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[1] Satellite remote sensing is a promising technique for estimating global or regional
evapotranspiration (ET). A simple and accurate method is essential when estimating ET
using remote sensing data. Such a method is investigated by taking advantage of
satellite measurements and the extensive ground-based measurements available at eight
enhanced surface facility sites located throughout the Southern Great Plains (SGP) area of
the United States from January 2002 to May 2005. Data analysis shows that correlation
coefficients between ET and surface net radiation are the highest, followed by
temperatures (air temperature or land surface temperature, Ts), and vegetation indices
(enhanced vegetation index (EVI) or normalized difference vegetation index (NDVI)). A
simple regression equation is proposed to estimate ET using surface net radiation, air
or land surface temperatures and vegetation indices. ET can be estimated using
daytime-averaged air temperature and EVI with a root mean square error (RMSE) of
�30 W m�2 and a correlation coefficient of 0.91 across all sites and years. ET can also
be estimated with comparable accuracy using NDVI and Ts. More importantly, the
daytime-averaged ET can also be estimated using only one measurement per day of
temperatures (the daytime maximum air temperature or Ts) with comparable accuracy. A
sensitivity analysis shows that the proposed method is only slightly sensitive to errors of
temperatures, vegetation indices and net surface radiation. An independent validation
was made using the measurements colleted by the eddy covariance method at six
AmeriFlux sites throughout the United States from 2001 to 2006. The land cover
associated with the AmeriFlux sites varies from grassland, to cropland and forest. The
results show that ET can be reasonably predicted with a correlation coefficient that varies
from 0.84 to 0.95 and a bias that varies from 3 W m�2 to 15 W m�2 and RMSE varying
from �30 W m�2 to �40 W m�2. The positive bias partly comes from the energy
imbalance problem encountered in the eddy covariance method. The proposed method can
predict ET under a wide range of soil moisture contents and land cover types.
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1. Introduction

[2] Evapotranspiration (ET) is a primary process driving
energy and water exchanges between the hydrosphere,
atmosphere and biosphere [e.g., Priestley and Taylor,
1972; Monteith, 1973]. It is required by short-term nume-
rical weather predication models and longer-term simula-
tions for climate predication [Rowntree, 1991].

[3] Conventional techniques provide essentially point
measurements, which usually do not represent area means
because of the heterogeneity of land surfaces and the
dynamic nature of heat transfer processes. Satellite remote
sensing is a promising tool which has been used to provide
reasonable estimates of ET or the evaporative fraction (EF),
which is defined as the ratio of ET to available total energy
(the difference between surface net radiation and ground
heat flux [Shuttleworth et al., 1989]). Over the last few
decades a large number of techniques have been proposed
to estimate ET (see Drexler et al. [2004], Kite and Droogers
[2000], Verstraeten et al. [2005], and Wang et al. [2005d]
for review).
[4] Under the assumption that the energy storage of a

canopy and energy advection are negligible, ET can be
calculated as a residual of the surface net radiation (Rn), the
sensible heat flux (H) and ground heat flux (G):

ET ¼ Rn � G� H ð1Þ
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Surface heat flux H is usually determined following the
Monin-Oblukhov similarity theory [Monin and Oblukhov,
1954] in the following parameterized form [e.g., Friedl,
2002; Drexler et al., 2004; Wang et al., 2005d]:

H ¼
rCp To � Tað Þ

ra
ð2Þ

where r is the density of air, Cp is the specific heat of air, To
is the surface aerodynamic temperature, Ta is the near-
surface air temperature, and ra is the aerodynamic
resistance. In satellite remote sensing applications, the land
surface radiometric temperature (Ts) retrieval is often used
instead of the aerodynamic temperature in equation (2) [see,
e.g., Kustas et al., 1989].
[5] The methods that use the surface-air temperature

gradient require unbiased Ts retrievals and air temperature
interpolated from ground-based point measurements.
Attempts at estimating spatial variability in air temperature
at regional scales with remote sensing suggest an uncer-
tainty of 3–4 K [Goward et al., 1994; Prince et al., 1998].
The uncertainties associated with measurements of the Ts
retrievals are on the order of several K [Oku and Ishikawa,
2004; Peres and DaCamara, 2004; Prata and Cechet,
1999; Sun et al., 2004]. As such, except in areas containing
low vegetation cover, this derived surface-air temperature
gradient is often comparable to its uncertainties [Caselles
et al., 1998; Norman et al., 2000]. Therefore ET estimates
are sensitive to land surface temperature or air temperature
errors. For example, Timmermans et al. [2007] showed that
a ±3 K error in Ts results in an average error about of 75%
of the sensible heat flux for the Surface Energy Balance
Algorithm for Land (SEBAL [Bastiaanssen et al., 1998])
and an averaged error of about 45% for the Two Source
Energy Balance method (TESE [Norman et al., 1995]) over
subhumid grassland and semiarid rangeland.
[6] Two different types of methods have been proposed to

reduce the sensitivity of flux retrievals to uncertainties in Ts
and air temperature: methods using the temporal variation of
Ts [Anderson et al., 1997; Nishida et al., 2003; Norman
et al., 2000] and the method using the spatial variation of Ts
[e.g., Jiang and Islam, 2001]. The Ts and NDVI spatial
variation (Ts � NDVI) method uses spatial information
about Ts and NDVI to reduce the requirement of accuracy
in the Ts retrievals [Venturini et al., 2004]. Jiang and Islam
[2001] estimated EF by interpolating the Priestley-Taylor
parameter [Priestley and Taylor, 1972] using the triangular
distribution of the Ts � NDVI spatial variation.
[7] In a previous study, Wang et al. [2006] estimated EF

using the day-night Ts difference (DTs � NDVI) spatial
variation method. The method lessens the sensitivity of the
EF estimation to the error in the Ts retrievals by using a
combination of spatial and temporal Ts and vegetation
indices information. However, it is difficult to directly
obtain ET from EF because ground heat flux is required,
as well as surface net radiation. Nagler et al. [2005a, 2005b]
proposed to directly estimate ET over riparian vegetation
during the growing season using a simple regression equa-
tion that combines Moderate-resolution Imaging Spectro-
radiometer (MODIS) Enhanced Vegetation Index (EVI) and
air temperature. Satellite Ts retrieval were not incorporated
into their method because they believe that Ts at 1-km and

