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Abstract. In this paper we study a one-dimensional model simulating the shear in
a two-dimensional body. We analyse the discrete system and we deduce the continuum
limit of the lattice model as the lattice parameter goes to zero. Different energies are
introduced and linked together.

1. Introduction. Recently there has been a strong and successful effort to use non-
linear elasticity for modelling phase transition, especially for the study of reversible phase
transitions in shape memory alloys. Using a continuum theory, these works permit, in
various cases, the explanation and description of the formation and variety of microstruc-
tures experimentally observed. In general, these approaches are based on the minimisa-
tion of a non-(quasi) convex elastic free energy. As explained by Ball and James [1, 2], the
formation of microstructures reflects the fact that the energy is not lower semicontinuous
with respect to weak convergence in W1,v, which, in general, implies that there is no
minimiser. The relaxed energy, instead, will be (quasi-) convex and will have minimisers.

Other works based on lattice models permit the study of phase transitions and the
nonlinear dynamics of microstructure. These atomistic models involve nonlinear and
competing interactions between the "atoms". Some lattice instabilities, which can be
exhibited, can be used to explain the formation of microstructure and the existence of
strain waves. In recent papers by Pouget [15, 16, 17] and Rosenau [21], some quasicon-
tinuum models based on these atomistic descriptions are obtained. Some authors [6, 10,
11, 15, 16, 17] use the Fourier image of discrete functions to deduce, after expanding
the interaction potential, a quasicontinuum model in which macroscopic and microscopic
stresses can be derived from an appropriate elastic potential. In other works [21], the
quasicontinuum model is obtained by inversion of an operator which is introduced by a
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Taylor expansion. Other mathematical works use a very precise notion of convergence to
pass from the discrete model to the continuum. To the best of our knowledge, Braides,
Dal Maso, and Garroni [3] were the first to deduce a continuum theory starting from an
atomistic description by means of T-convergence. In [3] the authors study the softening
in fracture mechanics of a one-dimensional continua. Further studies in this direction
were done by Braides and Gelli [4, 5] and in a stochastic setting by Iosifescu, Licht, and
Michaille [8].

In this paper we consider a one-dimensional model simulating the shear in a two-
dimensional body described at a discrete level. We study the discrete system and we also
deduce its continuum limit as the lattice parameter tends to zero.

In Sec. 2 the region occupied by the body is taken to be, for simplicity, the square
(0,1) x (0,1). The reference configuration is made by a discrete system of (n+1) x (n + 1)
masses equally spaced with mutual distance \n := l/n. In the lattice model, like in
papers by Pouget [10, 15, 16, 17] and Novak and Salje [12, 13], each point interacts with
its first, second, and third-nearest neighbours. We assume that all the atoms located
in the same vertical layer have the same displacement and that this displacement is
in a fixed direction; thus, the model reduces to a one-dimensional model. Under this
assumption, which is made to simplify the problem, we show that the potential W of the
first nearest neighbour in the one-dimensional model is a combination of the first and
the second potentials, <pi and <^2, in the two-dimensional model. We further show, by
taking and ip2 to be Lennard-Jones potentials, that W is either a convex function or
a double-well potential. In the rest of the sections a double-well potential is considered.

In Sec. 3 for the second-nearest neighbour we take the energy W convex and we study
the discrete system. Following Puglisi and Truskinovsky [18], we define the equilibrium
energies En. Our analysis enables us to conclude that the form of the energy En depends
strongly on W and has a lot of local minima, the number of which is related to the number
of springs considered. We observe that as the number of springs becomes larger and larger
the envelope of the energy En is getting closer and closer to an energy similar to the
convexification of £2- This statement is made precise in Sec. 5, specifically in Theorem 2,
where we deduce the continuum limit of the model for a general function W (it could be
neither convex nor concave). Such a continuum limit is derived by using T-convergence
in a framework like the one used by Braides, Dal Maso, and Garroni [3]. The potential
energy of the continuum model is convex; indeed the F-limit gives the convexification of
the continuum energy. In this way we establish a link among the energies at different
scales: the interatomic potential, the double-well potential which is a combination of
interatomic potentials, the equilibrium energy, and the continuum one.

Finally in the conclusions, besides making some remarks, we briefly look at the case
in which the energy W is concave. This case turns out to be very different from the case
in which W is convex: in this latter case we have "oscillations" at the atomic level while
in the former case, i.e., W concave, the number of interfaces is minimised.

