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ABSTRACT

A major cause of seismic attenuation in fluid-saturated
rocks is the flow of the pore fluid induced by the passing
wave. At sonic and ultrasonic frequencies, attenuation ap-
pears to be dominated by the local �pore-scale� flow between
pores of different shapes and orientations. A simple squirt
flow model is developed in which all of the parameters can be
independently measured or estimated from measurements.
The pore space of the rock is assumed to consist of stiff poros-
ity and compliant �or soft� pores present at grain contacts.
The effect of isotropically distributed compliant pores is
modeled by considering pressure relaxation in a disk-shaped
gap between adjacent grains. This derivation gives the com-
plex and frequency-dependent effective bulk and shear mod-
uli of a rock, in which the compliant pores are liquid saturated
and stiff pores are dry. The resulting squirt model is consis-
tent with Gassmann’s and Mavko–Jizba equations at low and
high frequencies, respectively. The magnitude of attenuation
and dispersion given by the model is directly related to the
variation of dry bulk modulus with pressure and is relatively
independent of fluid properties.

INTRODUCTION

A major cause of elastic wave attenuation in fluid-saturated rocks
s the flow of the pore fluid induced by the passing wave. When an
lastic wave propagates through a fluid-saturated medium, it creates
ocal pressure gradients within the fluid phase, resulting in fluid flow
nd corresponding internal friction until the pore pressure is equili-
rated. The fluid flow can take place on various length scales.

Flow between mesoscopic �larger than the pore size but smaller
han the wavelength� patches of rock with different stiffness due to
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ock heterogeneity �White et al., 1975; Pride et al., 2003� or spatial
ariations in fluid saturation �White, 1975; Gist, 1994; Toms et al.,
007� is believed to be significant at seismic frequencies. At sonic
nd ultrasonic frequencies, attenuation appears to be dominated by
he local �pore-scale� flow between pores of different shapes and ori-
ntations �Mavko and Nur, 1975, 1979; Jones, 1986�. Mesoscopic
ow can be treated using all of the machinery of Biot’s theory of po-
oelasticity �Biot, 1956a, b, 1962; Bourbié et al., 1987� with spatially
arying coefficients �Dutta and Ode, 1979a, b; Lopatnikov and
urevich, 1988; Lopatnikov et al., 1990; Auriault and Boutin, 1994;
urevich and Lopatnikov, 1995; Pride et al., 2004; Müller and
urevich, 2005; Johnson, 2001�.
Modeling local flow, also known as squirt, cannot be done in a

imilar manner because local flow depends on various parameters
escribing pore shapes and orientations. Most theoretical models of
quirt-flow attenuation are based on the analysis of aspect ratio dis-
ributions �Mavko and Nur, 1979; O’Connell and Budiansky, 1977;
almer and Traviolia, 1980�; a comprehensive review of these earli-
r studies is by Jones �1986�.An alternative approach is based on the
ecognition that the pore space of many rocks has a binary structure
Walsh, 1965; Mavko and Jizba, 1991; Shapiro, 2003�: relatively
tiff pores, which form most of the pore space, and relatively compli-
nt �or soft� pores, which are responsible for the pressure dependen-
y of the elastic moduli �Murphy et al., 1986; Dvorkin et al., 1995;
hapman et al., 2002�. In particular, Dvorkin et al. �1995� model a

ock as a granular aggregate in which the grains themselves are as-
umed porous. Intergranular pores are stiff, whereas the intragranu-
ar micropores are soft. This model was later reformulated and re-
ned by Pride et al. �2004�. The advantage of the porous grain mod-
l, particularly in the formulation of Pride et al. �2004� over all other
quirt models is in the fact that the medium can be treated as po-
oelastic on the subpore scale and thus is amenable to treatment us-
ng Biot’s equations of poroelasticity with spatially varying coeffi-
ients �Pride and Berryman, 2003�. This model is also consistent
ith Mavko and Jizba’s �1991� predictions for the high-frequency
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N110 Gurevich et al.
imit of elastic moduli, which are known to be in good agreement
ith laboratory measurements �Mavko and Jizba, 1994; Endres and
night, 1997; Wulff and Burkhardt, 1997�. However, the concept of
orous grains is somewhat abstract, and interpretation of parameters
f this imaginary microporous grain in terms of rock properties is
ifficult. Furthermore, application of Biot’s theory to microporous
rains assumes that compliant pores are small compared with the
rain size; this may not be the case for real rocks.

An appealing alternative is the approach of Murphy et al. �1986�,
ho consider compliant pores as gaps at contacts between adjacent
rains, see also Mayr and Burkhardt �2006�. However, the model of
urphy et al. �1986� is not consistent with the well-established high-

requency predictions of Mavko and Jizba �1991�; in fact, its high-
requency prediction for the elastic moduli is unrealistically high.
his inconsistency stems from the fact that the particular formula-

ion of Murphy et al. �1986� is developed within the framework of
he Hertz–Mindlin grain contact theory �Digby, 1982; Winkler,
983�, in which grains themselves are assumed rigid and the compli-
nce of the rock is caused solely by weak grain contacts. In the high-
requency limit, fluid pressure cannot relax between the intergranu-
ar gap and the surrounding �stiff� pore, making its compliance van-
shingly small and rock unrealistically stiff.