5-km resolution is too coarse to characterize temperature
over a narrow riparian corridor.
[8] In the present study, advantage is taken of satellite

measurements and the extensive ground-based measure-
ments available at the 8 enhanced surface facility sites
located throughout the Southern Great Plains (SGP) area
of the United States from January 2002 to May 2005. A
simple method is proposed based on the data analysis, with
input parameters that can be solely obtained from satellite
remote sensing data, such as that from MODIS. The
sensitivity of the ET estimation to the Ts error greatly
decreases and its accuracy is better or comparable to that
of the more complicated methods. Independent validation is
made using the measurements based upon the eddy cova-
riance method at six AmeriFlux sites throughout the United
States from 2001 to 2006.

2. Methodology

2.1. Data and Study Area

[9] Given that satellites can only provide limited infor-
mation pertaining to ET, a major task in the remote sensing
of ET is to identify key factors influencing the processes
involved and its parameterization from satellite data. To this
end, extensive measurements of surface fluxes, meteorolo-
gical and soil variables, as well as coincident satellite data
are required. This requirement is met thanks to the conti-
nuous observations made over the past decade at the SGP
sites, such as the Energy Balance Bowen Ratio (EBBR)
stations and the Solar and Infrared Radiation Stations
(SIRS). Measurements include ET, surface net radiation
and its components, related meteorological parameters and
soil moisture.
[10] Data collected from eight extended facility sites

located throughout the SGP were selected here. Figure 1
shows the International Geosphere-Biosphere Programme
(IGBP) land cover types that characterize the study region,
and the superimposed locations of the eight enhanced
facility sites chosen for this study. Table 1 shows that the
eight sites chosen represent a variety of land types, soil
moisture and vegetation conditions. Table 1 also shows that
these stations are located on uncultivated land such as
pastures, grazed and ungrazed rangeland and native prairie.
These stations operate continuously throughout the year.
The measurements and instruments at the EBBR stations are
summarized in Table 2 and SIRS stations measurements and
instruments are summarized in Table 3. More details about
the SGP sites and the measurements, are given at http://
www.archive.arm.gov/ or by Wang et al. [2006].
[11] SIRS and EBBR data averaged over 30 min were

downloaded from http://www.archive.arm.gov/, from which
daytime-averaged data used in this paper are obtained. The
ground data sets cover a period ranging from January 2002
to May 2005.
[12] Coincident satellite data used in this study, such as

MODIS land surface products related to ET, including Ts,
vegetation indices, albedo, and land cover type were obtained
from http://edcdaac.usgs.gov/modis/dataprod.html.
[13] Two MODIS instruments [Salomonson et al., 1989]

have been launched for global studies of the atmosphere,
land, and ocean processes. The first instrument was
launched on 18 December 1999 on a morning platform
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called Terra, and the second was launched on 4 May 2002
on an afternoon platform called Aqua. The Terra overpass
time is around 1030 (local solar time) in its descending
mode and 2230 local solar time in its ascending mode; the

Aqua overpass time is around 1330 local solar time in its
ascending mode and 0130 local solar time in its descending
mode.
[14] Two algorithms were used to retrieve Ts from the

MODIS thermal and middle infrared spectral regions: the

Figure 1. Different land cover types characterizing the Southern Great Plains study region. The pixel
resolution is about 1 km and the whole region is about 550 � 550 km2. International Geosphere-
Biosphere Programme (IGBP) land cover types are shown: 0, water body; 1, evergreen needleleaf forest;
2, evergreen broadleaf forest; 3, deciduous needleleaf forest; 4, deciduous broadleaf forest; 5, mixed
forest; 6, closed shrubland; 7, open shrubland; 8, woody savanna; 9, savanna; 10, grassland; 11,
permanent wetland; 12, crop land; 13, urban/build up; 14, crop land/natural vegetation mosaic; 15, snow/
ice; and 16, barren lands. The locations of the eight enhanced facility (EF) sites are also shown.

Table 1. Brief Description of the Eight Enhanced Facilities Located Throughout the Southern Great Plainsa

Site Latitude/Longitude Elevation, m Land Cover Mean (Max) NDVI Mean (Max) ET Mean SM

Elk Falls, Kansas: EF07 37.383�N, 96.180�W 283 pasture 0.49 (0.74) 137.9 (256.9) 0.238
Coldwater, Kansas: EF08 37.333�N, 99.309�W 664 rangeland (grazed) 0.36 (0.67) 103.4 (220.2) 0.084
Ashton, Kansas: EF09 37.133�N, 97.266�W 386 pasture 0.49 (0.74) 130.6 (281.4) 0.205
Pawhuska, Oklahoma: EF12 36.841�N, 96.427�W 331 native prairie 0.48 (0.81) 122.4 (305.9) 0.240
Ringwood, Oklahoma: EF15 36.431�N, 98.284�W 418 pasture 0.41 (0.62) 112.3 (261.5) � � �
Morris, Oklahoma: EF18 35.687�N, 95.856�W 217 pasture (ungrazed) 0.50 (0.76) 131.0 (248.2) 0.195
El Reno, Oklahoma: EF19 35.557�N, 98.017�W 421 pasture (ungrazed) 0.44 (0.69) 132.4 (307.5) 0.239
Meeker, Oklahoma: EF20 35.564�N, 96.988�W 309 pasture 0.48 (0.70) 128.2 (262.8) 0.205