2. Lattice Model. We consider a two-dimensional body which we identify with a
region of the two-dimensional Euclidean space. For simplicity, the region SI is taken to
be the square (0,1) x (0,1). The side {0} x (0,1) is clamped and the two sides (0,1) x {0}
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Fig. 1. Two-dimensional lattice energy. First-, second-, and third-
nearest neighbours

and (0, Z) x {1} are free of boundary conditions. In the remaining side, a displacement
u of type u = de2 is applied, where d is constant and (ei,e2) is a fixed orthonormal
basis of M2. The material properties will be described later not at a continuum level but
at an atomistic level by specifying the interatomic potentials between the "atoms". We
suppose the reference configuration to be made by a discrete system of (n + 1) x (n + 1)
masses located at the points (see Fig. 1) Xn(i, j) with

= Aniei + A nje2, i,j = 0

The subscript n indicates that we are dealing with (n + 1) x (n + 1) masses. In the
two directions, all the points are equally spaced with mutual distance \n := l/n. We
denote by xn(i,j) the placement after deformation of the particle (i,j) and by u„ the
displacement of this point, so that

x„(i, j) = Xn(i,j) + un(i,j), i,j = 0,...,n. (1)

At this discrete level, the boundary conditions become

un(0,j) = 0,u„(n, j) = de2, j = 0,...,n. (2)

We assume that each lattice point (i, j) interacts with the nearest points located in the
vertical and horizontal directions (first-nearest neighbours), with the nearest points in
the two diagonals (second-nearest neighbours), and with the second-nearest neighbours in
the vertical and horizontal directions (third-nearest neighbours) (see Fig. 1). In fact, we
consider particle pairs interaction between the first, second, and third-nearest neighbours;
these points "are connected by nonlinear springs" (see Fig. 1). Throughout the paper
we use Novak and Salje's terminology for the first, second, and third-nearest neighbours;
other authors [6, 10, 11, 15, 16, 17, 21] call our first- and second-nearest neighbours
simply first-nearest neighbours and our third-nearest neighbours are called second-nearest
neighbours. We suppose that the two potentials, associated to the first and the second
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nonlinear springs, depend only on the modulus of the relative atom positions and we
choose Lennard-Jones potentials in the two cases,

fi(r) = Si[ ^-2-^), i = 1,2, (3)

with two different constants C\ and c2. The potential (^3 for the third-nearest neighbours
will be specified and discussed later.

With these notations, the total energy i?„({un}) of the system is given by

£„({u„}) := - xn(i - 1, j)\) + ^^v3i(|xn(z, j) -Xn(i,j - 1)|)
i= 1 j=0 i=0 j=1

n n n n—1

+ dXn (*'J) ~ 1, j ~ 1)1) + EEi'2(lXn(i'^ -*n(i - 1 ,j + 1)1)
2— 1 j = l i=1 j=0

n n n n

+ + ~ - 2)i)'
i=2 j=0 i=0 j=2

(4)

where the two first terms correspond to the first-nearest neighbour interactions in the
horizontal and vertical directions, the third and fourth terms correspond to the second-
nearest neighbour in the two diagonals, and the two last terms correspond to the third-
nearest neighbour interactions in the horizontal and vertical directions.

To simplify the problem we make the following assumption: not just the last vertical
layer of masses will have a displacement like the one prescribed in Eq. (2) but all vertical
layers. To be more precise, we shall study the case where un depends only on the index
i and only the component in the e2 direction is different from zero; i.e., all the particles
in the vertical layer i have the same displacement

u„(i,j) = <e2, i,j = 0,

Before continuing we would like to warn the reader that this is a mathematical as-
sumption which may or may not be satisfied by a real system; a similar assumption
was made by Pouget [15, 16]. Actually, uln denotes the transversal displacement of the
ith layer of the lattice and in the following we will write for the displacement the only
dependence on the indices of the vertical layer.
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If 2

Fig. 2. Discrete pattern equivalent to the one represented in Fig. 1

Under this assumption the total energy can be rewritten as:

-^n({en}) X^X/^1 + XIX!^2 (^n\/l + (1 + £n)2)
i=1 ji=0 x 2—1 j = l

n n—1 n n

X^ X^2 ("^ia/1 + (1 - £n)2) + V'j f ̂ n\J4 + (£n 1 + £^)
i=l j=0 i=2 j=0

— (n -f 1) ^ ( An y 1 +
i=l ^

n

+ n X! (^2 V1 + (1 + £n)2) + ¥>2 (An\/l + (1 - £n)2))
i=l

+ (n + 1) X/ i^n\l^ + (£«_1 + en)2l >
* = 9 V /

(5)

where := (uln — u^ 1)/An is the relative displacement between the ith and the (i— l)th
vertical layers. By using the relation I = Ann, we can rewrite Eq. (5) as:

AnEn({eln}) := 2 ^ ^An^/l + el^\
1=1 ^ '

n

+ 1^2 f An V7! + (1 + £ln)2') + 1<P2 f An\/1 + (1 - £^)2) | (6)
i=l

+ 2 X] —o-^^3 ( '
i=2 ^ '

The expression on the right-hand side of the equation above can be considered to
be the energy of the system displayed in Fig. 2 constituted of two horizontal layers of
atoms; the vertical pairs of atoms are linked by a rigid bar and are constrained to move
vertically.
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Fig. 3. One-dimensional layer of atoms equivalent to that in Fig. 2

We denote by ipi the functions defined by

A(r) ■■= <fii (AnVr) = Si f - 2
12 k6 \

i = l-2, (7)

ip3(r) := 1^3 (AnA/r) , (8)

where hi Here we have tacitly assumed that the ratio ki between the distance at
^ ri

equilibrium of two masses and the lattice spacing in the reference configuration does not
depend on the number of masses considered. We can then rewrite Eq. (6) as follows:

