
Research Article

A Simple Model for Elastic-Plastic Contact of
Granular Geomaterials

Jian Wang ,1,2,3 Qimin Li ,4 Changwei Yang,1 Yidan Huang,1 and Caizhi Zhou5

1School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
3National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation,
Southwest Jiaotong University, Chengdu, Sichuan 610031, China
4School of Water Resources and Environment, China University of Geoscience (Beijing), Beijing 100083, China
5Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Correspondence should be addressed to Qimin Li; qiminli@163.com

Received 6 February 2018; Revised 13 April 2018; Accepted 3 May 2018; Published 3 June 2018

Academic Editor: Kaveh Edalati

Copyright © 2018 Jian Wang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a simple elastic-plastic contact model by considering the interaction of two spheres in the normal direction, for use
in discrete element method (DEM) simulations of geomaterials. +is model has been developed by using the finite element
method (FEM) and nonlinear fitting methods, in the form of power-law relation of the dimensionless normal force and
displacement. Only four parameters are needed for each loading-unloading contact process between two spheres, which are
relevant to material properties evaluated by FEM simulations. Within the given range of material properties, those four
parameters can be quickly accessed by interpolating the data appended or by regression functions supplied. Instead of the Von
Mises (V-M) yield criterion, the Drucker–Prager (D-P) criterion is used to describe the yield behavior of contacting spheres in
this model. +e D-P criterion takes the effects of confining pressure, the intermediate principal stress, and strain rate into
consideration; thus, this model can be used for DEM simulation of geomaterials as well as other granular materials with
pressure sensitivity.

1. Introduction

DEM simulations play an indispensable role in exploring
the multiscale relationship of particulate material prop-
erties, and it is also a feasible alternative to experimental
investigations [1]. Interaction between two spheres, usually
presented as force-displacement relationship, is the most
fundamental problem in DEM simulations which domi-
nates the motion of the particle system [2]. For dry, non-
cohesive granular media, viscoelastic models or hysteretic
models are always used to describe their interparticle be-
havior, irrespective of the energy dissipation forms. +e
viscoelastic models are velocity damping dependent, while
the hysteretic models are plasticity related. Because of the
unphysical behavior of viscoelastic models, for example,
the non-zero initial force at the beginning and end of the

collision, hysteretic models have attracted more attentions
in this field [3–6].

+e existing hysteretic models were derived from either
analytical methods or numerical simulations and designed
for applications with regard to material properties as well
as load level. +ose models based on numerical results
can describe the contact force-displacement relationship
accurately during the elastic-plastic deformation; thus,
they are termed “accurate models” [4, 7]. Also, they are
empirical models as input parameters are fitting to material
properties by regression. Many of those accurate models
have some disadvantages as follows: (a) the complex im-
plicitly equations are not easy to be implemented into
DEM programs [1]; (b) it is difficult to get their input pa-
rameters [8]. Furthermore, the material parameters used in
most accurate models are derived from the V-M yield
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criterion, which are not suitable for materials effected by
confining pressure, intermediate principal stress, and strain
rate, for example, geomaterials and other granular materials
with pressure sensitivity.

+us, this work proposes a simple and “accurate” model
to describe the elastic-plastic behavior of granular geo-
materials characterized by the D-P yield criterion. Also,
a fast and accurate parameters-accessing method is provided
based on the interpolation/regression method to make the
model feasible to DEM simulations.

2. Yield Criteria for Geomaterials

+e pressure-dependent D-P yield criterion is used for
geomaterials in this study and can be written as

f � t−p tan β− d � 0, (1)

where t is a pseudo–effective stress, β is the slope angle of
the linear yield surface in the p− t stress plane (meridional
plane), p is the hydrostatic pressure, and d is the effective
cohesion of the material.

+e flow potential, g, for the linear Drucker–Prager
model is defined as

g � t−p tanψ, (2)

where ψ is the dilation angle in the p− t plane. Set ψ � β,
resulting in associated plastic flow, and assume that the ratio
of the yield stress in triaxial tension to the yield stress in
triaxial compression equal to 1, that is, the flow stress ratio
K � 1 [9], which implies that the yield surface of this model
in the deviatoric principal stress plane is the V-M circle.
+en, (1) can be rewritten as

f � q−p tan β−d �
���
3J2

√
+ I1

3
tan β−d � 0, (3)

where I1 is the first invariant of the stress tensor and q is the
Mises equivalent stress and defined by the second invariant
of the deviatoric tensor J2 as q �

���
3J2

√
.