aMean and maximum values of NDVI are obtained from the MODIS 16-day vegetation indices product from January 2002 to May 2005. Mean soil
moisture (SM, kg/kg) is obtained from surface soil moisture measurements taken at a depth of 2.5 cm, collected from January 2002 to May 2005. Mean
evapotranspiration (ET, unit: W m�2) are also obtained from data collected from January 2002 to May 2005.
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generalized split window algorithm [Wan and Dozier,
1996] and the MODIS day/night Ts algorithm [Wan and
Li, 1997]. Different validations have shown that the
MODIS Ts at 1-km resolution produced by the split-
window algorithm has an accuracy of �1 K [Coll et al.,
2005; Wan et al., 2002, 2004; Wang et al., 2005a, 2007].
The Ts at 1-km resolution has a spatial scale much larger
than that of the ground measurements. To keep the scales
consistent, the Ts used here is calculated from upwelling
longwave radiation (Lu) measurements collected at the
SIRS using the Stefan-Boltzmann law:

Ts ¼ Lu=seð Þ
1
4 ð3Þ

where s is the Stefan-Boltzmann’s constant (5.67 � 10�8 W
m�2 K�4) and e is the surface broadband emissivity, which
can be obtained from MODIS narrowband emissivities in
the thermal infrared region from the MODIS day/night Ts
products [Wang et al., 2005b].
[15] Two global vegetation index products are available

from the MODIS: the NDVI and the EVI [Huete et al.,
2002] which are given by:

NDVI ¼ rnir � rredð Þ= rnir þ rredð Þ ð4Þ

and

EVI ¼ 2:6� rnir � rredð Þ= rnir þ 6� rred þ 7:5� rblue þ 1:0ð Þ

ð5Þ

where r is reflectance after atmospheric correction, the
subscript ‘‘nir’’ represents the MODIS near-infrared band
(band 2 at 0.841–0.876 mm), ‘‘red’’ represents the MODIS

red band (band 1 at 0.620–0.670 mm) and ‘‘blue’’
represents the MODIS blue band (band 4 at 0.545–
0.565 mm). A 16-day compositing procedure was devel-
oped to provide high-quality vegetation index data every
16 days [Van Leeuwen et al., 1999]. The large scale of the
MODIS 1-km resolution vegetation data may result in
errors in the ET estimation.

2.2. Closely Related Parameters

[16] Data collected from January 2002 to May 2005 are
analyzed at the eight sites in order to identify factors that
derive the variation of ET.
[17] Figure 2 gives an example of the time series of

daytime-averaged ET, air temperature, soil moisture, EVI,
and surface net radiation collected at site EF20. Surface net
radiation, air temperature, and EVI demonstrate a seasonal
variation similar to that of ET. Therefore the correlation
coefficients between ET and these parameters are expected
to be high. Soil moisture shows a different seasonal varia-
tion from that of ET so the correlation coefficients between
soil moisture and ET are expected to be low.
[18] Table 4 summarizes the correlation coefficients bet-

ween ET and the temperatures including near-surface air
temperature and Ts, vegetation indices including NDVI and
EVI, the surface net radiation and its components, and soil
moisture at the eight sites. The daytime-averaged data were
used to calculate the correlation coefficients, and the values
of daily vegetation indices (NDVI and EVI) are directly
obtained from MODIS vegetation indices products, that is
to say all daily vegetation indices in the composite period
equal to the composite values.
[19] Generally, surface net radiation has the highest

correlation coefficient. This is easy to understand because
surface net radiation is the energy available to drive surface
evaporation and vegetation transpiration [Arora, 2002]. This
has been shown by many studies; for example, Priestley and
Taylor [1972] demonstrated that the evaporation (or evapo-
transpiration) over water surfaces and dense vegetation is
closed related to the available energy and the evaporation
can be solely calculated from the available energy and
air temperature using the Priestley-Taylor equation [Wang
et al., 2006]. Parlange and Albertson [1995] extended the
usage of the Priestley-Taylor equation to general conditions.
After comparing 27 models to estimate potential evapo-
transpiration over a large sample of 308 catchments located
in France, Australia and the United States, Oudin et al.
[2005] concluded that the surface net radiation and tempe-
rature are the most essential controlling parameters for

Table 2. Measurements and Instruments Deployed at the Southern

Great Plains Energy Balance Bowen Ratio (EBBR) Sites

Measurement Instrument

Net radiation only Q*6.1
Ground heat flux five HFT3.1 ground flux plates

installed at 5-cm depth;
five REBS PRTDs installed at
0–5 cm depth, spaced 1.0 m apart

Sensible and latent
heat fluxes

Bowen ration system; vertical
temperature/moisture gradient measured
between 2 and 3 m

Soil moisture five resistance-type SMP-2 sensors,
installed at 2.5-cm depth, spaced
1.0 m apart

Table 3. Summary of Solar and Infrared Radiation Station (SIRS) Measurements and Equipment

Measurement Radiometer Typea Modelb Estimated Measurement Uncertaintyc

Direct normal pyrheliometer Normal Incidence Pyrheliometer (NIP) ±3.0% or 4 W m�2

Diffuse horizontal pyranometer Precision Spectral Pyranometer (PSP)
(replaced by Model 8–48 (Black and White)
after Feb 2000)