In this paper, we propose a new model of squirt-flow attenuation
hat uses a pressure relaxation approach of Murphy et al. �1986� in
onjunction with the discontinuity tensor formulation of Sayers and
achanov �1995�. The resulting model is consistent with the Gas-

mann �1951� and Mavko–Jizba equations at low and high frequen-
ies, respectively, and with the piezosensitivity model of Shapiro
2003�. It can also be naturally incorporated into Biot’s theory of po-
oelasticity to obtain velocity and attenuation prediction in a broad
requency range.

The paper is organized as follows. First, we develop a theoretical
odel for the frequency dependence of elastic moduli due to pres-

ure relaxation in the intergranular contact area. We then analyze the
symptotic behavior of this model in several limiting cases and
resent a simplified formulation for the most important case of liquid
aturation. Finally, we illustrate model prediction with a few labora-
ory data examples.

THEORETICAL MODEL

Following Walsh �1965�, Mavko and Jizba �1991�, and Shapiro
2003�, we assume that the pore space of the rock consists of stiff and
ompliant pores, which form fully interconnected pore space. We as-
ume that the dry rock frame �skeleton� is homogeneous �i.e., con-
ists of a single isotropic mineral with bulk modulus Kg and shear
odulus �g�. The frame is also assumed isotropic on microscale

pore scale� and macroscale �wavelength scale� and is characterized
y stiff porosity �s, compliant porosity �c��s, total porosity �

�s��c ��s, permeability � , and bulk and shear moduli Kdry and
dry, respectively.
The aim of this section is to derive expressions for frequency-de-

endent moduli of our rock when it is fully saturated by a single fluid
ith a bulk modulus Kf and dynamic viscosity � . The frequency de-
endency �dispersion� in our rock can be caused by two principal
echanisms: global flow dispersion due to the flow of fluid relative

o the solid frame caused by the pressure gradients between peaks
nd troughs of the wave, and squirt flow between compliant pores
nd stiff pores. In this paper, we are principally concerned with
quirt flow. Therefore, to ensure that Biot’s dispersion is negligible,
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
e will, for the time being, assume that the characteristic frequency
fBiot of Biot’s dispersion is much higher than the squirt characteristic
requency fc and the frequency of the propagating wave f . Both of
hese conditions will later be lifted.

ow-frequency (relaxed) moduli

In the low-frequency limit, the bulk and shear moduli of our fluid-
aturated rock are given by Gassmann’s equations �Gassmann,
951; White, 1983�

1

Klow
�

1

Kg
�

�� 1

Kf
�

1

Kg
�

1��� 1

Kf
�

1

Kg
��� 1

Kdry
�

1

Kg
� �1�

nd

�low��dry. �2�

assmann’s equations 1 and 2 are valid when f � fc. Physically, this
eans that the wave frequency is sufficiently low so that fluid pres-

ure has enough time to equilibrate between stiff and compliant
ores during half-wave cycle. Thus, the moduli given by Gas-
mann’s equations 1 and 2 can be called “relaxed moduli.”

igh-frequency (unrelaxed) moduli

When the frequency is higher than the squirt characteristic fre-
uency, f � fc, then the fluid pressure does not have enough time to
quilibrate between stiff and compliant pores during half-wave cy-
le �so-called unrelaxed state�. Then, compliant pores at the grain
ontacts are effectively isolated from the stiff pores and hence be-
ome stiffer with respect to normal �but not tangential� deformation.
o quantify this effect, Mavko and Jizba �1991� considered the so-
alled modified frame — the rock in which only compliant pores are
lled with the fluid, whereas stiff pores are empty — and showed

hat unrelaxed �high-frequency� bulk and shear moduli, Kuf and �uf,
espectively, of this modified frame are given by

1

Kuf�P�
�

1

Kh
�� 1

Kf
�

1

Kg
��c�P� �3�

nd

1

�uf�P�
�

1

�dry�P�
�

4

15
� 1

Kdry�P�
�

1

Kuf�P�
�, �4�

here Kh is the dry bulk modulus of a hypothetical rock without the
ompliant porosity �see also Berryman, 2007� and P is differential
ressure. Note that for most rocks, �c�P� is on the order of 10�3 or
maller �Mavko and Jizba, 1991; Shapiro, 2003�. For typical reser-
oir liquids �not gases!�, the bulk modulus Kf is on the order of one
enth of the dry rock modulus and is much smaller than the mineral

odulus Kg. Therefore, the second term in the right-hand side of
quation 3 is at most on the order of 0.01 of the first term and hence is
egligible for most liquids. This means that the bulk modulus of the
odified frame is almost independent of the pressure. However, the

hear modulus �and hence, compressional and shear velocities� still
epends on pressure through the pressure dependency of the dry
ulk and shear moduli K �P� and � �P�.
dry dry
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Asimple squirt-flow model N111
Equation 3 for the unrelaxed bulk modulus of the modified frame
as derived by Mavko and Jizba �1991� as a first-order expansion in

he powers of complaint porosity and implies that �c�Kf
�1

Kg
�1��Kh

�1. Indeed, as discussed above, if the saturating fluid is
iquid, this condition is usually satisfied. However, as will be seen
ater in our derivation, this condition is too restrictive for our purpos-
s. A more general expression for the unrelaxed frame modulus
without any restriction on the fluid compressibility� can be derived
sing Sayers-Kachanov discontinuity formalism �Sayers and
achanov, 1995; Sayers and Han, 2002�. The detailed derivation is
iven in Gurevich et al. �2009a�. The result reads

1

Kuf�P�
�

1

Kh
�

1

1

1

Kdry�P�
�

1

Kh

�
1

� 1

Kf
�

1

Kg
��c�P�

.