By comparing with its two-parameter (α and k) form
[10], we can obtain the following equation:

F I1, J2( ) � ��
J2

√
− αI1 − k � 0. (4)

It can be deduced that

α � tan β

3
�
3

√ � 2 sinϕ�
3

√
(3− sinϕ), (5)

k � d�
3

√ � 1−
�
3

√
α�

3
√ σc. (6)

It should be noticed that the input friction angle β in the
linear Drucker–Prager model can be related to the friction
angle φ from the triaxial test as follows:

tan β � 6 sinφ

3− sinφ. (7)

If we nondimensionalize the vertical position in the
sphere by the corresponding contact radius, that is, u � z/a,
then the principal stresses can be expressed as

σ1 � σz � −P0 1 + z
2

a2
( )−1 � −P0 1 + u2( )−1,

σ2 � σ3 � σr � σθ

� −P0 (1 + υ) 1− z
a
tan−1

a

z
( )− 1

2
1 + z

2

a2
( )−1 .

(8)

+en, (4) can be rewritten as

k � P0 −2α(1 + υ) 1− u tan−1 1

u
( )[ ]

+
�
3

√

3
P0 (1 + υ)u tan

−1 1

u
+ 3

2
1 + u2( )−1 −(1 + υ)[ ].

(9)
By defining the amplitude function of the stress field of

the D-P model as a three-parameter-dependent equation, we
can get the following equation:

f(υ, u, α)D-P �
k

P0

� 2αu tan−1
1

u

+
�
3

√

3
(1 + υ)u tan−1 1

u
+ 3

2
1 + u2( )−1[ ]

− 2α(1 + υ)−
�
3

√

3
(1 + υ).

(10)
+en, we can get the initial yield point wheref(υ, u, α)D-P

is maximized with respect to u by solving the partial
derivative:

f′D-P �
zf(υ, u, α)D-P

zu
� 0. (11)

When we find the yield height, we can get the corre-
sponding maximum contact pressure P0, and then the initial
yield force and yield displacement can be expressed as (12)
and (13), respectively:

Fy �
π3P3

0R
2 1− ]2( )2
6E2

, (12)

δy �
π2P2

0R 1− ]2( )2
2E2

. (13)

3. Finite Element Analyses

3.1. Finite Element Model for Elastic-Plastic Contact. A 3D
model in ABAQUS/Implicit is used to simulate the in-
teraction between two identical spheres. As the contact is
highly localized, with the ratio of contact radius to the sphere
radius a/R< 0.02, only the region close to the contact area is
considered in our calculations according to the Saint Venant
principle as shown in Figure 1, which is similar to the model
used in the work done by Vu-Quoc and coworkers [11, 12]
and Zheng et al. [13]. +e modeling domain was divided into
three zones and adaptivemesh was used in our 3Dmodel.+e

2 Advances in Materials Science and Engineering



zones I and II were defined within the circular regions with
the radius of 0.02R and 0.05R, respectively, and zone III
contained the area outside the Zone II. +e finite element
mesh consists of 73100 8-node linear bricks (C3D8) and 76830
nodes. In radial direction, the element sizes of those three
zones are 5×10−5, 5×10−4, and 1× 10−3m, respectively. And
in the normal direction, element size of each zone changes
gradually from 2×10−3m to 2×10−4m towards the contact
area. +e circumference is divided into 60 equal segments.

3.2. Material Properties. As sandstone and granite materials
are two typical nonmetallic materials, the mechanical
properties of those two materials listed in Table 1 were used
in our simulations according to the work by Fjaer et al. [14].
According to Table 1, there are a total of 162 different
combinations of values existing. To make reliable statistical
analysis, all of 162 combinations were used as the input for
our calculations, which generated sufficient samples to be
regressed or interpolated.