±6.0% or 20 W m�2

Global horizontal pyranometer Precision Spectral Pyranometer ±6.0% or 10 W m�2

Upwelling shortwave pyranometer Precision Spectral Pyranometer ±6.0% or 15 W m�2

Downwelling longwave pyrgeometer Precision Infrared Radiometer ±2.5% or 4 W m�2

Upwelling longwave pyrgeometer Precision Infrared Radiometer ±2.5% or 4 W m�2

aAll radiometers manufactured by the Eppley Laboratory, Inc., Newport, Rhode Island, USA.
bShortwave (solar) radiometer spectral responses are 295–3000 nm and longwave (infrared) radiometer spectral responses are 3.5–50 mm.
cField measurement uncertainties include the uncertainties associated with radiometer calibration and measurement system installation, operation and

maintenance. Two standard deviations (95% coverage) were used to account for the random components of the total uncertainty estimates.
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estimating potential evapotranspiration. A formula based on
surface net radiation and temperature was proposed, which
claims to have a better accuracy than those of the more
complicated models.
[20] The correlation coefficients between ET and tempe-

ratures are the second highest. In addition to daytime-
averaged temperatures, daytime maximum values are also
used to calculate the correlation coefficients because they
are more easily obtained. Daytime maximum air tempera-

ture can be obtained directly from routine weather station
observations, and daytime maximum Ts can be obtained
from geostationary or polar orbit satellite observations, such
as those collected by the Advanced Very High Resolution
Radiometer (AVHRR) and MODIS [Aires et al., 2004;
Göttsche and Olesen, 2001; Jin and Dickinson, 1999; Jin,
2000]. The correlation coefficients between ET and daytime
maximum temperatures are comparable to those between
ET and daytime-averaged values, which shows that it is

Figure 2. Time series of (a) daytime-averaged evapotranspiration (ET), (b) air temperature (Tair),
(c) soil moisture (SM), (d) enhanced vegetation index (EVI), and (e) surface net radiation (Rn) collected
during January 2002 to May 2005 at site EF20.

Table 4. Correlation Coefficients Between Evapotranspiration (ET) and the Daytime-Averaged Air Temperature (rET,Tad), the Daytime

Maximum Air Temperature (rET,Tam), Daytime-Averaged Land Surface Temperature (rET,Tsd), Daytime Maximum Land Surface

Temperature (rET,Tsm), the Downwelling Shortwave Radiation (rET,sd), the Net Shortwave Radiation (rET,Sn), the Surface Net Radiation

(rET,Rn), the Enhanced Vegetation Index (rET,EVI), the Normalized Difference Vegetation Index (rET,NDVI), and Soil Moisture (rET,SM)
a

Site rET,Tad rET,Tam rET,Tsd rET,Tsm rET,Sd rET,Sn rET,Rn rET,EVI rET,NDVI rET,SM

EF07 0.667 0.659 0.676 0.664 0.704 0.747 0.809 0.644 0.624 �0.194
EF08 0.625 0.604 0.622 0.614 0.676 0.710 0.762 0.515 0.409 �0.059
EF09 0.800 0.783 0.832 0.801 0.720 0.749 0.826 0.720 0.664 �0.381
EF12 0.781 0.761 0.769 0.7461 0.683 0.679 0.763 0.800 0.793 �0.5205
EF15 0.708 0.760 0.792 0.778 0.714 0.731 0.788 0.614 0.531 � � �
EF18 0.745 0.749 0.779 0.782 0.789 0.813 0.864 0.669 0.666 �0.416
EF19 0.687 0.669 0.674 0.663 0.664 0.662 0.736 0.719 0.702 �0.386
EF20 0.682 0.670 0.688 0.682 0.702 0.711 0.773 0.712 0.667 �0.190
Total 0.713 0.700 0.710 0.707 0.695 0.707 0.777 0.680 0.636 �0.101

aData used here were collected during January 2002 to May 2005. The daily vegetation indices are directly obtained from MODIS 16-day vegetation
indices products.
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possible to estimate daytime-averaged ET with only once
per day satellite or ground-based measurements.
[21] The vegetation indices are also highly correlated to

ET and the correlation coefficients for EVI are a little higher
than those for NDVI, which is also found by Nagler et al.
[2005a, 2005b]. Suzuki and Masuda [2004] found that the
NDVI is highly correlated to ET at large scales. Vegetation
transpiration couples with CO2 assimilation through the
process of vegetation photosynthesis; therefore vegetation
amount is one of the determining factors in vegetation
transpiration. Vegetation indices along with leaf area index
(LAI) have been widely used to quantify the surface
vegetation amount [Tucker, 1979]. Arora [2002] claimed
that LAI is the basis of ET parameterizations over vegetation-
covered surfaces in physically based hydrological models.
Recent studies have shown that ET is closed related to green
leaf area and vegetation indices [Burba and Verma, 2005; Li
et al., 2006].
[22] Table 4 also demonstrates that correlation coeffi-

cients between soil moisture and ET are low because the
seasonal variation differ between soil moisture ET (see also
Figure 2). New research shows that when the soil moisture
is above the wilting point the influence of soil moisture on
ET is very small [Jaksic et al., 2006]. This is often the case
for vegetation-covered areas. However, soil moisture does
influence ET, especially during long drought periods.

2.3. Parameterization of ET

[23] In the above section, it has been shown that surface
net radiation, temperatures and vegetation indices are the
top three variables correlated with ET. The relationship
between ET and these parameters will be further studied
in detail in order to accurately parameterize ET.