�5�

When the fluid is liquid, the term �Kdry
�1�Kh

�1��1 can be neglected
ompared with the term ��c�Kf

�1�Kg
�1���1, and equation 5 yields

avko–Jizba equation 3. However, equation 5 is more general in
hat it is free of any restriction on the fluid modulus. In particular, for
dry rock Kf �0, the term �c�Kf

�1�Kg
�1��1 vanishes and Kuf re-

uces to the dry modulus Kdry, as it should.
The fully saturated unrelaxed moduli can be obtained from the
odified frame moduli using Gassmann’s equations

1

Khigh�P�
�

1

Kg
�

�s� 1

Kf
�

1

Kg
�

1��s� 1

Kf
�

1

Kg
��� 1

Kuf�P�
�

1

Kg
�
�6�

nd

�high�P���uf�P� . �7�

The use of Gassmann’s equations for high frequencies may raise
ome questions. Indeed, Gassmann’s equations assume that fluid
ressure is equalized within the representative volume �RV� of the
ore space. Pressure equilibration can be achieved if the pore space
s interconnected and the frequency is sufficiently low to allow
nough time for pressure to equilibrate within the wave’s half-cycle.
s previously discussed, higher frequency may prevent equilibra-

ion of pressure within a half-wave cycle, effectively making the
ores hydraulically isolated. However, the condition of intercon-
ected pore space is not a necessary condition for the validity of Gas-
mann’s or Biot’s equations. The key condition is the spatially uni-
orm fluid pressure in the pores �within RV�. In particular, Gas-
mann’s equations are exact for a material with a dilute concentra-
ion of randomly distributed isolated spherical pores because the in-
uced pressure is the same in all of these pores �for any frequency
elow the characteristic frequency of scattering�. Approximately,
his is also true for all “equant” pores �pores with aspect ratio on the
rder O�1�� �Thomsen, 1985�. Recently, Grechka �2009� showed
umerically that Gassmann’s equations are excellent approxima-
ions for isolated pores of aspect ratio larger than 0.1. Therefore, as
uggested by Mavko and Jizba �1991�, Gassmann’s and Biot’s equa-
ions are applicable to the stiff pores of our system at seismic and ul-
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
rasonic frequencies. This is also consistent with the well-estab-
ished observation that the squirt-flow dispersion between seismic
nd ultrasonic frequencies is caused mainly by compliant porosity
nd is negligible at high effective stress, at which compliant porosity
s mostly closed and only stiff pores remain. Indeed, the characteris-
ic frequency of squirt-flow dispersion is usually written as

fc��3 K

�
, �8�

here � is the mean aspect ratio of the pores and K is the rock’s bulk
odulus �Jones, 1986�. For stiff pores � �O�1�; thus, the squirt fre-

uency is much larger than 1 MHz even for fluids 1000 times more
iscous than water.

To summarize, the high-frequency moduli of the fully saturated
ock are given by Gassmann’s equations 6 and 7 with the modified
rame moduli given by equations 4 and 5.

requency-dependent (partially relaxed) moduli

odified frame

Now we set out to derive expressions for the moduli of the rock at
ntermediate frequencies, which represent some intermediate state
etween the low- and high-frequency limits. Note that because com-
liant porosity is always small, �c��s, we have �s ��. Therefore,
aturated high-frequency moduli are given by the same Gassmann’s
quations 6 and 7 as the low-frequency moduli �equations 1 and 2�,
xcept that for high frequencies the dry moduli Kdry and �dry are re-
laced by the unrelaxed frame moduli Kuf and �uf. Furthermore, we
ote that the dry moduli Kdry and �dry can also be considered as the
oduli of the modified frame �rock with empty stiff pores but fluid-
lled compliant pores� but in a relaxed state; that is, when compliant
ores are in full-pressure equilibrium with the stiff pores. Because in
he modified frame stiff pores are empty, the pressure in compliant
ores is zero. Thus, the relaxed moduli of the modified frame are
qual to the rock’s dry, or drained, moduli. In other words, the fully
aturated �undrained� moduli of the rock in the low- and high-fre-
uency limits are given by the same Gassmann’s equations

1

Ksat�P,��

�
1

Kg
�

�s� 1

Kf
�

1

Kg
�

1��s� 1

Kf
�

1

Kg
��� 1

Kmf�P,��
�

1

Kg
�
�9�

nd

�sat�P,����mf�P,��, �10�

here the modified frame moduli Kmf and �mf are to be taken at low-
nd high-frequency limits, respectively. Furthermore, it is logical to
ssume that moduli at the intermediate frequencies between these
imits are also given by Gassmann’s equations 9 and 10 with the

odified Kmf and �mf taken at the corresponding frequency. Thus,
he problem of finding the frequency-dependent moduli of the fully
aturated rock reduces to the problem of finding the frequency de-
 SEG license or copyright; see Terms of Use at http://segdl.org/
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N112 Gurevich et al.
endency of the moduli of the modified frame, where compliant
ores are fluid filled and stiff pores are dry.

luid relaxation in the area of grain contact

It is often the case with heterogeneity-related dispersion mecha-
isms that the low- and high-frequency limits of elastic moduli are
ndependent of intricacies of geometry, but the shape of the frequen-
y dependency of the moduli is defined by the particular geometrical
onfiguration.Agood example is a porous rock saturated with patch-
s of two immiscible fluids �Johnson, 2001� in which the low- and
igh-frequency moduli are uniquely defined by the properties of the
ock matrix, the properties of the two fluids, and their volume frac-
ions. In contrast, the frequency dependency of the moduli �and at-
enuation� is controlled by the size and shape of the patches.

