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ABSTRACT 

A simple model for cyclic variations 
in a spark-ignition engine 

C.S. Daw+, C.E.A. Finney’, J.B. Green, Jr.t, M.B. Kennelt, J.F. Thomast 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088 

* University of Tennessee, Knoxville, Tennessee 37996-221 0 

ET. Connolly 

Ford Motor Company, Dearborn, Michigan 48121-2053 

We propose a simple, physically oriented model that ex- 
plains important characteristics of cyclic combustion variations 
in spark-ignited engines. A key model feature is the interaction 
between stochastic, small-scale fluctuations in engine paramet- 
ers and nonlinear deterministic coupling between successive en- 
gine cycles. Prior-cycle effects are produced by residual cylin- 
der gas which alters volume-average in-cylinder equivalence ra- 
tio and subsequent combustion efficiency. The model’s simpli- 
city allows rapid simulation of thousands of engine cycles, per- 
mitting in-depth statistical studies of cyclic variation patterns. 
Additional mechanisms for stochastic and prior-cycle effects 
can be added to evaluate their impact on overall engine perform- 
ance. We find good agreement with our experimental data. 

INTRODUCTION 

Ever since the investigations of Clerk [I], researchers have 

reported apparently conflicting observations of cyclic combus- 
tion variations in spark-ignition engines. With increasing em- 
phasis on lean fueling and exhaust gas recirculation to minim- 
ize NO,emissions, cyclic variability (CV), also known as cyc- 
lic dispersion, has received renewed attention. Examples of this 
recent interest can be found in [2- 121. In most studies, CV has 
been described as either stochastic (random) or deterministic in 
nature [ 10- 121. Furthermore, any determinism has been typ- 
ically characterized in strictly linear terms (e.g., cycle-to-cycle 
autocorrelation functions). 

We propose a model that combines both stochastic and 
nonlinear deterministic elements. We avoid complex spatial de- 
tails, instead focusing on the global combustion process and how 
that process evolves under the combined influence of stochastic 
and deterministic processes over thousands of engine cycles. 
Our objective is to produce a simple model that produces dy- 
namical CV patterns similar to a real engine. In addition to dy- 
namic similarity, we intend our model to be physically realistic 
so that it  correctly predicts CV trends with as-fed fuel-air ratio 
and provides fundamental insight into the effect of the key pro- 

cesses. 

MODEL DEVELOPMENT 

Our model is structured around the interaction between 

deterministic and stochastic processes. We assume that the 
primary deterministic aspect of CV arises from the presence of 
retained fuel and oxidizer from one cycle to the next. We fur- 
ther assume that the main stochastic element is modeled as ran- 
dom fluctuations in one or more of the key deterministic para- 
meters such as injected fuel-to-air ratio, residual fraction, and 
the lower ignition limit. In principle, all of these parameters can 
undergo effectively random perturbations due to complex pro- 
cesses such as in-cylinder turbulence, fuel-droplet vaporization, 
and wall deposits. 

The model is discrete in time, representing each full cycle 
(including intake and exhaust) as a single event. We first present 
the model in dimensional quantities and then normalize it to be 

nondimensional. The dynamical variables which define the two- 
dimensional state space are the masses of air and fuel present in 
the cylinder at the time of spark. 

INTAKE PHASE - Total mass is residual mass from the 
previous cycle plus new intake: 

The quantities m[n] and u[n] are the mass of fuel and air in the 
cylinder immediately preceding spark, and mres[n] and ares[tl] 

are the masses of unreacted air and fuel remaining from the pre- 
vious cycle. Our model currently ignores the inert combustion 
products, although these can be easily added. The new mass 
fed to the cylinder is inferred from two algebraic relationships. 
First. 

(3) 

Eq. 3 reflects that the injected fuel-air ratio is assumed to have a 
mean value & (Le., the mean equivalence ratio) and a Gaussian 
distribution with standard deviation c#. Physically, the fluctu- 
ations in 4 arise from vaporization or turbulenceeffects, and our 
model simulates the fluctuations using a new random number for 
each cycle. The parameter R gives the ratio of air to fuel mass 



0 at stoichiorhetric burning, so that $,, = 1 is the nominally stoi- 
chiometric fuel condition. The value of R depends only on the 
fuel composition, assumed constant in our model (e.g., 14.6). A 
second constraint on fuel and air injection is 