£„({<£}) := A„£„(K})
n

+ en)
(9)

y VV(eJ, 1 + eln)

where
W(x) := + x2) + xp2(l + (1 + x)2) + r/>2(l + (1 - x)2)),

W(x) := ZV3(4 + x2),

G(a;) := ZVi(1 + x2)-

The sum of the first two terms on the right-hand side of Eq. (9) corresponds to the
one-dimensional system presented in Fig. 3; in this case the longitudinal displacement
of the atoms correspond to the vertical displacement in the two-dimensional model (see
Fig. 2) and the energies for the first-nearest neighbour and the second-nearest neighbour,
in the one-dimensional model, are respectively given by W and W.

The function W is a combination of the potentials ipi and to get an idea of what
W looks like, we will fix ^ = <52 = 1 and fci = 1 as is done in the article by Novak and
Salje [12, 13]. The polynomial expansion of W up to order four is

W{x)=l (~k% + ^*42 + 9) x4 + I (--.kl + x2. (10)4 128 z J V 4 16

An elementary calculation shows that for k2 greater than or equal to kc = s/2, the
function W is convex, while for k2 less than kc, it is a double-well potential (see Fig. 4).
The energy W obtained looks like the Landau energy (see Fig. 4). Even with an expansion
up to power higher than four we do not have an energy similar to the Devonshire energy.
In the rest of the paper we will concentrate on the case of a double-well potential W.
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Fig. 4. Different W for different k?.

3. Analysis of the discrete system. In this section we study the discrete system,
not only because it has some interest on its own, but also because we like to start
to understand what the continuum energy should be. For this reason we restrict our
attention, in this section, to the case of very simple functions W and W, so that we can
actually compute the energies involved.

Throughout this section we mimic the analysis of Puglisi and Truskinovsky [18]; of
course we will adapt their arguments to our case. For the reader's convenience we will
restate what the main ideas are. We consider the energy En defined by

n n

En({eln}) := £ W(£n) + E + £n)' (U)
i= 1 4=2

Essentially this energy is equal to the energy En defined in Eq. (9), provided we neglect
the term multiplied by ^ (since n goes to +oo, for n large enough these two energies will
be approximately equal). In the next section we will go back to the general case. We
study the following minimisation problem:

mm ■ £n(R}): = , (12)
L i= 1 J

where, according to Eq. (2), £ is equal to d/l. To make the calculations simpler we take
for W a "tri-parabolic" expression, like in Puglisi and Truskinovsky [18], and for W a
quadratic convex function,

(\{x l)2 if x < —2/5

I(^x2 + f) if \x\ <2/5, (13)
— l)2 if x > 2/5

W{x) := \,Kx2, (14)

where if is a positive constant; this, with the notation used in the previous section,
corresponds to assume that ip3 is a linear function with positive slope. Again, in the
next section we will go back to the general case. The energy W is convex for x less
than —2/5 and for x greater than 2/5; we will refer to these two regions as phases I
and III, respectively. These two convex wells are separated by a concave region which is
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Fig. 5. Energies for a chain with two springs and with K equal to
0, 1/100, 1/2, and 1, respectively

identified with phase II. By introducing the Lagrange multiplier a (macroscopic stress),
we can find the solution of our problem by minimising the unconstrained functional:

min f En({eln})-a ( -ne) ) . (15)

The system of equilibrium equations

dEn _ .
—-=a, t =

may have 3 x n solutions, for every fixed £, since each of the springs can be in three
different phases. Let £ln = f„(£) for i = 1,..., n, one of these 3 x n solutions. We define
a new "equilibrium" energy

£n(?) = ^/'(£), •••,/"(£))•

It can be easily checked that this equilibrium energy links the macro stress and the macro
strain through the following equation:

dEn _
S- = *■ (16)

Of course, the energy En is not a function but is a multivalued function, since for every
£ we may have, as said before, 3 x n solutions; as a consequence, a — a(E) is also a
multivalued function. Hereafter we report the energies that we have obtained for n = 2
and n = 6 (See Figures 5 and 7). The case n = 2 is the simplest and, as we will see in
the next section, in some sense, the most important.

In Fig. 5, different results obtained in the case of two springs, i.e., n = 2, are shown.
The case with K = 0 is exactly the case studied by Puglisi and Truskinovsky [18]; in this
case, the energy E2 has four wells all at the same energy level. These four wells have the
minima located at (e^i) e {(—1,—1), (1,1), (—1,1), (1.—1)}, which correspond to the
configurations represented in Fig. 6.

