of Inequality 5 depends on the
precise shape of L and the location of c. The inequality
does not hold only if the L function is extremely convex
or the criterion is very low. For example, when the
variance of fSv (x) is 1 and L(x - c) is exponential with
A=2 (which decays very rapidly), then Inequality 5 still
holds for every criterion that is not more than 1.5
standard deviations below the mean. Thus, it is almost
always safe to assume that Inequality I is true, even if
the variances of the different signals cannot be believed
to be identical.

APPLICATIONS

In what experimental paradigms may we expect the
assumptions mentioned here to hold? Evidently none of
these assumptions seems too strong in the context of
pure detection tasks, where the noise distribution is
usually assumed to be identical across signals, and the
variances of the different SN distributions are often
assumed to be identical. One has only to postulate the
continuous theory of signal detection rather than a state
model of the sort described, e.g., in Krantz (1969) or
Luce (1963). When the signal detection theory is applied
to such other paradigms as forced-choice recognition,
"same-different" judgments, recall, etc., one should
worry more about the validity of the assumptions.
However, note that we do not have to assume aN = aSN,

only that the variance is the same across signals and the
same across noises; and, as shown earlier, this
assumption is robust enough to withstand some severe
violations. As for the assumption that either the
false-alarm rates or the hit rates are identical in both
experimental situations, it is up to the researcher to
decide whether or not this assumption approximates
well the real nature of the experimental situations.

The reported result suggests a very simple measure for
comparing separation of distributions in different pairs
(N, SN) satisfying the above assumptions, namely the
difference between mean latency for incorrect responses
and mean latency for correct ones. If one has the
facilities for measuring reaction time, it is an almost
costless way to buttress findings obtained from
proportions data. Since parametric statistical tests are
generally more powerful than nonparametric
techniques, one may consider using latency data instead
of proportions or d' indices in order to save on the
number of observations.
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If the experimenter collects data under different
payoff conditions and/or different prior probabilities
conditions, he may want to present the data
corresponding to each decision criterion separately
rather than aggregating them across criteria. In this case,
he may display the data as an ROC curve relating RTF A

to RTH. It follows from Theorem lOin Thomas and
Myers that the higher the criterion for a given ds, the
greater are both RTHand RTF A. Since we want to be
able to compare different subjects or different sessions, it
may be useful to plot the ROC curve in the unit square.
This can be done by finding both the minimal RT over
the whole experiment [Min(RT)] and the maximal RT
over the whole experiment [Max(RT)], and then
plotting for each decision criterion the point (u,v),
where

RTH - Min(RT)
u=

Max(RT) - Min(RT)

RTFA - Min(RT')
v= _ _

Max(RT) - Min(RT)

The larger ds is, the farther should the curve be from the
positive diagonal. A similar curve can be plotted for
RTM and RTCR, However, it is doubtful whether such
plots reveal more information about the nature of the
situation than an aggregated score. The reason is that
latency is also a function of factors such as vigilance,
practice, etc.; and since different criteria are used in
different sessions, or at least in large blocks of trials,
those factors may override any tendency correlated with
the confidence of the subject in his responses.
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NOTES

1. Excluding vigilance paradigms or random presentation
experiments (e.g., Green & Luce, 1967), where the nature of the
paradigm dictates using latencies as the dependent variable.

2. Since the variance of the N distribution is the same in any
case, a situation, 13, of the second type is totally equivalent for
the purpose of out proof to a situation, o , of the first type
where:

f~~(x) = f~rf (x - 0)

f~ ,Ct(x)= f~ ,13(x)

f~it(x)= f~I/(x)

cCt=cW,I3=cS,I3+ o.

(Received for publication February 26, 1975;
revision received April 18, 1975.)


	0067
	0068
	0069
	0070