- 

Eq. 4 satisfies the restriction that the total molarcontent of the in- 

cylinder fuel-air mixture is constant. Stated simply, the amounts 

of new fuel and air that can be added to the cylinder must be 
reduced in proportion to the amount of residual gas retained 
from the previous cycle. This constraint can be reasonablyjus- 
tified assuming constant input pressure and temperature and an 
ideal-gas approximation. wf and w, are the average molecu- 
lar weights of fuel and air. In our simulations, we use wf = 
114 g/mol and w, = 29 g/mol. EQ. 3 and 4 are used together to 
define the amount of new fuel and air injected into the cylinder 

each cycle. 
COMBUSTION EFFICIENCY - We model the net effi- 

ciency of combustion C as a function only of the in-cylinder 
fuel-to-air ratio @[n] = Rm[n]/a[n] at the time of spark 

The exact functional form of the combustion efficiency is an- 

other somewhat arbitrary external parameter, but its general 
shape is governed by physics. Specifically, we mean here that it 
is generally observed that the lean combustion limit is relatively 
sharp [ 131; that is, as equivalence ratio is reduced from above the 
critical to below, combustion rapidly declines from nearly com- 
plete to none. Such a sharp drop in engine combustion efficiency 
is indicated by results such as those reported in [14]. For hy- 
drocarbon fuels, the critical equivalence ratio is typically about 
0.5-0.6 [13]. The steepness of this curve can be explained in 
terms of the fl ame-front propagation and its sensitivity to small 
changes in heat-release rate near the lean limit [13]. 

The particular choice of an exponential sigmoidal function 
to interpolate between these physically determined limits is ar- 
bitrary, but the dynamical patterns one sees with alternate func- 
tional forms are nearly identical, as long as the essential physical 
features are present: a plateau starting at stoichiometric condi- 
tions with a sharp drop-off upon approaching the lean limit. For 
ip 2 1, combustion is fuel rich and is limited by the amount of 

air: - 
(6) 

C;me.x 

ip 
C(@) = - 

The consideration of very fuel-rich conditions is included only 
for completeness; the dynamical system dmost never attains 
such conditions in the situations we consider. For ip < 1, com- 
bustion is fuel lean. For ease of understanding, the position of 
the knee is parameterized by q$ and $", the conditions where the 
efficiency is approximately 10 and 90 percent of the maximum, 

respectively. Then, given & = (q$ + 4,,)/2, 

(7) 

The function in Eq. 7 gives a smooth curve taking on values from 
0 to Cm, with a knee centered at #m and provides the essential 
nonlinearity in the dynamics. Figure 1 shows the function shape 
defined by Eq. 6 and 7. 
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I 

Figure 1 : Combustion-efficiency function assumed to account 
for residual-gas effects. Based on typical lean-limit measure- 

ments, & is expected to be between 0.5 to 0.6. 

COMBUSTION AND EXHAUST PHASE - The heat re- 
leased in the combustion cycle (the primary experimental meas- 
urement) is proportional to Q[n] = C[n]m[n]. The principal 

physical mechanism for cycle-to-cycle coupling is that a certain 
fraction F of the unreacted air and fuel remains in the cylinder 
for the next cycle, thus altering the next cycle's charge. The re- 
maining fuel is F times the fuel not combusted: 

mres[n + 11 = F~[Tz](I - C[n]) (8) 

and the remaining air is that not used in the reaction, 

(9) 

We model fluctuations in F by letting it vary each cycle by a 
random number: 

F = Fo(l + a~N(0,l)) (10) 

As with $, Eq. 10 reflects that we allow F to vary about its nom- 
inal mean value F, as a Gaussian process with standard devi- 
ation a ~ .  Experimental measurements suggest that values of l?, 
can vary from 0 to 0.3 depending on engine design and operating 
conditions [14]. 

NONDIMENSIONALIZATION - It is often convenient 
to nondimensionalizedynamical maps of this type. Specifically, 
fuel masses and air masses will be measured in units of what 
the fuel and air mass (denoted m, and a,) would be at perfectly 
combusting stoichiometric conditions with no residuals (C = 1, 

mres = ares = 0): Given Rm, = a, and the gas-law equation, 
we can solve 

M 
1 R  

m, = 
G+W, 

a, = Rm, 

We now define dimensionless fuel (ma, m:,,, mtew) and 
air (a*, a:,,, ate,,,) masses by normalizingthe appropriatequant- 
ities with m, and a,, respectively. Note that the variables C. 6,. 
ip, F and R are already dimensionless. 