With the introduction of the third-nearest neighbours, i.e., when K > 0, the energy
level of the wells corresponding to the first two configurations in Fig. 6 is higher than that
corresponding to the last two. Hence the system likes to alternate phase I and phase III,
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Fig. 6. Different local minimisers
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Fig. 7. Energies for a chain with six springs and with K equal to 0,
1/100, and 1/2, respectively

and thus we can already speculate that microstructure will be preferred, when possible,
to a single phase. Roughly speaking, we can say that the third-nearest neighbours make
a selection of the local minimisers. The envelope of E2 when K = 0 (see Fig. 5) has
three wells; in the first and the last one, i.e., those centered at e G { — 1,1}, respectively,
both springs are in the same phase (I and III, respectively), while in the middle well a
mixture of phases I and III appears. Phase II does not interfere with the envelope of E2-

The equilibrium energy when K > 0 can be simply obtained (in the case n = 2)
by summing the equilibrium energy with K = 0 with l/2W(2e); hence, as K becomes
larger, the two wells centered at e = ±1 in the graph of the envelope of E2 when K = 0
move upwards. As we can see from Fig. 5, the two wells disappear for K large enough.

In Fig. 7 the equilibrium energies for a "chain" with six springs are shown. When
K = 0 we find again the same result of Puglisi and Truskinovsky [18]. Let us now
comment on the case K = 1/100. In this case, the graph of the envelope of Eq has seven
wells or wiggles (loosely speaking we can say that it is a wiggly energy, cf. James [9]). The
number of wiggles increases as we increase the number of masses n (Truskinovsky and
Zanzotto [22] found, in their model, something very similar). The well centered at e = 0
is obtained when the springs alternate phase I and phase III. To indicate the "state"
of the six springs we can use the following notation: («i,i2, • • ■ ,io) where ij £ {1,2,3}
denotes the phase in which the jth spring is. With this notation, the well centered at
e — 0 is in the state (1,3,1,3,1,3) or equivalently (3,1,3,1,3,1). As e increases, the
state will not change until we reach a point of "denucleation" after which there is a
new well which is obtained when the springs are in (3,1, 3,1,3, 3), for instance (another
possibility is (3,3,1,3,1,3)). The next wiggle on the right instead is achieved at the
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state (3, 3,1, 3,3, 3), while the last well on the right is obtained when all the springs are
in phase III, i.e., (3,3,3,3,3,3). We see that as e increases phase I tends to disappear
("denucleation"). A similar discussion can be done for the wells on the left of e = 0.
When K = 1/2 the envelope of the equilibrium energy (see Fig. 7) looks like a convex
function; this is because the effect of the third neighbour is "dominating" the effect of
the first two. Indeed, also in the case K = 1/2 the envelope of the equilibrium energy
E6 is not convex; a magnification near the origin would show few wiggles.

Finally we observe that as n becomes larger, for a fixed K, the envelope of En becomes
closer and closer to the envelope of E2 (indeed to a rescaling of the envelope of E2, cf.
Theorem 2).

4. Preliminaries—r-convergence. Let (X, d) be a metric space and {Fh}h and F
be functional mapping X into R = RU {+00}. The following notion of convergence was
first introduced by De Giorgi; for more details, we refer to the book of Dal Maso [7].

Definition 1. The sequence {Fh}h F-converges to F at x in X if and only if both of
the following conditions are satisfied:

i) (liminf inequality) For every sequence {xh}h of X, converging to x in X, we have:

F(x) < liminf Fh{xh).
/i—>+oo

ii) (recovery sequence) For every x in X, there exists a sequence {xh}h in X such that

F{x) = lim Fh{xh).
h—>+00

The main interest of this notion is explained in the following theorem.

Theorem 1. Assume that {Fh}h T-converges to F and {a:/i} € X such that Fh(xh) =
inf^ex Fh(x). If Xh converges to x, then we have

and

F(x)= inf F(x)
xEX

F(x) = lim Fh(xh).
h—t+oc

5. Limit of the model. In this section we study the F-limit of the discrete model as
the number of masses n tends to infinity. The T-limit defines an energy, which we shall
call continuum energy (indeed it should be called the convexification of the continuum
energy), which can be used to identify the energetic value of the global minimisers; hence,
all the information of local minimisers and barriers that were obtained in the previous
section by studying the discrete system are not detained by the continuum energy.

We recall that the energy associated to the lattice model is

£n(R}) := t, + E + £n) + M E G(£") + E
i=l i=2 \z=l i=2

(see Eq. (9)), where eln (uln — ul~l)/Xn with I = Ann. In order to study the F-limit
of the energy, we consider En as defined on functions and not simply on an array of
numerical values. For this purpose, following Braides, Dal Maso, and Garroni [3], we
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introduce, for every n, the space An of continuous functions on (0,1) which are affine on
each interval [X*, X^+1] = [i\n, (i + 1)A„] of (0,1) for all i. In this way there is a one-
to-one correspondence between An and the set of arrays {uln}™=1: u„ G An defines the
array {uln = u)}, while if {uln} is an array, there exists only one function un G An
such that un(Xln) = u\. Let un G An be the function associated to the array {uln}; then,
if we denote by un the derivative of un, we have that un = eln. We make the

ix\,xn )
following assumptions of the energies, W, W, and G:

(HI) 3 positive constants c\,C2,C\,C2 such that ci|f:|p — c? < W{e) < Ci|e|p + C2.
(H2) 3 positive constants C3, C4, C3,C\ such that — C3|er|p — C4 < W(e) < C3|e|p + C4.
(H3) the constants above satisfy the inequality c\ > 2PC3-
(H4) 3 positive constants C5, C6, C5, Cg such that —C5|e|p — c$ < G(e) < C5|£r|p + Cq.