[24] Figure 3 shows an example of the scatterplots of ET
as a function of the daytime-averaged air temperature, the
daytime-averaged Ts, the EVI and the surface net radiation
collected at site EF18. The relationship between ET and EVI
and air temperature are similar to those found by Nagler et
al. [2005a, Figure 6] and Nagler et al. [2005b, Figure 2].
Figure 3 demonstrates that ET increases near linearly with
surface net radiation. Therefore it seems reasonable to select
surface net radiation as the first factor used to parameterize
ET. Global surface radiation estimates of high accuracy have
been retrieved from satellite data [e.g., Allan et al., 2004;
Bisht et al., 2005;Diak et al., 2004;Gupta et al., 1999; Li and
Leighton, 1993; Li et al., 2005; Wang et al., 2005b, 2005c;
Zhang et al., 2004].
[25] Surface net radiation was used to normalize day-

time-averaged ET because of their near-linear relationship.
Table 5 summarizes the correlation coefficients between the
ET normalized by surface net radiation and related param-
eters. After normalization, vegetation indices have the
highest correlation coefficients, and temperatures have the
second-highest correlation coefficients. The correlation
coefficients between normalized ET and surface net radia-
tion are very low now, which means that the linear
relationship is enough to characterize the influence of
surface net radiation on ET. The correlation coefficients
between soil moisture and normalized ET are still very low,
which indicates that the influence of soil moisture on ET is
less than that of surface net radiation, vegetation conditions
(vegetation indices) and temperatures in vegetated regions.
[26] Figure 4 shows an example of the scatterplots of ET

normalized by surface net radiation as a function of the
daytime-averaged air temperature, the daytime-averaged Ts,
the EVI and the NDVI collected at site EF09. The
normalized ET increases near linearly with the two temper-

Figure 3. Scatterplots of ET as a function of (a) the daytime-averaged air temperature (Tair), (b) daytime-
averaged land surface temperature (Ts), (c) enhanced vegetation index (EVI) and (d) surface net radiation
(Rn) collected during January 2002 to May 2005 at site EF18.
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atures and vegetation indices. Therefore ET can be param-
eterized as follows:

ET ¼ Rn � a0 þ a1 � VI þ a2 � Tð Þ ð6Þ

where VI can be EVI or NDVI, and T can be daytime-
averaged (or daytime maximum) air temperature or Ts.
Table 6 summaries the coefficients used in this parameter-
ization of ET (equation (6)) for different combinations of
temperature and vegetation indices using all the daytime-
averaged data collected at the 8 sites during January 2002
to May 2005.

2.4. Validity of the Parameterization

[27] Because the vegetation indices data are available on
a 16-day basis, we compare the predicted ET with mea-
sured ET on a 16-day basis similar to that of Nagler et al.

[2005a, 2005b]. It should be noted that the coefficients of
equation (6) are obtained using daytime-averaged data (see
Table 6), and can be used to predict daytime-averaged ET.
Figure 5 shows the time series of the measured and
predicted ET using equation (6) with EVI and daytime-
averaged air temperature at the 8 sites over the SGP. In
general, the measured and predicted seasonal curves are in
good agreement.
[28] Table 7 summarizes the statistical parameters of

the measured and predicted ET at each site. Figure 6 shows
a scatterplot of the measured and predicted ET using
equation (6) with EVI and daytime-averaged air temperature
at the sites. Table 7 shows that the mean differences
between measured and predicted ET are less than 6 W m�2

for most sites. The correlation coefficients vary from 0.88 to
0.96 for all 8 sites (Table 6), which are higher than those
reported by Nagler et al. [2005a, 2005b]. Although the

Table 5. Correlation Coefficients Between the Evapotranspiration (ETn) Normalized by Surface Net Radiation and the Daytime-

Averaged Air Temperature (rETn,Tad), the Daytime Maximum Air Temperature (rETn,Tam), Daytime-Averaged Land Surface Temperature

(rETn,Tsd), Daytime Maximum Land Surface Temperature (rETn,Tsm), the Surface Net Radiation (rETn,Rn), the Enhanced Vegetation Index

(rETn,EVI), the Normalized Difference Vegetation Index (rETn,NDVI), and the Soil Moisture (rETn,SM)
a

Site rETn,Tad rETn,Tam rETn,Tsd rETn,Tsm rETn,Rn rETn,EVI rETn,NDVI rETn,SM

EF07 0.230 0.191 0.130 0.156 �0.090 0.323 0.316 0.089
EF08 0.117 0.093 �0.008 �0.003 �0.174 0.247 0.247 0.204
EF09 0.460 0.442 0.357 0.273 0.048 0.5187 0.509 �0.127
EF12 0.394 0.359 0.260 0.304 �0.041 0.554 0.569 �0.295
EF15 0.293 0.267 0.151 0.155 �0.142 0.272 0.253 � � �
EF18 0.308 0.293 0.225 0.250 �0.035 0.359 0.385 �0.117
EF19 0.278 0.233 0.141 0.145 �0.126 0.454 0.461 �0.055
EF20 0.277 0.267 0.193 0.197 �0.039 0.411 0.362 0.027
Total 0.2865 0.258 0.1587 0.179 �0.082 0.415 0.417 0.079

aData used here were collected during January 2002 to May 2005. The daily vegetation indices are directly obtained from MODIS 16-day vegetation
indices products.

Figure 4. Scatterplots of ET normalized by surface net radiation (ET/Rn) as a function of (a) the
daytime-averaged air temperature, (b) the daytime-averaged land surface temperature, (c) the enhanced
vegetation index (EVI) and (d) the normalized difference vegetation index (NDVI) collected during
January 2002 to May 2005 at site EF09.
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correlation coefficients between ET and vegetation indices
are less than those reported by Nagler et al. [2005a, 2005b],
the correlation coefficients between measured and predicted
ET in the present study are higher because surface net
radiation has been incorporated into the parameterization
of ET. The root mean square error (RMSE) of the predicted
ET at all sites ranges from �20 W m�2 to �30 W m�2, with
a relative RMSE (ratio to the average of measured ET across
all sites and years) of �20%.
[29] Nagler et al. [2005a, 2005b] argued that their method

should only be used under water unstressed conditions, e.g.,
for riparian vegetation. At site EF08, soil moisture (at 2.5 cm)

is very low, about 0.08 kg/kg (annual average, see
Table 1 and Figure 7). However, ET can be predicted
with an accuracy comparable to those at sites with high
soil water contents. Figure 7 shows that the parameter-
ization can work well for a wide range of soil moisture
content. This is similar results found by Jaksic et al.
[2006], where they showed that when the soil moisture
is above the wilting point, the influence of soil moisture
on ET is very small. The parameterization will overes-
timate ET during severe drought conditions, such as during the
June–July 2003 period (about day number 510–550) for site
EF07 (Figure 7). However, it was found that ET over