' MODEL SUMMARY - Defining C = wf/wa, the ratio of 
the molecular weights, we summarize the nondimensionalized 
model equations, For the intake process, 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0 -_ 

= 1  
m*[n] -+ CRa*[n] 

l + C R  

For the combustion process, 

For the exhaust process, 

When intake, combustion and exhaust processes are combined, 

m*[n + 11 = F (1 - C[n]) m*[n] + mEe,(n] (23) 

a*[n + 11 = F (u'[n] - C[n]Rm*[n]) + u:,,[n] (24) 

The overall model is thus characterized as a two- 
dimensional dynamic map, taking the state variables m* and u* 

one cycle forward in time: 

for mapping functions A and B. A crucial feature of this m a p  
ping is the nonlinearity produced by the sharp change in com- 

bustion efficiency with $o. Another important feature is that the 
random perturbations in @ and F can augment the complexity 
produced by the nonlinear mapping. In effect, the nonlinearity 
amplifies stochastic perturbations. 

In order to produce a mapping output that can be more dir- 
ectly compared with experimental observations, we look at the 
mapping of heat release from one cycle to the next: 

for mapping function f and Q' defined in Eq. 19. A key theorem 
from nonlinear dynamics [ 151 holds that equivalent information 
about the dynamic patterns can be obtained by using just this 
single observable. Thus we consider the sequence of measured 
heat releases Q*[t], Q*[t + 11,. . . , Q*[t + n] as the principal 
model output. 

The sequences of plots in Fig. 2 - 4 illustrate the effect of 
changes in $o and the model parameters. The parameterchanges 
illustrated were selected to be within the expected ranges de- 

scribed earlier. Each plot is-prp_duced by iterating the mapping 
(Eq. 23 and 24) for a fixed and the indicated parameter val- 
ues beginning with arbitrary initial values form. and 0'. Neg- 
lecting initial transients, the heat-release values for several hun- 
dred iterates are plotkd, and then the process is repeated for a 
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Figure 2: Model equivalence-ratio ($o) bifurcation plots with 
Fo = 0.05 (top), Fo = 0.1 (middle), and Fo = 0.25 (bottom). 
Fixed model parameters are 04 = CTF = 0, & = 0.59, and 
& = 0.60. 

slightly different $o. The final result plotted over a range of $o 

is referred to as a bifurcation diagram and illustrates the expec- 
ted trend in heat-release behavior for varying 40. See Moon [ 161 
for a detailed explanation of bifurcation plots. 

Although the bifurcation details change with parameter 
values, certain general trends are apparent: 

0 Near stoichiometric conditions, the amount of fuel burned 
in each cycle stabilizes to a single fixed value (a fixed 
point); 
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Figure 3: Model equivalence-ratio (#o) bifurcation plots with 
q$ = 0.593 (top) and & = 0.595 (bottom). Fixed model para- 
meters are ud = OF = 0, & = 0.595, and Fo = 0.15 

0 For +o below a critical value, the amount of fuel burned 
oscillates between two distinct values (a period-2 bifurca- 
tion); 

0 For still lower c$~, combustion oscillations become more 

complex, leading to multi-period or chaotic patterns; 
0 For q50 below the lean limit, all combustion ceases; 
0 When stochastic perturbations (noise) are added to either 

4 or F or both, the detailed bifurcation structure becomes 
fuzzy but still reflects the underlying sequence of period-2 
bifurcations andor chaos; 

0 Noise also causes the initial bifurcation to occur at a higher 
$o (Le., higher than when no noise is added) and maintains 
combustion in the extreme lean limit. 

Briefly stated, the model predicts that combustion becomes un- 
stable near the lean limit due to the onset of period-doubling bi- 
furcations arising from deterministic processes. This instabil- 
ity is enhanced by random perturbations in parameters such as 
as-fed equivalence ratio and residual fraction. The prediction of 
a period-doubling instability is important because it provides a 

unique signature that can be experimentally verified and because 
it  has-been extensively studied in other systems [ 161. 

EXPERIMENTAL DATA ACQUISITION 

We collected experimental data from a production V8 en- 
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Figure 4: Model equivalence-ratio (do) bifurcation plots with 
ub = 0.001 (top), u+ = 0.01 (middle), and UF = 0.01 (bot- 
tom). Fixed model parameters are & = 0.590,4,, = 0.595, and 

Fo = 0.15. 

gine with standard port fuel injection connected to a DC mo- 
toring dynamometer. Injected fuel-air ratio was decreased from 
stoichiometric to very lean (where the engine was producing 
little torque). The nominal operating condition was 1200 RPM, 
27.1N-m brake torque, 20 degrees BTC spark. We operated the 
dynamometer in speed-control mode to keep the engine running 
at constant speed despite erratic combustion at very lean condi- 
tions. Feedback engine controllers were engaged to achieve an 
operating condition; once the condition was achieved, the feed- 



6 
E 
a, 
a 
U 

e! 
c 

c 9 

d 

e 
m - 

i? 
m 

U 
a 

e! 