We consider the energy £n defined on Lp(0,l) by

foW(un(x))dx + flXn W(un(x - A„) + un(x))dx
£„(un) := ^ +i(/o G(un(x))dx + W(un(x - A„) + un(x))dx) if un G An, (17)

+00 otherwise.

Notice that if un G An, then £n(un) = AnEn{{eln}). Then we can prove

Theorem 2. Assume (HI), (H2), (H3), and (H4). Then the energy functional £n, defined
in Eq. (17), F-converges to the functional £ defined in Lp(0,l) by

if u 6^(0,0, (
^ ' I I +V, • ^ *

+00 otherwise,

where J(X) := W(X) + W(2X),W(X) = \ min{W(Xi) + W{X2): Xi +X2 = 2X}, and
J** is the convexification of J.

Proof. The proof is divided into two steps.
FIRST STEP: Proof of the "liminf inequality". Let a sequence {un}„ converge to u

in Lp(0,l). We want to prove that liminf £n(un) > £(u). If liminf £„(u„) = +00, then
there is nothing to prove. Hence, without loss in generality, we suppose

liminf£n(un) < +00, (19)
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and un e An. By using the definition of £n and the assumptions we find:

A A
,(u„) = / W(\in{x))dx + / W(u„(x — An) + u„(x))dx

*/ 0 J An

+ i(/ G(un{x))dx + J W(un(x-A„) + u„(x))dxj

> ci / |u„(x)|pdx — c2/ — c3 / |un(x - An) + un(x)|pdx - c4l
J0 «/ An

~ « (°5 I \\in(x)\pdxc6l + cz J |u„(x - An) + un(x)|pdx + c4Z

> Ci||u„||^p - 2p_1c3 |un(x - Ara)|pdx + J |u„(x)|pdxj

- ^ ^c5||un||£„ + 2p~1c3 |un(x - A„)|pdx + J |u„(x)|pdxj^

if i , °4 + c6 \— i I C2 + C4 H —— I

N Z' r>p ^5 ~f~ 2^C3 \ I. . up , ( 1 ^4 ^6
> ( Ci — 2PC3 ) ||un||Lp — I I C2 + C4 H 

so, for n large enough,

U"n) > 01 02PC3 llUnll^P ~ 2Z(C2 + C4). (20)

By hypothesis, C\ — 2pc3 > 0; hence, from Eqs. (19) and (20), we have that, up to a
subsequence, sup ||un||z,p < +oo, the sequence {un}n converges weakly to u in W1,p(0,1),
and, of course, u belongs to W1,p(0, Z). We easily find that

/ G(un(x))dx + / W(un(x — An) 4- un(x))da
J 0 J An

< i((Ci + 2pC3)||uJpp + (C4 + C6)0,
n

hence

G(un(x))dx + J VV(un(x - An) + u„(x))dx^ = o(l);

i.e., the limit as n goes to +oo of the left-hand side of the equation above is equal to
zero.

We now find a lower bound for the energy £n. We learned the technique that we
are going to use in a conference by A. Braides on "Asymptotic Analysis for Non-convex
Discrete Systems" held at Oxford in December 1999.
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The energy Sn can be rewritten as
n n

£n(un) = £ \nw(sln) + ]T A„W(4_1 + 4) + 0(1)
»= 1 2=2

= E Y^(4_1) + yW(4)+ E A„W(er1+4)
2=2 i=2

i even 2 even

+ E yh/(4"1) + yW(4) + E A„W(4"1 + 4)
i=3 2=3

i odd i odd

+ y^(4) + Y^) + »(i).
By assumption (HI) we have 4f W(£jj + > —c2An, so we obtain

-2-1

4(uj> E a"{^(£" 12+£") +w(4~1 + 4)|
2 even

+ E An {w (£rl2+£") + w(4_1 + 4)} + 0(1)
i odd

= Ewf^) + Ew(^] + o(i)
2=2 2=3

2 even i odd

Hence, by definition of the convexification we have the following inequality:

? ( \ \ fl T**f'iln(x-Xn)+\ln(x)\^n(u„) > J J ^—    — Jd:r + o(l).