Table 6. A Summary of the Regression Coefficients in Equation (6) for Different Combinations of Temperature and Vegetation Indexa

Combination a0 a1 a2 Correlation Coefficient RMSE (Relative) Bias (Relative)

EVI, Ta,d 0.137 0.759 0.004 0.91 29.2 (24.4%) 1.9 (1.6%)
EVI, Ta,m 0.114 0.778 0.0039 0.91 29.5 (24.7%) 1.7 (1.4%)
EVI, Ts,d 0.114 0.778 0.0039 0.91 30.1 (25.2%) 1.7 (1.4%)
EVI, Ts,m 0.096 0.78 0.0039 0.90 30.4 (25.4%) 1.7 (1.4%)
NDVI, Ta,d 0.1505 0.45 0.004 0.91 29.2 (24.4%) �0.7 (�0.5%)
NDVI, Ta,m 0.106 0.49 0.0039 0.91 29.2 (24.5%) 1.2 (1.0%)
NDVI, Ts,d 0.106 0.49 0.0039 0.90 29.9 (25.0%) 1.2 (1.0%)
NDVI, Ts,m 0.084 0.498 0.0039 0.90 30.1 (25.1%) 1.3 (1.1%)
aThe data collected during January 2002 to May 2005 at the eight sites are used to derive the parameters. The root mean square errors (RMSE) and

correlation coefficients between predicted and measured ET are also shown. The relative bias (or RMSE, root mean square error) is the ratio of bias (or
RMSE) to the average of measured ET during January 2002 to May 2005. The units for RMSE and Bias are W m�2.

Figure 5. Time series of the measured (dots) and predicted ET (solid lines) using equation (6) with EVI
and daytime-averaged air temperature at the eight sites.
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vegetation is closely related to the root zone soil moisture
except in conditions of extreme soil water deficit [Arrett and
Clark, 1994; Arora, 2002; Carlson et al., 1994] and
therefore depends on different vegetation conditions [Arora,
2002], which complicate the usage of soil moisture content.
Given the complication of using soil moisture content, this
factor is not incorporated in our current parameterization of
ET.
[30] Table 6 demonstrates that NDVI and Ts can also be

used to predict ET with comparable accuracy. More impor-
tantly, Table 6 demonstrates that the daytime-averaged ET
can be predicted with comparable accuracy using once per
day temperature measurements, such as daytime maximum
air temperature from routine weather observations or day-
time maximum Ts from satellite measurements. These data
are more easily obtained than 30-min averaged temperature
measurements.

2.5. Sensitivity Analysis of the Parameterization

[31] Assuming that interactions between temperature,
EVI and net radiation are small enough to be ignored, the
sensitivity of ET to temperature (T), EVI and net radiation
can be written as:

@ET

@T
¼ Rn � a2 ð7Þ

@ET

@EVI
¼ Rn � a1 ð8Þ

@ET

@Rn

¼ a0 þ a1 � EVI þ a2 � T ð9Þ

Therefore the relative error in ET caused by the errors in
temperature, EVI and net radiation (Rn) can be written as:

DET

ET
¼

DT � a2
a0 þ a1 � EVI þ a2 � T

ð10Þ

DET

ET
¼

DEVI � a1
a0 þ a1 � EVI þ a2 � T

ð11Þ

DET

ET
¼
DRn

Rn

ð12Þ

For example, if EVI = 0.35, Rn = 350 W m�2, and Tair =
25�C, the relative error in ET resulting from an error of
4�C in air temperature is 3.8%. The relative error in ET
resulting from an error of 0.04 in EVI is 7.8%, and the

Figure 6. Scatterplot of the predicted ET (using equation (6) with EVI and daytime-averaged air
temperature) as a function of the measured ET for the eight sites.

Table 7. Statistical Parameters of the Measured and Predicted Evapotranspiration (ET) Using Equation (6) With the Enhanced Vegetation

Index (EVI) and Daytime-Averaged Air Temperaturea

EF07 EF08 EF09 EF12 EF15 EF18 EF19 EF20

Correlation coefficient 0.88 0.88 0.95 0.96 0.91 0.94 0.90 0.88
Bias (relative) �16.1 (�12.4%) 4.5 (4.5%) �0.7 (�0.5%) 1.1 (0.8%) 2.5 (2.3%) �5.0 (�3.9%) 4.1 (3.4%) �5.5 (�4.6%)
RMSE (relative) 33.1 (25.6%) 25.6 (25.3%) 24.0 (19.0%) 22.5 (17.8%) 29.8 (27.4%) 25.8 (20.1%) 34.2 (28.5%) 30.5 (25.6%)

aRelative bias (or RMSE, root square mean error) is the ratio of bias (or RMSE) to the average of measured ET during January 2002 to May 2005. The
units for bias and RMSE are W m�2.
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relative error in ET caused by an error of 20 W m�2 in Rn
is 5.8%. One can see that the predicted ET is less sensitive
to the error in air temperature. The results for other
combinations of parameters are similar. The sensitivity is
much less than that of methods using surface-air
temperature gradients [Timmermans et al., 2007].