3.3. Loading Level for Granular Geomaterials. To decide
the loading level of normal force, sandstone is used for
simulation, with material properties: E � 10 GPa, v �
0.38,φ � 27.8°, and σc � 6.72 MPa. For more details of this
type of material, refer to Goodman [15]. +e applied normal
forces increase to 200N gradually, with the corresponding
maximum contact pressure and maximum Mises stress
shown in Figure 2. Assuming the contact pressure between
spheres equals to the hydrostatic pressure resulting from the
gravity of granular media, then the contact pressure under
normal force of 100N is equivalent to the maximum
pressure generated by the granular aggregate (with density
ρ � 2600 kg/m3) with a height of 1650m. +us, the loading
level can be set to be 100N, which is large enough to deal
with real problems as well as extreme conditions. Consid-
ering the effect of confined stress field, the micro-yield
strength is higher than the macroscopic yield stress, and
that makes our load level safer [16]. In addition, the in-
creasing maximum V-M stress recorded reflects the effect of
strain hardening after initial yielding, and the maximum
V-M stress is always lower than the corresponding maxi-
mum contact pressure.

With the increasing of normal force, the plastic zone
expands at the core region of the sphere after yielding. When
the plastic zone expands to the free surface, the constraint
from the elastic materials disappears and unconstrained
plastic flow forms. Based on the FEA calculations, the in-
cipient of plastic flow can be identified through the evolution
of plastic strain in the sphere. For the sphere of sandstone,

Y

XZ
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Figure 1: 3D finite element mesh for identical spheres. (a) 3D FEmesh for two identical spheres in contact. (b) Zone partition of the sphere.

Table 1: Parameters used in the FEA analysis.

Number E (GPa) v φ (°) σc (MPa)

1 10 0.10 20 5
2 20 0.20 30 10
3 30 0.30 40 20
4 — — — 30
5 — — — 40
6 — — — 50
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plastic flow starts at the normal force approaching to 535N
(Figure 3), which is larger than the loading level of 100N. It
means that the inner elastic core surrounded by plastic
deformation will not disappear in the end. Normally, geo-
logical granular materials do not exhibit fully plastic be-
havior during the deformation [17]; thus, only elastic and
elastic-plastic deformation needs to be considered in our
contact model.

3.4. D-PCriterion for Geomaterial Simulation. +ere are two
advantages to use the D-P criterion in our model: (i) the D-P
criterion can provide hydrostatic pressure-dependent
yielding condition, and (ii) the D-P criterion can make
the calculation converge smoothly.

+e shear failure mechanism described by the von
Mises criterion is independent of the stress level (i.e., the
hydrostatic pressure), which is mainly used to define the
plastic deformation of metallic material with constant yield

strength and can hardly apply to geomaterials, as shown in
Figure 4(a).

For nonmetallic materials, the D-P criterion provides
a smooth yield surface compared with the Mohr–Coulomb
yield surface, the cross section of which in a deviatoric plane
(π-plane) is an irregular hexagon with sharp corners that
may cause convergence problems for numerical simulation.
Although the Drucker–Prager criterion can provide a simple
and smooth yield surface, it may not predict the failure
accurately when one or more principal stresses are tensile
[18]. It is worth to mention that the issue raised by tensile
principal stresses in the Drucker–Prager criterion will not
appear in our calculations, as the primary condition to use
the D-P criterion is naturally satisfied due to the two dry,
cohesionless spheres.
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Figure 3: Initiation of plastic flow in spherical contact (a quarter of
cross section from the center of the upper sphere). PEMAG, plastic
strain magnitude.
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Figure 4: Yield surface for the linear D-P criterion versus V-M
criterion and the linear D-P criterion versus M-C criterion: (a) D-P
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Figure 2: Contact pressure versus normal force.

4 Advances in Materials Science and Engineering



Based on the previous work done by Alejano and Bobet
[18], both Mohr–Coulomb criterion and Drucker–Prager
criterion can accurately predict the failure of nonmetallic
materials for triaxial experiments around the triaxial com-
pression stresses, that is, σ1 > σ2 � σ3. If the value of σ2
differs from σ3, then the Mohr–Coulomb criterion will
underestimate the strength of the geomaterials and the
Drucker–Prager criterion will overestimate it with the in-
crease of intermediate principal stress. Actually, the in-
termediate and the minor principal stresses are always
identical, that is, σ2 � σ3, for the spherical contact studied in
this work, so those two criteria are automatically satisfied in
our calculations.

To validate the Drucker–Prager criterion, the responses
of those three models with equivalent yield strength under
the same loading level have been analyzed and compared.

Following (6), the relationship between yield strength
(σY) used for the V-M model and uniaxial compressive
strength σc used for the D-P model can be expressed as

σY �
3(1− sinφ)
3− sinφ σc. (14)

�e cohesion property used for the Mohr–Coulomb
model is related to σc as follows:

C �
1− sinφ
2 cosφ

σc. (15)

�e material parameters for those three criteria used for
comparison are set to be as follows:

(a) For the D-P criterion, E � 10 GPa, v � 0.38, β �
47.84°, and σc � 10.61 MPa.