The squirt-flow dispersion has the same feature. The low-frequen-
y moduli are given by the exact Gassmann’s equations, which in-
olve only one explicit parameter of the pore space-total porosity.
he high-frequency limit �ignoring Biot’s dispersion for a moment�
s given by equations 4–7 requires, additionally, the knowledge of
he compliant porosity. However, to model the frequency dependen-
y of the moduli, we need to assume a particular geometrical config-
ration. Here we assume a particular geometry proposed by Murphy
t al. �1986�: a compliant pore forms a disk-shaped gap between two
djacent grains, and its edge opens into a toroidal stiff pore �Figure
�. It is assumed that the gap also has asperities; thus, its stiffness is
nite even when the gap is empty. However, these asperities are as-
umed �somewhat arbitrarily� not to affect the geometry of the gap as
ar as the fluid movement is concerned. The gap has radius a and
hickness h. The additional effective stiffness K* of the gap due to the
resence of fluid can be defined as a ratio of the force �F �acoustic
orce� exerted by the fluid onto the gap wall to the uniaxial dynamic
oading �displacement� ��h

K*�
�F

��h
. �11�

he force is essentially the integral of pressure over the surface Sg of
he gap,

�F�	
Sg

p�r�dS .

or sinusoidal loading, �h exp�i�t� with frequency � �2� f , fluid
ressure p can be obtained as a solution of the ordinary differential
quation

d2p

dr2 �
1

r

dp

dr
�k2p�C, �12�

here r is the radial coordinate;

Grain

Complaint pore

a

Grain

h
Stiff

Pore

igure 1. Sketch of the model configuration �Murphy et al., 1986�.
oft pore forms a disc-shaped gap between two grains, and its edge
pens into a toroidal stiff pore.
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
k2�
�i�h0D

Kf
, �13�

s the wavenumber of the pressure diffusion wave in the gap; D
12� /h0

3 is the viscous resistance, C� i�D�h; and h0 is the initial
hickness of the gap.

These equations have been presented by Murphy et al. �1986� to
btain an undrained saturated modulus. Thus, their boundary condi-
ion at the edge of the gap is the equation of fluid mass conservation
etween the gap and the annular pore. On the other hand, in the mod-
fied frame, only the intergranular gap is fully filled with the fluid,
hereas the stiff �toroidal� pore is drained. Thus, in contrast to Mur-
hy et al. �1986�, our boundary condition �for equation 12� at the
dge of the gap �r�a� is that the fluid pressure p is zero


p
r�a�0. �14�

Equation 12 is an inhomogeneous Bessel equation with a constant
ight-hand side. Substitution of

p�q�
C

k2 ;

ives

d2q

dr2 �
1

r

dq

dr
�k2q�0, �15�

hich is a homogeneous Bessel equation of zero order �Abramowitz
nd Stegun, 1964�. The general solution of this equation is

q�C1J0�kr�,

hich gives

p�C1J0�kr��
C

k2 .

ubstitution of this general solution into the boundary condition 14
ives

C1��
C

k2J0�ka�
,

o that the pressure in the gap is given by

p�
C

k2�1�
J0�kr�
J0�ka�� .

hen the force �F is

�F�2�	
0

a

p�r�rdr�2�
C

k2a2

2
�

1

J0�ka�	
0

a

J0�kr�rdr�
r

�F���a2�1�
2J1�ka�
kaJ0�ka���hKf

h0
.

ubstitution of this force into equation 11 gives the following ex-
ression for the fluid-related gap stiffness:
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Asimple squirt-flow model N113
K*��a2�1�
2J1�ka�
kaJ0�ka��Kf

h0
. �16�

ffective modulus of partially relaxed fluid

In the low-frequency limit, k→0; thus, K* vanishes. This corre-
ponds to the fact that at the low frequencies the fluid poses no resis-
ance to gap deformation. At sufficiently low frequencies, the pres-
ure in the gap will be equilibrated and thus will be zero throughout
he gap. Conversely, in the limit of high frequency, equation 16 gives

K*�
�a2

h0
Kf . �17�

his is the gap resistance in the unrelaxed state, when fluid has no
ime to escape from the gap within the half-period of the wave. Com-
arison of equations 16 and 17 shows that, at any given frequency,
he gap stiffness is the same as the unrelaxed stiffness computed for a

odified fluid with a bulk modulus

K
f
*�P,����1�

2J1�ka�
kaJ0�ka��Kf . �18�

ubstitution of K
f
* for the fluid modulus Kf in equation 5 gives the fi-

al expression for the partially relaxed modulus Kmf of the modified
rame.

1

Kmf�P,��

�
1

Kh
�

1

1

1

Kdry�P�
�

1

Kh

�
1

� 1

K
f
*�P,��

�
1

Kg
��c�P�

.