3. Independent Validation

[32] It was shown in section 2.4 that ET can be estimated
using daytime-averaged air temperature and EVI with a root
mean square error (RMSE) of �30 W m�2, and a correla-
tion coefficient of 0.91 across all sites and years However,
the method needs to be validated by independent data sets.
The measurements collected at six AmeriFlux sites (http://

public.ornl.gov/ameriflux/data-get.cfm) are selected to do
so. Table 8 shows a summary of the condition of the
AmeriFlux sites located throughout the United States.
Compared with the uncultivated land of the SGP sites and
the closer geographic proximity of the sites, the land cover
types at the AmeriFlux sites vary from grassland, to
cropland and forest and their locations are also greatly
different from each other.
[33] The ET at these AmeriFlux sites is measured by the

eddy covariance (EC) method. The eddy covariance method
is believed to be the best method to directly measure heat
fluxes and is widely used in global measurement experi-
ments, such as FLUXNET (http://www.daac.ornl.gov/
FLUXNET/fluxnet.html) [Baldocchi et al., 2001]. Unfortu-
nately, it suffers from an energy imbalance problem; that is,

Figure 7. Time series of the measured ET (dots), predicted ET (solid lines) using equation (6) with EVI
and daytime-averaged air temperature and soil moisture content (SM, unit: kg/kg, black dots) at three
sites.

Table 8. A Summary of the Conditions at the AmeriFlux Sites Located Throughout the United Statesa

Site Name Land Cover Latitude Longitude Mean (Max) NDVI Mean (Max) ET Mean SM Time Period

Black Hills evergreen needleleaf forest 44.16 �103.65 0.60 (0.96) 81.3 (262.1) 0.14 2004–2006
Goodwin Creek temperate grassland 34.25 �89.97 0.61 (0.82) 100.9 (260.9) 0.33 2002–2006
Mead irrigated irrigated continuous maize-soybean 41.17 �96.48 0.41 (0.92) 88.9 (297.5) � � � 2001–2005
Mead irrigated rotation irrigated maize-soybean rotation 41.18 �96.44 0.43 (0.87) 89.6 (282.5) � � � 2001–2005
Mead rainfed rainfed maize 41.16 �96.47 0.40 (86) 82.3 (252.8) � � � 2001–2005
Rayonier croplands 40.00 �88.29 0.68 (0.90) 81.0 (266.0) 0.33 2001–2005

aMean and maximum values of NDVI are obtained from MODIS 16-day vegetation indices, and mean soil moisture (SM, kg/kg) is obtained from surface
soil moisture measurements taken at a depth of 2.5 cm. Evapotranspiration (ET) has units of W m�2.
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the sum of the measured sensible and latent heat fluxes is
not equal to the available energy, which should be equal
according to the energy balance law (see equation (1) for an
example). The sum is often much less than the available
energy, which may result in an underestimation of ET
[Wilson et al., 2002]. The method proposed by Twine et al.
[2000] is selected to avoid this issue. However, because
there are no ground heat flux measurements available at
sites Mead Irrigated, Mead Irrigated Rotation and Mead
Rainfed, ET at these sites are not corrected.
[34] The parameters in Table 6 obtained from SGP

EBBR sites are used to predict ET over the AmeriFlux
sites. Figure 8 gives an example of the times series of
the measured and predicted 16-day average ET using
equation (6) with EVI and daytime-averaged air tempera-
ture measured at the six AmeriFlux sites. Table 9 gives the
statistical parameters of the measured and predicted 16-day
averaged ET using equation (6) with the EVI and daytime-
averaged air temperature over the AmeriFlux sites. One can
see that the correlation coefficient varies from 0.84 to 0.95,
the bias varies from �3 W m�2 to �15 W m�2, and the

RMSE varies from �30 W m�2 to �40 W m�2. The
positive bias may partly come from the energy imbalance
issue of the eddy covariance method because the EC
method can underestimate ET and no correction is carried
out at sites of Mead Irrigated, Mead Irrigated Rotation and
Mead Rainfed because of data limited. The other combi-
nations of vegetation indices and temperature give similar
results (not shown).
[35] Jiang and Islam [2001] reported an RMSE of

85.3 W m�2 (29% of the mean ET) by using the linear
NDVI-LST spatial variation method with NOAA–AVHRR
data and an interpolated surface net radiation map over the
SGP area for 2001. Batra et al. [2006] showed that ET can
be estimated with a RMSE of 53, 51 and 56.24 W m�2, and
a correlation coefficient of 0.84, 0.79 and 0.77 fromMODIS,
NOAA16 and NOAA14 sensors respectively. Nishida et al.
[2003] reported that the bias, RMSE and correlation coef-
ficients for ET were 5.59 W m�2, 45.06 W m�2 and 0.86,
respectively, from a comparison of NOAA–AVHRR data
with data from AmeriFlux stations spread over the conti-
nental United States. Norman et al. [2003] reported that the

Figure 8. An example of the times series of the measured (solid line) and predicted 16-day average ET
(dots) using equation (6) with EVI and daytime-averaged air temperature at the six AmeriFlux sites.

Table 9. Statistical Parameters of the Measured and Predicted 16-Day Average Evapotranspiration (ET) Using Equation (6) With the

Enhanced Vegetation Index (EVI) and Daytime-Averaged Air Temperature Over the AmeriFlux Sites Listed in Table 8a

Black Hills Goodwin Creek Mead Irrigated Mead Irrigated Rotation Mead Rainfed Rayonier

Correlation coefficient 0.84 0.92 0.92 0.94 0.95 0.85
Bias, W m�2 13.9 3.4 14.2 12.4 15.0 14.1
RMSE, W m�2 36.5 29.3 33.4 27.4 23.8 38.7

aThe parameters obtained from the data generated by the Energy Balance Bowen Ration (EBBR) method collected over the Southern Great Plains
(Table 6).
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ET estimated by combining low (GOES) and high (aircraft)
resolution (�24 m) remote sensing data had a RMSE of
about 40 W m�2. The ET estimated from more complicated
models also demonstrates comparable uncertainties [e.g.,
Rivas and Caselles, 2004].
[36] The required ET retrieval accuracy varies according

to application, but is typically 50 W m�2, as suggested by
Seguin et al. [1999]. The accuracy of this study meets this
requirement. At the same times, Jiang et al. [2004] also
show that a reasonable upper limit to the accuracy of remote
sensing methods for obtaining ET is about 20%.