(b) For the M-C criterion, E � 10 GPa, v � 0.38, φ �
27.8°, cohesion C � 3.2 MPa, and tension cutoff
T0 � 1.0 MPa.

(c) For the V-M criterion, E � 10 GPa, v � 0.38, and
σY � 6.70 MPa.

As far as the maximum contact pressure and contact area
were concerned, the distributions of normal traction pre-
dicted by the Drucker–Prager criterion and the
Mohr–Coulomb criterion are nearly the same, except the
slight difference between their shapes in Figure 5. It is also
found that the influence of flow stress ration K on the results
of the Drucker–Prager criterion is negligible when com-
paring the result of K � 0.778 and K � 1. However, the
result predicted by the von Mises criterion deviated a lot
from the other two curves which match well with the real
pressure distribution within the contact area.

According to the above analysis, the Drucker–Prager
criterion is the best one to analyze the interaction between
nonmetallic spheres, while those results from the von Mises
criterion can hardly transplant to nonmetallic materials.

3.5.Model Calibration. To validate to the D-P yield criterion
used in the particles’ contact model, comparisons are made
between the numerical and experimental results in Figure 6.
It is worth to mention that the D-P criterion is not only

applicable to most of the geomaterials but also suitable to
some metallic materials exhibiting strain hardening behav-
iors, such as 2024-T351 aluminum alloy [19] and stainless
steel 302 [20]. Except loading level and degree of plastic
deformation, there is no fundamental difference between
particles made of geomaterials and strain-hardened metals, as
far as the contact force-displacement curve is concerned. �e
force-displacement curves of dimer bead pairs made of
stainless steel 302 with diameters of 9.53mm and 12.7mm
tested by the Split-Hopkinson pressure bar in low velocity are
used for calibration. With the D-P yield criterion adopted, the
values of input parameters for numerical model and material
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Figure 5: Distribution of normal pressure on the contact surface
for F � 100 N.
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Figure 6: Normal force-displacement curves for dimer stainless
steel pairs.
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properties are taken from the experiment results [20]. Overall,
the calculated results matched well with the experimental
results. Moreover, the influence of dimensions of spheres on
the test results can be eliminated largely by non-
dimensionalizing the normal displacement δ by the initial
yield displacement δy, especially at the stage without obvious
plastic flow. It means that the size effect of spheres in contact
can be avoided by nondimensionalization for the same type of
material. Accordingly, a nondimensionalized contact model
can be developed based on numerical results to show the
general relationship of normal force and displacement.

4. Results and Discussion

4.1. ANewNormal ContactModel. According to the analysis
in Section 3.3, the contact spheres of granular geomaterials
hardly undergo fully plastic deformation, thus only elastic and
elastic-plastic deformation needs to be considered. In addi-
tion, there is no pop-in behavior at the transition from the
elastic regime to the elastic-plastic regime in the force-
displacement curves. +us, a single continuous function
can be used to describe the force-displacement curve at the
loading stage instead of a piecewise approach developed by
other models [1, 21]. Relationships of nondimensionalized
force and displacement are explored to eliminate the influence
of size effect and to make a symmetric pattern for th-
e equation.We perform a nonlinear least-squares fitting of the
loading and unloading data for the elastic-plastic case. It is
found that power-law functions are the best approximation to
disrobe the force-displacement curves in the dimensionless
form comparing with other relationships, such as exponential,
polynomial, and parabola relationships, for their coefficients
of determination (i.e., R-square) approaching 1 and the root
mean squared errors (RMSEs) keep the smallest. All those 162
combinations listed in Table 1 have been tested, and the fitted
parameters are appended in Supplementary Materials
(available here).

Dimensionless force-displacement curves at the loading
stage can be expressed with power-law relation as follows:

F

Fy

� a δ

δy
( )b, (16)

where Fy and δy are the contact load and normal dis-
placement at the inception of plastic deformation, re-
spectively, and a and b are the loading coefficients to be
determined.

Inspired by Etsion et al. [22] and Song and Komvopoulos
[6], force-displacement curves at the unloading stage can
also be expressed as the similar form as loading curves:

F

Fy

� m δ − δres
δy

( )n, (17)

where δres is the residual displacement after unloading andm
and n are the unloading coefficients.