�19�

hen, the corresponding partially relaxed shear modulus �mf of the
odified frame can be obtained by substituting Kmf for Kuf in equa-

ion 4

1

�mf�P,��
�

1

�dry�P�
�

4

15
� 1

Kdry�P�
�

1

Kmf�P,��� .

�20�

ote that the wavenumber k of the pressure wave, as given by equa-
ion 13, is complex and frequency dependent

k2��
12i��

h0
2Kf

, �21�

nd so are the effective fluid modulus K
f
* and partially relaxed frame

oduli Kmf and �mf. This implies the presence of velocity dispersion
nd attenuation.

Equations 19 and 20 provide closed-form expressions for bulk
nd shear moduli of the modified frame �whereby soft pores are flu-
d-filled whereas stiff pores are dry�. Once modified frame moduli
re obtained, the moduli of the fully saturated medium can be ob-
ained using Gassmann’s or Biot’s equations. If the frequency is
mall compared to Biot’s characteristic frequency fBiot, then the bulk
odulus of the fully saturated medium can be computed using Gas-
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
mann equation 9, whereas the shear modulus remains unchanged
see equation 10�. If the frequency is comparable to or larger than

fBiot, then dispersion equations of the full Biot’s theory of poroelas-
icity have to be used. This latter approach allows us to compute dis-
ersion and attenuation due to both squirt and Biot’s mechanisms.

symptotes

Frequency dependency of the partially relaxed modified frame
oduli is controlled by the quantity

ka�
1

�
��

3i��

Kf
�1/2

, �22�

hich depends on two new parameters: fluid viscosity � and aspect
atio of the gaps �or compliant pores� � �h0 /2a. Its squared value

� 
ka
2 is proportional to frequency and can be used as dimen-
ionless frequency. Figure 2a and b shows the predictions of the
odel based on equation 19 combined with Gassmann’s equation 9

or the bulk modulus �real part� and inverse quality factor as func-
ions of frequency at different pressure levels for the sample of Berea
-600 sandstone �Han et al., 1986� fully saturated with water �Kf

2.2 GPa, 
 f �1031 kg /m3, � �10�3 Pa·s�. Figure 3a and b
hows the same dependencies for the same sample saturated with gas
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N114 Gurevich et al.
Kf �0.0022 GPa, 
 f �10.8 kg /m3, � �11�10�5 Pa·s�. The
orkflow for estimation of Kh and �c is described inAppendix A.
For the water-saturated rock �Figure 2a and b�, the bulk modulus

hows a smooth transition from the low- to high-frequency limit.
imilar behavior is observed for the gas-saturated rock �Figure 3a
nd b�; however, not surprisingly the dispersion appears to be much
maller in this case. Attenuation for the water-saturated rock shows
lightly more complex behavior, revealing existence of one addi-
ional asymptote at the intermediate frequencies �approximately
06 –108 Hz�, and one additional transition frequency �approximate-
y 109 Hz�.

To understand the behavior of attenuation in the water-saturated
ase, we consider three limiting cases.

1) Low frequencies. In this limit we have 
ka
2�1 and


ka
2�
8�c�P�

� 1

Kdry�P�
�

1

Kh
�Kf

. �23�

hen, Taylor expansion of Bessel functions in equation 18 in powers
f ka gives
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igure 3. Predictions of �a� the real part of the bulk modulus and �b�
imensionless attenuation for a range of frequencies and pressures
shown by different line patterns� for a gas-saturated sample of Be-
ea 5-600 sandstone. Solid lines show asymptotic frequency depen-
encies of attenuation: �1 at low frequencies and ��1/2 at high fre-
uencies.
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K
f
*��

1

8
�ka�2Kf . �24�

ubstitution of this expression into equation 19 gives

1

Kmf�P,��
�

1

Kh
�

1

1

1

Kdry�P�
�

1

Kh

�
�ka�2Kf

8�c�P�

. �25�

nder condition 23, equation 25 gives the following asymptote for
he modified frame modulus:

Kmf�P,���Kdry�P�

��1�
�ka�2

8�c�P�
� 1

Kdry�P�
�

1

Kh
�2

KfKdry�P�� .

�26�

his shows that in the low-frequency limit, the modified frame mod-
lus tends to the dry modulus. The corresponding asymptotic ex-
ression for the dimensionless attenuation is

Q�1�P,���
1

8
� 1

Kdry�P�
�

1

Kh
�2Kdry�P�Kf

�c�P�

ka
2

�
3

8
� 1

Kdry�P�
�

1

Kh
�2��Kdry�P�

�2�c�P�
�27�

2) Intermediate frequencies.