We now choose a partition := {y0,2/1, • • •,2/fc} of (0, £) and we define an integer
r(n) := min{j: yj > A„} + 1, so that

k
C, \ - fVi J**f^n(x-\n) + Un(x)\£n(un)> 2_s / J y ^Jote + o(l)

j=r(n) 2/j-1 '

- E [\ / Un(x - \n)dx + ]- -I +0(1),
j=r(n) \Z Jyj-i ZJVj-x )

where the last inequality is obtained by using Jensen inequality and where the bar over
the integral sign denotes the integral average; i.e., for any two numbers a, b, and any
function /,

LfMdx - iih-i Lf(x)ix-
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By changing variables we obtain the inequality

fVi rvi
+ un(x — A„)dx — + u n{x)dx
Jyj-i Jyj-1

I / rVj-i rvj ^
—  / |un(x)|dx + / |un(x)|dx

3/j-i Jyj-*n yVi

< —-—Ayp'iiun|ix,P(0iJ),
% - 2/J-l

where p' := p/(p — 1) and the right-hand side goes to zero as n goes to +00. Since

rvi ryj
f u n(x)dx —» + u {x)dx
Jyj-i Jyj-1

as n —> +00, we conclude that

ryj rvi
+ un(x — \n)dx —► + u(x)c?x

•lyj-i Jyj-i

as n —> +00. We can note also that for n large enough, r(n) = 2. Then using the
continuity of J** we obtain

liminf£n(u„) > ^{yj - ( I u{x)dx j
j=2 /

Jyi \ j=2 Vwj-i
(x)dxJ Xivj-r-vM^J dx'

We now let k go to +00 after having chosen partitions for which yi tends to 0 and we
apply Fatou's Lemma to find

liminf £n(un) > f J**(ii(x))dx,
Jo

where we have used the easy-to-prove inequality J**(x) > (ci — 2pcz)\x\p — (C2 + C4).
SECOND STEP: Proof of the "recovery sequence". Here we want to prove that

for a given u 6 LP there exists a sequence un £ Lp such that u„ -» u in Lv and
limsup-B(un) < E(u).

If u is in LP\W1,P, then we can take un = u and there is nothing left to prove. So let
us suppose that u e H/1'p(0,/). We distinguish three cases:

Case I: u is affine; i.e., u(x) = ax + 6, where a and b are two constants,
Case II: u is continuous and piecewise affine,
Case III: u belongs to WAl'p(0,1).
Case I: Let u be an affine function u(x) = ax + b. By Caratheodory's theorem, we

know that there exist an s £ (0,1) and £1,^2 £ ® such that

J**(u) = J**(a) = sJ(6) + (1 - s)J(6)
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and a = s£i + (1 — s)£2. By definition of J we have J(£i) = W(£») + W(2£j), i = 1,2,
and we know that there exist cti,a2, Pi, 02 £ K such that

W(.!;i)=l-W{ai)+l-W{t3i),

Oii + Pi = 2£j

for i = 1,2. We then obtain the following equality:

J**(u) = J**(a) = s (\W{ai) + |W(A) + W(Ql + A))

+ (1 - a) (|W(a2) + |W(/32) + W(a2 + ft))

and

(21)

<*1 + ft . /, ^2+ ft /00^a = s   + (l-s)   • (22)

Let us fix an even integer m, and let n = m2. As before we denote by A; = l/n and by
= (mj + i)\n for i = 0,..., m and j = 0,..., m — 1. We now define a function

un G An as follows: un(0) = b, un is continuous, and

'a! if x g Ln n UT=o U?Jt\xr+2i, Xim+2i+1)
Pi if x E Ln n UfJo1 U^o _1(^r+2i+1. xim+2{l+1))
a2 if X e Rn n UJTo1 U™(ri(^r+2l^r+2'+1)
p2 if x g Rn n u-To1 idsf-i(xr+2i+i, xr+2(i+1))

u„(x) (23)

where
m—1 m —1

:= u (xr,xr+M), ^ - U (*r+[smI, *ij+1)m),
j=0 .7=0

and where [g] denotes the largest integer less than q. With this notation we can rewrite
the energy Sn as

771—1 + +

W(un(x - An) + u„(x))dx + o(l)
//fc—x /*A^ ' ' /»^

-n(u„) = V" / W(u„(a;))dx + /

/" ^2m ^2m \

/ W(un(x))dx+ W(u„(x — A„) + un(x))eJx > + o(l)= m •

= m[sm] Qw(ai) + ^W(ft) + W(«i + Pi) ) Ari

+ m(m — [sm]) Qw(a2) + ^W(ft) + W(a2 +ft) ) An + o(l),

but by the relation m2An = /, we deduce

£n(un) = ^ Qw(ai) + ^W(ft) + W(ax + ft)

+ i(l- f^(a2) + 1 W(/%) + W(a2 + ft)^ + o(l).
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When to goes to +00, the ratio [sm]/m goes to s, so we can conclude using Eq. (21)
that

lim £, ;(un) = lJ**(a) = [ J** (u(x))dx = £(u).
Jo

To conclude the proof it suffices to show that un converges to u in Lp(0,/). For that
let us take a constant t such that 0 < t < I and define am := [^j. Then

rt ft
/ un(x)dx — / un(x)dx + / un(x)dx.