B 

- 
0 

m - 
d 

0.03 

0.02 

0.01 

0.00 
0.74 0.75 

Normalized heat release 
0.76 

............ 
0'07 

0.06 

1 Calculated --e- 
Gaussian 

0.05 

0.0 0.2 0.4 0.6 0.8 
Normalized heat release 

0.04 

0.03 

0.02 

0.01 

0.00 . . ~  ~ 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Normalized heat release 

Figure 5: Model heat release frequency histograms for nearly 
stoichiometric (top), moderately lean (middle), and very lean 
(bottom) fueling. Dynamic noise is included by adding Gaus- 
sian noise to the as-injected fuel-air ratio. 

back controllers were shut off, and the engine was run in open- 
loop mode, except for dynamometer speed control. This assured 
that combustion was minimally influenced by feedback control- 
lers while the engine ran at constant speed. We recorded com- 
bustion pressure once per crank angle degree from a single cyl- 
inder and nominal operating conditions at a 50 Hz rate for over 
2800 contiguous cycles. Cycle-by-cycle heat release was calcu- 
lated by integrating the pressure data in a manner equivalent to 

the Rassweiler-Withrow method [ 141. 
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Figure 6: Experimental heat release frequency histograms for 
nearly stoichiometric (top), moderately lean (middle), and very 
lean fueling (bottom). Note similarity io Fig. 5. 

DISCUSSION 

Ideally, it would be desirable to verify that our experi- 
mental engine produces bifurcation patterns such as those illus- 
trated in Fig. 2-4. This verification is impractical, however, be- 
cause of the large number of experiments required. Instead, we 
chose to use other techniques from nonlinear dynamics theory 
that permit comparison of a smaller number of experimental op- 
erating points with the model predictions. Our specific objective 
in this case was to compare the predicted and observed trends 
while the as-fed equivalence ratio is reduced from nearly stoi- 



I. 

Nearly stoichiometric -9- 
Moderately lean --*-. 

Model 

-0.5 - 

0.5 

0.25 

0 

-0.25 

-0.5 

-0.75 

. .  
t f  
3 

1 

0.75 

0.5 

0.25 

0 

-0.25 

0 1 2  3 4 5 6 7 8 9 10 
Lag [cycles] 

Figure 7: Autocorrelation functions for model (top) and exper- 
imental (bottom) for nearly stoichiometric and moderately lean 
fueling. 

chiometric to very lean. We did not intend to obtain exact “fits” 
of the model with the experiemental data but rather to look for 
evidence that the experiment exhibited a similar type of instabil- 
ity. In particular, we sought to determine if the observed CV pat- 
terns could be explained by period-doubling bifurcations that are 
enhanced by stochastic perturbations in engine parameters. 

To establish the predicted trends in a format more com- 
parable with our experiment, we ran the model at nearly stoi- 
chiometric, moderately lean, and very lean fueling conditions 
for parameter values we expect to be within realistic ranges. 
Output for each model condition consisted of heat-release val- 
ues for 2800 consecutive cycles. Within the parameter ranges 
covered in Fig. 2-4, we found that the basic trends were similar. 
Thus we expected that at least qualitative similarities between 
the model and experimental data could be verified. 

One of the simplest comparisons that can be made between 
the model and experiment is their heat-release probability histo- 
grams, While such histograms do not reflect dynamics, they do 
reflect the overall probability distributions that should be con- 
sistent if the model is correct. Figures 5 and 6 compare model 
and experimental heat-release frequency distributions for three 

fueling conditions. Gaussian distributions with the same mean 
and standard deviation are also depicted for each case for com- 
parison. For both model and experiment, nearly stoichiometric 
fueling is characterized by simple Gaussian fluctuations in heat 
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Figure 8: Relative return frequency plots for model (top) and 
experimental (bottom) for nearly stoichiometric and moderately 
lean fueling. A strong period-2 pattern in heat release develops 
for moderately lean fueling, as is seen in the peaks at multiples 
of 2-cycle lag. The observation of the periodicity at longer lags 
is increasingly obscured by the presence of noise. 

release, reflecting the dominance of stochastic processes. De- 

creasing q5 leads to deviations from Gaussian structure, reflect- 
ing an increasing influence from residual-gas effects. In effect, 
the determinism nonlinearly transforms the Gaussian perturba- 
tions. The relative size of the input noise is no more than 2 per- 
cent, yet the size of the output fluctuations relative to the mean 
magnitude can be on the order of 50 to 100 percent in physic- 
ally realistic conditions. We term this behavior nonlinear noise 

amplification. 