8�c�P�

� 1

Kdry�P�
�

1

Kh
�Kf

� 
ka
2�1. �28�

n this case we can again use Taylor expansions 24 and 25. Under
ondition 28, equation 25 reduces to

Kmf�P,���Kh�1�
8�c�P�
�ka�2

Kh

Kf
� . �29�

he corresponding asymptotic expression for dimensionless attenu-
tion is

Q�1�P,���
8�c�P�


ka
2
Kh

Kf
�

8�c�P��2Kh

3��
. �30�

ote that for this regime to exist we must have

8�c�P�

� 1

Kdry�P�
�

1

Kh
��Kf . �31�

his means that the fluid modulus must not be too small �“liquid
ase”�. This explains why this regime is not observed in the gas case
see Figure 3b�. Note that in this intermediate regime, attenuation is
roportional to 1 /�.
3) High frequencies:
ka
2�1. In this case equation 18 gives

K
f
*��1�

2i

ka
�Kf . �32�
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Asimple squirt-flow model N115
ubstitution of expression 32 into equation 19 gives high-frequency
symptotes for Kmf and the corresponding attenuation factor. In par-
icular, for the liquid case �condition 31�, the expressions for these
symptotes are given by

Kmf�P,���Kuf�P���c�P�
Kh

2

Kf
� 2i

ka
�

�Kh�1�
Kh

Kf
�2i�c�P�

ka
�� �33�

nd

Q�1�P,���
Kh

Kf
��2�c�P�


ka

��

��c�P�Kh

�3��Kf /2�1/2 . �34�

ote that in this high-frequency limit, attenuation is proportional to
/��.

implified model for the liquid case

As we have seen in the previous section, for the most important
ase of liquid saturation, the attenuation exhibits three asymptotic
egimes. However, only two regimes are visible in the velocity dis-
ersion. This may look strange, but can be easily understood if we
otice that the real parts of the modified frame moduli at intermedi-
te and high frequencies are Kh �high-pressure dry modulus� and Kuf

unrelaxed modulus�, respectively, as given by equations 29 and 33.
s discussed earlier, for liquid saturation, the difference between

hese moduli is usually negligible �see equation 3 and corresponding
iscussion�. Thus, the transition of the real parts of the modified
rame moduli from the intermediate — to high-frequency regimes is
nnoticeable and can be ignored. Moreover, the same can be said
bout attenuation. Indeed, attenuation corresponding to the high-fre-
uency regime is negligibly small �this can be understood from the
act that in the intermediate regime the attenuation decays as 1 /�
nd rapidly becomes very small�. We thus can conclude that the tran-
ition from intermediate — to high-frequency regimes is unimpor-
ant, and for all practical purposes the behavior described by equa-
ion 19 is accurately approximated by much simpler equation 25,
hich describes a single dispersion transition. Equation 25 can also
e rewritten in the form

1

Kmf�P,��
�

1

Kh
�

1

1

1

Kdry�P�
�

1

Kh

�
3i��

8�c�P��2

, �35�

ith the shear modulus given by equation 20. It is interesting that
ispersion and attenuation behavior predicted by this model does not
xplicitly depend on fluid compressibility. However, we should keep
n mind that the fluid compressibility must be sufficiently small
modulus large� to satisfy condition 31.

Equations 25 and 35 describe a simple transition of the modified
rame modulus from Kdry to Kh. The characteristic transition frequen-
y can be obtained from the intersection of asymptotes given by
quations 27 and 30. This gives
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
	 t� 
ka
2�
8�c�P�

Kf
� 1

Kdry�P�
�

1

Kh
��1� Kh

Kdry�P��1/2
.

�36�

n this equation, compliant porosity �c and dry modulus Kdry are
unctions of pressure. Equation 36 can be simplified by noting that
ressure variation of dry modulus is caused by progressive closure
f compliant porosity. Indeed, according to Shapiro �2003�, the dif-
erence between dry and high-stress compressibilities Kdry

�1�Kh
�1 is

roportional to the compliant porosity �c

1

Kdry�P�
�

1

Kh
�

�c�P�
Kh

� c, �37�

here � c is the parameter of stress sensitivity related to the compli-
nce of compliant pores �or their effective aspect ratio�. This gives

	 t� 
ka
2�
8Kh

� cKf
� Kh

Kdry�P��1/2
�38�

r

�t�
8�2Kh

3�� c
� Kh

Kdry�P��1/2
. �39�

or a small concentration of randomly oriented penny-shaped
racks, parameter � c can be related to their aspect ratio � by �see e.g.,
avko et al., 1998�

� c�
Kg�3Kg�4�g�

���g�3Kg��g�
. �40�

sing equation 40, expression 39 for squirt characteristic frequency
an be written as

�t��3 B

�
, �41�

here

B�
8��h�3Kh��h�

3�3Kh�4�h� � Kh

Kdry�P��1/2
�42�

s a combination of the dry moduli of the rock, which have dimen-
ions of elastic moduli and are weakly dependent on pressure �in
quation 42, �h is dry shear modulus of the rock without compliant
ores�.

Note that in bilogarithmic scale, asymptotes 27 and 30 have iden-
ical slopes. Thus, the attenuation peak given by equation 25 is sym-

etric about the transition frequency 	 t, and maximum attenuation
ccurs exactly at 	 t �or �t�. This maximum attenuation value can be
btained by substituting equation 38 into 25 and taking imaginary
nd real parts �note that �ka�2��i
ka
2�. This yields

Q�1�P,�t��
Kh�Kdry�P�
Kh�Kdry�P�� Kh

Kdry�P��1/2
. �43�

ecall that Kh is nothing more than Kdry in the limit of high pressure.
f the variation of dry bulk modulus with pressure is moderate, then
Kh /Kdry�1/2�O�1� and thus the peak attenuation is equal to half of
he fractional variation of the dry bulk modulus with pressure. For
xample, if the difference between Kdry and Kh is 20%, then Q will be
pproximately 10.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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N116 Gurevich et al.
The theory presented here gives expressions for dispersion and at-
enuation in the modified frame �whereby soft pores are fluid-filled
hile stiff pores are dry�.As mentioned earlier, the moduli of the ful-

y saturated medium can be obtained using Gassmann’s or Biot’s
quations.