+e residual displacement can be found from the initial
unloading process; that is, it can be predicted from the
beginning of the unloading process. During the loading
stage, the normal displacement of sphere center δ is

gradually increased up to a desired maximum δmax, and the
contact force F reaches its maximum Fmax. +en, the
unloading process is initialized, and the residual displace-
ment δres can be deduced from (17) as follows:

δres � δmax − δy
Fmax

mFy

( )1/n

. (18)

4.2. RegressionMethod for the Parameters. It is found that all
of the four parameters E, v,φ, and σc have linear or non-
linear influence on the loading and unloading coefficients
separately. +e nonlinear effects of those parameters on the
targeted coefficients can be approximated by quadratic
polynomial fitting. To prepare for the regression of a mul-
tilinear model, the quadratic term was linearized and treated
as a newly separate variable. After that, the stepwise re-
gression has been performed by using the Matlab package,
which can add or remove terms from a multilinear model
based on their statistical significance. +e empirical re-
lationship between material properties and loading and
unloading coefficients a, b, m, and n can be expressed as

f(x) � C0 + C1E + C2v + C3φ
2 + C4φ + C5σ

2
c + C6σc,

(19)
where C0 to C6 are the regressed results for those coefficients
individually, as shown in Table 2.
R-squares for those four fitted functions are 0.7068,

0.7665, 0.5166, and 0.7517, respectively.

4.3. Interpolation Method for the Parameters. Both the
Kriging and natural neighbor interpolations can be used to
predict the loading and unloading parameters accurately. More
details about those interpolation methods can be found in
Hemsley [23]. 3D, 4D, or 5D interpolation may be employed
according to the parameters selected in this data space, that is,
the space formed by E, v,φ, and σc. +e interpolation process
can be described in the following three steps:

Step 1: identify the minimum interval of interpolating
points and discretize the data space accordingly

Step 2: interpolate values to the discretized points by
the proper method

Step 3: search the predicted value at the target point
locating on the grid of interpolation space.

To validate the new model (16)–(18), two types of ma-
terials with different mechanical properties listed in Table 3
have been chosen for interpolation by means of the natural
neighbor interpolation method, which has been proved to be
exact and it is continuous everywhere except at sample
points [23]. Contacting spheres (R � 0.1) with material as
type 1 suffered plastic deformation, but it would probably
stay in the elastic regime with material as type 2 under the
maximum normal force of 100N.

Figures 7–10 present the 4D interpolated results and
corresponding slice for searching the target value (type 1 in
Table 3) of those four needed parameters.
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�ere is a wider span for the unloading coefficient m in
Figure 7 than the loading coefficient a in Figure 9, which
means the unloading coefficient α changes more acutely and
irregularly than the latter, with the ratio of the variance to
the minimum value 238% versus 29% for E� 10GPa.
�erefore, it is harder to capture the variance of m by the
linearized regressing method, which may be responsible for
the low R-square in (19).

Both the loading coefficient b and the unloading co-
efficient n are below 1.5 and in the similar range, as shown in
Figures 8 and 10.

4.4. Comparing Fitted Results with FEM Results. With the
model shown in Figure 1, materials in Table 3 and normal
loading level of 100N, normal force-displacement curves
gained from FEM and predicted by the proposed model are

put together in Figures 10 and 11. We can see that FEA
results are reliable for the testified model.

As shown in Figure 12, the loading-unloading curve
predicted by the interpolation method closely agree with the
FEA results for elastic-plastic deformation, which means
that the coefficients of the model proposed can be directly
obtained from interpolation of the data samples supplied
without doing time-consuming and complicated finite ele-
ment analysis. However, the curve originating from the
regression function can be treated as a coarse approximation
to FEA results when there is lack of additional information.
It also shows that the curve of elastic materials is always
steeper than that of elastic-plastic materials as we expected.

�e normal force-displacement curves for the Hertz
theory, FEA, and interpolation are totally overlapped for
elastic deformation, which is an excellent evidence of the

Table 3: Parameters used for interpolation.

Type E (GPa) v φ (°) σc (MPa) Fy(N) δy(mm)

1 10 0.15 25 15 9.06 0.00164
2 10 0.25 35 25 84.45 0.00706
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Figure 7: Interpolation of the loading coefficient a for E�10GPa. (a) Interpolated sample space; (b) the predicted value.