Figure 7 illustrates similar model and experiment beha- 
vior using the autocorrelation function. Figure 7 suggests that 
a period-2 pattern has emerged at moderately lean fueling. The 
“hidden” period 2 is revealed by a significant autocorrelation 
value at multiple intervals of two. As in Fig. 2-4, the period- 
icity is “blurred”. but the effect is present. No peaks are seen 
at nearly stoichiometric fueling, where bifurcation has not oc- 
curred. 

We find that algorithms specifically developed for analyz- 
ing nonlinear time series data also reveal period-2 bifurcations; - 
This is illustrated in Fig. 8, where is plotted a quantity we refer 
to as relative returnfrequency versus lag in combustion cycles. 
Relative return frequency reflects the likelihood that a combus- 

f i. . .  
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Figure 9: Model return map for nearly stoichiometric (top), 
moderately lean (middle), and very lean (bottom) fueling. 

tion event occurring after some specified number of cycles will 
be similar to the current combustion within some specified tol- 
erance. In the figure, the tolerance is approximately 20 percent 
of the standard deviation in heat release over several thousand 
cycles. Thus, when two combustion events separated by one 
or more cycles are found to differ by no more than this toler- 
ance, they are counted as repeat events. By comparing the re- 
lative frequency of repeat events for different numbers of inter- 
vening cycles, the presence of multiple periods can be detected 
(Le,, combustion sequences that repeat over some fixed number 
of cycles). 

In the figure, the repeat frequency for each lag has been 

normalized with the repeat frequency for a lag of one cycle, 

hence the term “relative”. At stoichiometric conditions, the like- 
lihood of repeats is equal regardless of the number of interven- 
ing cycles, However, at moderately lean conditions, repeat com- 
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Figure 10: Experimental return maps for nearly stoichiometric 
(top), moderately lean (middle), and very lean (bottom) fueling. 

bustion events are much more likely after cycle intervals that 
are multiples of two. This latter result thus reflects underlying 
period-2 patterns in both the model predictions and the experi- 
mental data. In general, linear techniques such as the autocor- 
relation function are not as good at elucidating the behavior of 
nonlinear and potentially chaotic dynamical systems as methods 
designed for this situation. 

Another analytical method which reveals more infonna- 
tion about nonlinear dynamic patterns is the return map. Fig- 
ures 9 and 10 depict return-map sequences for the model and 
experiment at three similar fueling conditions. Each return map 
is constructed by plotting the heat relee-cycle i versus the 
heat release for cycle i + I ,  where i is stepped sequentially 
through each time series. The resulting pattern reveals the re- 
lationship between the heat releases for successive cycles. For 
cycles that are completely uncorrelated, one expects to obtain an 



Figure 11: Model return map sequences for moderately lean 
fueling. Dark points represent uncorrelated engine cycles that 

follow similar repeating patterns organized about the noisy 
period-2 fixed point. (Starting indices: 192, 403, 612, 910. 
1236,1338,1476, 1959,2261.) 

unstructured cluster (“shotgun” pattern). 

As shown in Fig. 9 and 10, the return maps for both the 
model and experiment follow a trend from a small “noisy” point 
to an extended “banana-shaped” pattern to a more complex ex- 
tended shape with reducing equivalence ratio. This suggests that 
a similar pattern of instability develops in both cases. 