LABORATORY DATA EXAMPLES

In this section, we illustrate predictions of our squirt model on
everal rocks and compare these predictions with laboratory mea-
urements. Our aim is to illustrate the behavior of the model on a few
amples. A comprehensive experimental validation of the model is
ertainly in order but will be done in a separate study.

Figure 4a and b shows a comparison between measured �solid cir-
les� and predicted by our model �solid lines� compressional and
hear velocities as functions of pressure for a water-saturated sample
f Berea 5-600 sandstone �Han et al., 1986�. We also plot the mea-
urements carried out on a dry sample �empty circles� as well as the
redictions by the Mavko–Jizba model �dashed lines� and Gas-
mann’s �dotted lines� and Biot’s equations �dash-dot lines�. The pa-
ameters of the grain material are taken to be density 
g

2653 kg /m3 and the grain bulk modulus Kg�39 GPa, which is
stimated by assuming that at the highest pressures the saturated
ulk modulus is given by Gassmann’s equation. The compliant po-
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a)

b)

igure 4. Velocities of �a� compressional and �b� shear waves in a
ample of Berea 5-600 sandstone as a function of pressure: ultrason-
c laboratory measurements on dry �empty circles� and water-satu-
ated �solid circles� sample, predictions of the Mavko–Jizba �1991�
odel �dashed line�, Gassmann’s �dotted line� and Biot’s �dash-dot

ine� theories, and predictions of the present model �solid line�.
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
osity is obtained from velocity in the dry sample using the theory of
hapiro �2003�. The aspect ratio of the grain contact � �0.01 is ob-

ained by the best fit of the predictions to the experimental data. The
etails of the parameter estimation are given in Appendix A. Figure
a and b and Figure 6a and b show the dispersion and attenuation of
ompressional and shear velocities, respectively, as functions of
ressure and frequency. We observe the decrease of dispersion and
ttenuation with increasing pressure. This is logical because pres-
ure increase causes closure of compliant porosity.

Figure 7a and b shows a comparison between measured and pre-
icted velocities as functions of pressure for a water-saturated car-
onate sample S1 �Agersborg et al., 2008�. The model parameters
or the carbonate sample are taken to be 
g�2670 kg /m3 and Kg

82 GPa. The aspect ratio of the grain contacts obtained by the best
t of the prediction to the experimental data is � �0.01. We see that
or the sandstone and carbonate samples our model describes the ob-
erved shape of the pressure dependency reasonably well.

DISCUSSION

In this paper, we have developed a simple model of elastic wave
ttenuation and dispersion due to squirt flow between stiff and soft
ores in a granular rock. The model applicability is shown on a cou-

a)

b)

igure 5. Predictions of �a� velocity and �b� attenuation of P-wave in
water-saturated sample of Berea 5-600 sandstone as a function of

requency and pressure.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Asimple squirt-flow model N117
le of illustrative examples. By construction, the model is exactly
onsistent with Gassmann’s theory in the low-frequency limit and
ith the Mavko–Jizba model in the high-frequency limit. The ex-
ression for the characteristic frequency �t, equation 41, is the same
s the commonly used expression for squirt frequency �Jones, 1986�,
xcept that in our model the bulk modulus of the rock is replaced by a
ombination of bulk and shear moduli. Furthermore, for liquid-satu-
ated rocks the attenuation and dispersion curves are symmetric
bout �t in log-log scale.Attenuation 1 /Q is proportional to � at low
requencies, and to 1 /� at high frequencies. The magnitude of atten-
ation and dispersion is directly related to the variation of dry bulk
odulus with pressure.All of these features are also characteristic of

he double-porosity model of Pride et al. �2004�. The model present-
d here is designed to describe the same physical processes as the
ouble-porosity model but uses a very different theoretical approach
nd is much simpler. An important advantage of our model is that it
ives closed-form expressions for velocity and attenuation as func-
ions of frequency and pressure. The model is particularly simple for
he most important and rather general case of liquid-saturated rocks.
n this case the dispersion and attenuation is given by equation 35,
hich corresponds to a viscoelastic model known as a standard lin-

ar solid �Zener, 1948; Mavko et al., 1998�. This makes the model
asy to implement in viscoelastic and poroviscoelastic forward

a)

b)

igure 6. Predictions of �a� velocity and �b� attenuation of S-wave in
water-saturated sample of Berea 5-600 sandstone as a function of

requency and pressure.
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
odeling using finite element and finite difference methods �Car-
ione, 2007�.