Jo Jo Jxnmm

But
ftJJx°

un(x)dx — (Iail + I Q;21 + |/?i| + |/?21 ){t — oimmXn)

and since amm\n = aml/m, we can easily check that

m
as to —y +00. Hence, using the periodicity of un and Eq. (22), we find

ft
/ un[x)dx = / un(x)dx + o(l)

Jx"mm Jo
r*™

= am un(x)dx + o(l)
Jo

= am[sm}Xri
ai + fa

2

+ am(m - [sm])A„ ( Q2 ) + o(l)

arJ f [am] + fa / _ [sm\\ a2 + fa
m \ s 2 \ s ) 2

By passing to the limit as n goes to infinity, we obtain, using Eq. (22),

<*1 + fa , a2 + falim / un(x)dx = ~x ' (1 — s)t
n—*+oo J 0 2 2

= at = u(x)dx.
Jo

(24)

Since sup„ ||un||^P < +00 we deduce, from Eq. (24), that un converges weakly to u in
I/p(0,1). But since un(0) = u(0) and un is bounded in W/1'p(0,1), we conclude that un
converges weakly to u in W1,p(0,1) as n goes to infinity.

Case II: This is a simple adaptation of the proof given in case I. For brevity we will
not write it.

Case III: Let u be a generic function W1,p(0,1), and let {vn}„ be a sequence in An
such that vn converges to u in W1'p(0,l). For every n let us apply case II to find a
sequence {w£}fc such that wjj converges to vn in Lp(0,1) as k goes to +00 and such that

limsupfc£fc(w£) < £(vn). Then

limsuplimsup£fc(w£) < limsup£(vn) = £(u),
n k n
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where the last equality holds since {vn}n converges strongly in W1,p(0,1) to u. Now by
a standard diagonalization argument we find u„ = such that un converges to u in

Lp(0,l) and limsupn£„(u„) < £(u). □

Remarks. 1) Under our assumptions the energy J** is bounded below; in fact, as
said in the proof, the following inequality holds:

J**(x) > (ci — 2PC3)\x\P — (C2 + c4)

for every x € K.
2) The energies W and W defined in Sections 2 and 3 by Eqs. (13) and (14) satisfy

all the hypotheses of Theorem 2.
3) In Theorem 2 the potential W is allowed to be concave. In this case, assumption

(H3) says that the first and the second neighbours, i.e., the energy W, "dominates" the
third neighbours, i.e, W. We will come back to this point in the conclusions.

4) The energy considered in Theorem 2 was obtained by rescaling the discrete energy,
i.e, £„(un) = AnEn({eln}). Similar rescalings were done also in Sec. 2. As far as the
minimisers are concerned these rescalings have no effect, since all these rescaled energies
have the same minimisers.

5) In this last remark we discuss the simple case studied in Sec. 3. We start by
looking at the case in which W = 0. In this case the function W defined in Theorem 2
is W(t) = \ min{M/(£i) + W(e2): £1 + £2 = 2e}, which is equal to the envelope of E2.
Since, in this case, J = W, we have that J** is equal to the convex envelope of E%. From
Fig. 5 we then deduce that J**(e) = 0 if |e| < 1 and is quadratic outside this interval. It
is easy to see that if n is even, then En(^) = 0 for every even m whose absolute value is
less than or equal to n (a similar formula holds also in the case in which n is odd). Hence
as n is getting larger and larger, we see that En is getting closer and closer to J** (from
Fig. 7 we can already see that the lower envelope of E6 is very close to J**). From the
considerations above we deduce that the minimising sequence constructed in the second
step of the proof of Theorem 2 could have been chosen by looking at the patterns of
phases realising the lower envelope of En.

For the case W/0, similar considerations can be made. In this general case we can
say that J is equal to the sum of the lower envelope of E2 computed assuming W = 0
and VV(2e), or, by noticing that

J{e) = ^ min{H/(£i) + W(e2): £1 + £2 = 2e} + W(2s)

- — min{W(£1) + W(£2) + W(2e) : £1 + £2 = 2£} + — W(2£),

we can say that J is equal to the sum of the lower envelope of E2 with |W(2e). From
these considerations we deduce that J looks like the lower envelope of E2: and from
Fig. 5 and Fig. 7 we see that E§ looks already like J**. A more precise discussion
of the "convergence" of the discrete system to the continuous shall be taken up in the
conclusions for the case K < 0.

We now briefly discuss the minimisation of the energy defined on functions with pre-
scribed boundary values, i.e., the case discussed in Sections 2 and 3. For this purpose
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we introduce the following spaces:

A#n '■= An fl {u: (0,Z) —> R: u(0) = 0 and u(I) = d},

W#'p(0,Z) := M/1,p(0, /) n {u: (0, Z) —> R: u(0) = 0 and u(Z) = d}.

Let £#n be defined as in Eq. (17) but with An replaced by A#n- The following theorem
can be proved just like Theorem 2.

Theorem 3. Assume (HI), (H2), (H3), and (H4). Then with the notation above we
have that the functional T-converges to the functional £#_ defined in Lp(0,Z) by

I+oo otherwise,

where J** is defined in Theorem 2.

The convergence of the minimisers is addressed in the following theorem.