We concentrate on more specific details in the instability 

patterns at moderately lean fueling in Fig. 1 1  and 12. Here the 
return-map axes have been modified to hcat release in cycle i 
versus heat release in cycle i + 2.  These coordinates were se- 
lccted because period-2 patterns are cxpccted to appcar as points 

: -. 
26.6779 X[il 300.848‘ ‘26.6779 X[il 300.848 

Figure 12: Experimental return map sequences for moderately 
lean fueling. Dark points represent uncorrelated engine cycles 

that follow similar repeating patterns organized about the noisy 
period-2 fixed point. (Starting indices: 217,284,357,448,857, 
1047. 1523.2440.) 

on the diagonal. The light shaded points represent the map for 
all of the observations. The darker points are from a selected 
set of engine cycles that are tracked sequentially in time in the 
successive frames (iierate 0, iterate 1 and so on). Indices lis- 
ted in the figure captions represent the beginning cycle numbers 

(for the frame marked “Iterate 0”) of the dark points. The pat- 
terns followed by the dark points reveal dcfining charactcrist- 
ics of deterministic chaos. Specifically. we see clear evidcncc 
for period-2 fixed points and their associated stable and unstable 
manifolds. As shown. the darker points collapse togethcr along 
the stable manifolds (lincar point clustcrs with shallow slopcs) 



onto the fixed points, oscillate between the fixed points for sev- 

eral iterates, and then diverge from the fixed points (and each 
other) along unstable manifolds (linear point clusters with steep 
slopes), The occurrence of these patterns in both the model and 
experimental data implies similar dynamics. The chance of find- 
ing such patterns in random data is infinitesimally small. 

CONCLUSIONS 

The purpose of our model is to provide a physically reas- 

onable hypothesis to explain the specific time-resolved pattenis 

observed in cyclic variability. Other investigators have observed 

“prior-cycle” effects, specific observations concerning cycle- 

resolved time series measurements, but these have been typic- 
ally presented in a strictly linear framework, concentrating on 
autocorrelation. Our model shows how such autocorrelation can 
arise but in a more “physics-oriented” presentation, making spe- 

cific predictions about the structure of the time series, which is 
best resolved through nonlinear data analysis techniques. Such 
evidence is the observation of similar shapes in the return maps, 
and the presence of an underlying bifurcation to “noisy-period- 

2” behavior at lean fueling. 

All parameter values that we have chosen are well within 

the range of physical plausibility, and we are currently engaged 

in producing an algorithm which can determine best fits from ob- 
served time series measurements. The model is specific enough 
that there is little chance that the similar trends and patterns pro- 
duced by the model and experiment could be caused by overfit- 
ting an overly general and unrealistic mathematical function. 

Chaotic data analysis confirms the presence of determ- 
inistic behavior with dynamical noise in the observed engine 
consistent with the model results. The ability of our model 

to exhibit both stochastically and deterministically dominated 
regimes may help explain apparent discrepancies in previous 
observations as cyclic variation has been observed to appear 
either as an independent stochastic process or one with determ- 
inistic prior-cycle effects. We have not addressed the question 
of whether “the engine dynamics are chaotic”. However, we see, 
in model and experiment, dynamical behaviors that are typically 
associated with “deterministic chaos” but which we believe are 
distinct from classical deterministic chaos’because of the exist- 
ence and importance of the dynamical noise, herein modeled as 
random fluctuations in the parameters. This noise is not simply 
additive but is nonlinearly amplified by the physics of the com- 
bustion curve and the cyclic dynamics. The ability to describe 
engine fluctuations with such a simple yet physically plausible 
model may aid in the development of cycle-resolved control 
schemes to reduce or alter the pattern of cyclic fluctuations in 
order to improve efficiency or emissions. 
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NOMENCLATURE 

Dimensionless combustion efficiency curve, 

a function of @[n] 
Maximum combustion efficiency, achieved at 

stoichiometric fueling 

Actual fraction of unreacted gas and fuel re- 
maining from previous cycle 
Nominal fraction of unreacted gas and fuel re- 

maining in the cylinder 

Actual masses of fuel and air before the nth 
combustion event, including residual and new 
New mass of fuel and air procured from the 

intake manifold on the nth event 

Residual mass of fuel and air before the nth 
combustion event 
Reference masses of fuel and air fed to cyl- 
inder when no residual gas present, used to 
nondimensionalize dynamical system 
Gaussian random number with mean zero and 
standard deviation one 
Molecular weights of fuel and air 
Proportional to the heat released on the nth 
cycle, the principal observed time series 
Mass ratio of air to fuel at stoichiometric 

conditions. 
In-cylinder instantaneous fuel-air equival- 
ence ratio before spark 

Lower 10 and upper 90 percent locations of 
the combustion-efficiency function 
Midpoint between 41 and 4u 
Dimensionless ratio of molecular weight of 
fuel to air 
Standard deviatiofi of the fluctuations in F 
Standard deviation of the noise perturbing 4 
When used as a superscript, designates a di- 
mensionless quantity 
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