4. Conclusions

[37] A simple and accurate method is essential to estimate
ET using remote sensing data. The suitability of the method
also depends on the practicability of the required input data.
In the present study, this was done by taking advantage of
satellite measurements and the extensive ground-based
measurements available at 8 enhanced surface facility sites
located throughout the Southern Great Plains from January
2002 to May 2005.
[38] The dominant factors driving the seasonal variation

of ET are surface net radiation, temperatures and vegetation
indices. Correlation coefficients between surface net radia-
tion and ET are the highest, followed by temperatures and
vegetation indices. A simple regression equation is obtained
to estimate ET using surface net radiation, air or land
surface temperatures and vegetation indices.
[39] ET predicted from the equation using a combination

of surface net radiation, daytime-averaged air temperature
and enhanced vegetation index (EVI) has an average RMSE
of �30 W m�2, and the correlation coefficients between
measured and predicted ET vary from 0.88 to 0.96 for all
the sites. ET can also be estimated from NDVI and Ts with
comparable accuracy. More importantly, daytime-averaged
ET can be estimated using only one measurement of
temperature (daytime maximum air temperature or Ts) per
day with comparable accuracy. The daytime maximum air
temperature can be obtained directly from routine observa-
tions made at weather stations, and Ts can be derived from
geostationary or polar orbit satellite observations. Sensitiv-
ity analysis shows that the proposed method is less sensitive
to the errors in temperature, vegetation indices and net
radiation than that of the method using surface-air temper-
ature gradient.
[40] Independent validation is carried out using the meas-

urements from eddy covariance method at six AmeriFlux
sites located throughout the United States from 2001 to
2006. The land cover of the sites varies from grassland, to
cropland and forest. The results show that ET can be
predicted with correlation coefficients that vary from 0.84
to 0.95, biases that vary from �3 W m�2 to �15 W m�2,
and RMSE varying from �30 W m�2 to �40 W m�2. The
positive bias may partly come from the energy imbalance
issue encountered in the eddy covariance method.
[41] Arora [2002] argued that photosynthesis and tran-

spirational water losses are strongly linked, and therefore
the net primary production and evapotranspiration from
vegetation are coupled. Nemani et al. [2003] believed that
temperature, surface radiation and water are the three most
important climate factors influencing net primary produc-

tion and they further showed that the influence of radiation
and temperature are much larger than that of water in the
present study region. Development of the proposed method
shows a similar conclusion. The results reported by Nemani
et al. [2003] also suggest that the simple equation proposed
here may be suitable on a wide basis. However, more data
and studies are needed to investigate its suitability for other
areas and cover types. The method proposed here should be
confined to regions where surface net radiation is a major
controlling factor of ET [Nemani et al., 2003] and should be
used with caution in areas where energy advection is
important.
[42] Soil moisture content is not incorporated into the

parameterization of ET introduced here. Jaksic et al. [2006]
argue that when the soil moisture is above the wilting point
its influence on ET is very small. The equation can predict
ET under a wide range of soil moisture contents and land
covers. However, the parameterization will overestimate ET
during severe drought conditions.
[43] The input data of the proposed method, e.g., surface

net radiation, temperature and vegetation indices, can be
solely obtained from satellite measurements. Given the
input parameters, regional ET distributions are easily
generated.
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C. Loumagne (2005), Which potential evapotranspiration input for a
lumped rainfall-runoff model? Part 2–Towards a simple and efficient poten-
tial evapotranspiration model for rainfall-runoff modeling, J. Hydrol., 303,
290–306.

Parlange, M. B., and J. D. Albertson (1995), Regional scale evaporation
and the atmospheric boundary layer, Rev. Geophys., 33(1), 99–124.

Peres, L. F., and C. C. DaCamara (2004), Land surface temperature and
emissivity estimation based on the two-temperature method: Sensitivity
analysis using simulated MSG/SEVIRI data, Remote Sens. Environ., 91,
377–389.

Prata, A. J., and R. P. Cechet (1999), An assessment of the accuracy of land
surface temperature determination from the GMS-5 VISSR, Remote Sens.
Environ., 67, 1–14.

Priestley, C. H. B., and R. J. Taylor (1972), On the assessment of surface
heat flux and evaporation using large-scale parameters, Mon. Weather
Rev., 100, 81–92.

Prince, S. D., S. J. Goetz, R. O. Dubayah, K. P. Czajkowski, and
M. Thawley (1998), Inference of surface and air temperature, atmo-
spheric precipitable water and vapor pressure deficit using advanced very
high-resolution radiometer satellite observations: Comparison with field
observations, J. Hydrol., 212(1), 230–249.

Rivas, R., and V. Caselles (2004), A simplified equation to estimate spatial
reference evaporation from remote sensing-based surface temperature and
local meteorological data, Remote Sens. Environ., 93, 68–76.

Rowntree, P. R. (1991), Atmospheric parameterization for evaporation
over land: Basic concept and climate modeling aspects, in Land Surface
Evaporation Fluxes: Their Measurements and Parameterization, edited
by T. J. Schmugge and J. C. André, pp. 5–30, Springer, New York.
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