Theorem 4. Assume (HI), (H2), (H3), and (H4). Let {un} € A#n be minimisers of
£#n- Then there exist a subsequence, not relabelled, {u„} and a u € W^p(0,l) such

that u„ converges weakly to u in W^'p(0, Z), u is a minimiser of £#, and

£#(u) = lim £#n(un).
n—»+oo

Proof. It is easy to see (cf. Eq. (20)) that there exist four positive constants a,/?, 7,
and S such that ^

a f |v|pc£r + 0 > £#n(y) > 7 f |v|pdx — 6
Jo Jo

for every n and every v e A#n. Hence, since A#\ C A#n, for every n, we have

+oo > inf a f \v\pdx + P > inf a f |v|pdx + 0
ve^#i Jo ~ vs-4#» Jo

> inf £#n(v) = f#n(u„) >7 [ \iin\pdx - 5,
V€.4#TI Jo

from which we deduce that supn ||un IIi-f < +oo. From Poincare's inequality we then
deduce that supn ||un||wi,P < +oo, and hence there exists a subsequence, not relabelled,
{ura} and a u G W^p{0,1) such that un converges weakly to u in W^p{0, Z). The rest of
the theorem follows immediately from Theorem 1 and Theorem 3. □

6. Conclusions. In this paper we studied a one-dimensional (1-d) model simulating
the shear in a two-dimensional body. The model we used was derived from a two-
dimensional (2-d) model, inspired by Novak and Salje [12, 13], in which it is assumed
that each point interacts with its first-, second-, and third-nearest neighbours. The
passage from the 2-d to the 1 -d model was made by assuming that all the atoms located
in the same vertical layer have the same displacement and that this displacement is in
a fixed direction. Under this assumption we have shown that the potential W of the
first-nearest neighbour in the 1 -d model is a combination of the first and the second
potentials, <pi,<p2 in the 2-d model. We further showed, by taking <pi and if2 to be
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Lennard-Jones potentials, that W could be either a convex function or a double-well
potential. We devoted our attention to the latter case. The discrete system with n + 1
masses was studied in Sec. 4, where, following Puglisi and Truskinovsky [18], we defined
the equilibrium energies En. These energies exhibit global minimiser, local minimisers,
saddle points, and energy barriers; they also allowed us to get an idea of what the
continuum energy looked like. In Sec. 3 we took the potential W of the second-nearest
neighbour of the 1-d model to be a convex function; indeed we took W(x) = 1/2Kx2
with K positive. We here briefly discuss the case in which K is negative; note that the
theorem proved in Sec. 5 allow the potential W to be concave.

Fig. 8. Energies for a chain with six springs and with K equal to
— 1/10, —1/5, and —1/3, respectively

When K is equal to zero and the "chain" has just two springs, the energy E2 (see
Eq. (11)) has four wells all at the same energy level; as stated in Sec. 3, these four
wells have the minima located at (eJ,, £\) 6 {(-1, -1), (1,1), (-1,1), (1, —1)}, which cor-
respond to the configurations represented in Fig. 6. Now, if we consider K negative the
energy level of the wells corresponding to the first two configurations in Fig. 6 is lower
than that corresponding to the last two. Hence, conversely to what we said in Sec. 3,
the system will avoid microstructure at the atomic level and will try to minimise the
number of interfaces between different phases. This statement is partly strengthened by
the result shown in Fig. 8 where the equilibrium energies for a "chain" with six springs
are shown. When K = —1/3, assumption (H3) of Sec. 5 is violated, and as can be seen
from Fig. 8, the energy is unbounded below. In the other two cases, shown in Fig. 8,
there appear seven wiggles. Using the notation introduced in Sec. 3, the state of these
seven wiggles, starting from the one on the left and moving to the right, can be rep-
resented by (1,1,1,1,1,1), (1,1,1,1,1,3), (1,1,1,1,3,3), (1,1,1,3,3,3), (1,1,3,3,3,3),
(1,3,3,3,3, 3), and (3,3,3,3, 3,3). Clearly the state (1,1,1,1,1, 3), for instance, is equiv-
alent to the state (3,1,1,1,1,1). We can notice that all these minimisers have at most one
interface or "wall". As mentioned in the introduction, Novak and Salje [12, 13] studied
numerically the full two-dimensional discrete model (i.e., without the assumption that
we made in Sec. 3); their results also show, among other things, the formation of only
one wall. In our discrete one-dimensional model, it is easy to show that if W is like the
one considered in Sec. 3 and W is a quadratic concave function, then a minimiser has at
most one interface (we were unable to determine, in general, what properties W and W
must possess in order to have only one wall).
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We have already noticed that while the discrete energies En keep track, among other
things, of the wells, the continuum energy J** does not. Hence at the continuum level
we are not able to locate the wells. This problem has been resolved in [14].

Finally we recall that discrete system with nonconvex nearest neighbor interaction and
an additional quadratic long-range interaction was considered by Rogers and Truski-
novsky [20]; they selected the signs of the coefficients in such a way to favor domain
coarsening, like in the case K < 0. Other related papers deal with continuum nonconvex
systems on elastic foundation (see, for instance, Ren and Truskinovsky [19]); the elastic
foundation stimulates microstructure refinement like in the case K > 0.
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