Table 2: Regression results for loading and unloading coefficients.

Parameters a B m n

C0 0.5398 1.3087 2.3104 1.2377
C1 1.0279E− 03 −8.7130E− 04 9.6205E− 03 −1.2352E− 03
C2 −4.7213E− 02 4.4259E− 02 −2.8768E− 01 3.6574E− 02
C3 7.6500E− 05 −7.6019E− 05 9.1244E− 04 −9.5000E− 05
C4 −6.1476E− 03 6.4120E− 03 −7.1235E− 02 8.0222E− 03
C5 5.5848E− 05 −3.8951E− 05 6.6345E− 04 −7.9491E− 05
C6 −4.4023E− 03 3.3763E− 03 −4.8732E− 02 6.2875E− 03
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validation of the interpolation method used in Figure 10.
�ere is a little deviation of the regressive results to analytical
and FEA results even for elastic material, which should be
adjusted for actual use.

Coefficient errors caused by different data-processing
methods by comparing with FEA results are shown in
Table 4, with the materials used in Table 3. Two main trends

can be found: (a) the errors caused by the regression
function are larger than those caused by the interpolation
method and (b) the errors of elastic-plastic materials are
larger compared with elastic materials by use of the in-
terpolation method. It also shows that the main source of
errors for the regression method originates from the
unloading coefficient m, as analyzed in Section 4.3.
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Figure 8: Interpolation of the loading coefficient b for E� 10GPa. (a) Interpolated sample space; (b) the predicted value.
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Figure 9: Interpolation of the unloading coefficient m for E� 10GPa. (a) Interpolated sample space; (b) the predicted value.
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5. Conclusions

By taking the advantages of the Drucker–Prager yield cri-
terion, a new elastic-plastic contact model has been de-
veloped for nonmetallic materials based on FEA results.�is
new model presented the following characters:

(a) Considering the absence of plastic flow for granular
geomaterials and no pop-in transition from the elastic
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Figure 10: Interpolation of the unloading coefficient n for E� 10GPa. (a) Interpolated sample space; (b) the predicted value.
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Figure 11: Normal force versus normal displacement for elastic-
plastic deformation (type 1 in Table 3).
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Figure 12: Normal force versus normal displacement for elastic
deformation (type 2 in Table 3).

Table 4: Errors caused by comparing with FEA results.

Type a (%) b (%) m (%) n (%) Method

1 1.92 0.50 9.31 0.75 Interpolation
1 4.05 0.66 34.30 1.47 Equation (19)
2 0.09 0.10 1.20 0.16 Interpolation
2 3.84 0.49 56.37 0.90 Equation (19)
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regime to the elastic-plastic regime, power-law re-
lationships of dimensionless force and displacement
can be described by nonlinear least-squares fitting for
the loading and unloading process between spheres in
contact. +ey are concise and easy to be implemented
to DEM codes.

(b) Four parameters of the model are relevant to ma-
terial properties taken from FEM results, which can
be quickly accessed by interpolation or regressing
equations instead of simulation or any other as-
sumptions. +e application and accuracy of the
model can be expanded and enhanced with the
enlargement of parameters database appended.

(c) +e D-P criterion is used to describe the yield be-
havior of contacting spheres in the model, which
takes the effect of confining pressure, the interme-
diate principal stress, and the strain rate into con-
sideration; thus, this model can be used for DEM
simulation of geomaterials as well as other granular
materials with pressure sensitivity.

Data Availability

+e data used to support the findings of this study are
included within the article and supplementary materials.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e authors appreciate the financial support from the Na-
tional Natural Science Foundation of China (no. 51308474)
and the Fundamental Research Funds for the Central
Universities (no. 2682017CX005).

Supplementary Materials

A data pool named “DataPoolForInterpolationMethod.xls”
is provided with 162 samples calculated by FEA with the
form of a table. It is used for interpolating the coefficients of
loading and unloading models (i.e., (14) and (15)) in 4D
space of parameters E, v, φ, and σc. For the material in
the range of E� 10–30GPa, v� 0.10–0.30, φ� 20–40°, and
σc� 5–50MPa, each coefficient (i.e., a, b, m, and n) can be
quickly accessed directly or by Kriging or natural neighbor
interpolation. +e yield strength as well as contact radius at
the yield moment is also provided for each sample, which
makes it more convenient for manipulation. (Supplementary
Materials)
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