The model contains one adjustable parameter — the aspect ratio
f compliant pores.All other parameters can be measured or estimat-
d from measurements of ultrasonic velocities and strains versus
onfining pressure on dry samples. The workflow for estimation of
hese parameters is described inAppendix A. One assumption in this
orkflow is that all compliant pores are closed at the upper limit of

he pressure range of the measurements; hence, ultrasonic velocities
ecome independent of pressure. Therefore, there is no squirt at
hese pressures and the saturated and dry velocities should approxi-

ately satisfy Gassmann’s �or Biot’s� equations. This is the case in
he example given in Figure 4a and b. However, in many other cases
he compliant pores will not be completely closed at the pressure of
0 or even 100 MPa. This can be seen by the fact that in many cases
he dry velocities at these pressures continue to increase with the
ressure increase. This closure of remaining compliant porosity is
esponsible for the linear term in the velocity-pressure relationship
f Eberhart-Phillips et al. �1989�, which is based on the analysis of
easurements on a large set of sandstone samples from different ar-

as of the world �Han et al., 1986�. The significance of this term has
een recently demonstrated by Vernik and Hamman �2009� and
urevich et al. �2009b�. If the compliant pores close at higher pres-
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igure 7. Velocities of �a� compressional and �b� shear waves in a
ample of S1 carbonate as a function of pressure: ultrasonic labora-
ory measurements on dry �empty circles� and water-saturated �solid
ircles� sample, predictions of the Mavko–Jizba �1991� model
dashed line�, Gassmann’s �dotted line� and Biot’s �dash-dot line�
heories, and predictions of the model presented here �solid line�. In
his case, Gassmann’s and Biot’s predictions coincide.
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N118 Gurevich et al.
ures than the available range of experimental data, then the modu-
us Kh cannot be estimated directly from the measurements. Instead,

h should be estimated using some effective medium theory assum-
ng a typical aspect ratio of stiff pores in a particular rock �see e.g.,
u and White, 1995�.
The particular frequency dependency of velocity and attenuation

escribed by our theoretical model is a consequence of using soft po-
osity with a single aspect ratio. Many experimental studies show
uch more gradual variation of Q with frequency, or even constant
. In the context of squirt flow models, such frequency dependency

s often explained by assuming a broad distribution of aspect ratios
O’Connell and Budiansky, 1977�. A broad distribution of aspect ra-
ios is also often invoked to explain the exponential stress dependen-
y of elastic moduli. However, recent analysis based on the theoreti-
al model of Shapiro �2003� suggests that such stress dependencies
an be explained by a combination of only two aspect ratios: one for
tiff pores and one for soft pores �Pervukhina et al., 2010�. As noted
bove, this analysis is based on the dependency of elastic moduli in
he range of confining stress up to 50–70 MPa. One can speculate
hat the stress dependency of elastic moduli in a broader range of
tresses may reveal the presence of a broader range of pore aspect ra-
ios. This in turn can affect the frequency dependency of velocity and
ttenuation caused by squirt. This issue requires further investiga-
ion.

Experimental validation of our model requires a comparison of its
redictions against measurements of fluid-saturated velocities and
ttenuation factors versus frequency and pressure. The frequency
ange of ultrasonic measurements is usually quite narrow �e.g.,
.25–1 MHz� which makes it difficult to observe the velocity dis-
ersion. One way to overcome this difficulty is to look at variations
f velocity �and attenuation� with fluid viscosity. This can be done by
aturating the same sample with several different fluids �e.g., Best
nd McCann, 1995; Adam et al., 2009� or using a fluid �e.g., glycer-
l� for which the viscosity can be varied by changing temperature
Jones, 1986�. Alternatively, frequency dependency can be obtained
rom resonant bar �Born, 1941; Gardner, 1962; Wyllie et al., 1962;

cCann and Sothcott, 2009� or forced-oscillation measurements
Batzle et al., 2006; Adam et al., 2009�. A comprehensive compari-
on of model predictions with laboratory data will be a subject of a
eparate study.

CONCLUSIONS

We have developed a simple model of squirt-flow relaxation in
ranular fluid-saturated media. The model gives closed-form ex-
ressions for velocity and attenuation as functions of frequency and
ressure. The results are exactly consistent with Gassmann’s theory
n the low-frequency limit and with Mavko–Jizba unrelaxed moduli
n the high-frequency limit. For liquid-saturated rocks, the attenua-
ion and dispersion correspond to the model of standard linear solid,
ith coefficients directly related to the elastic and hydraulic proper-

ies of the medium. Attenuation factor 1 /Q is proportional to � at
ow frequencies and to 1 /� at high frequencies. The magnitude of
ttenuation and dispersion is directly related to the variation of the
ry bulk modulus with pressure and is relatively independent of fluid
roperties. The model contains one adjustable parameter — the as-
ect ratio of compliant pores �grain contacts�. All other parameters
an be measured or estimated from measurements of ultrasonic ve-
ocities and strains versus confining pressure on dry samples.
Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to
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APPENDIX A

ESTIMATION OF MODEL PARAMETERS

Our model given by equations 35 and 20 predicts modified frame
oduli and, when combined with Gassmann’s or Biot’s theory, com-

ressional and shear wave moduli, velocities, and attenuation coeffi-
ients of a fully saturated rock as a function of frequency and materi-
l properties �of the rock frame and pore fluid�. Because the model
ontains several parameters, it is always possible to fit it to data suffi-
iently well by varying the unknown parameters. It is therefore criti-
al to measure or estimate independently as many parameters as pos-
ible �i.e., to perform a controlled experiment�. In a typical laborato-
y setup, compressional and shear ultrasonic velocities are measured
n dry and fluid-saturated rock samples as a function of pressure.
hus, parameters Kdry and �dry as functions of pressure can be ob-

ained from the ultrasonic measurements using standard equations
dry� �VP

2 � �4 /3�VS
2�
 and �dry�VS

2
. Below we describe how the
ther parameters of the model can be estimated from the laboratory
easurements.

igh-pressure modulus

High-pressure modulus Kh can be taken as Kdry at the highest pres-
ure available. Note that this approach assumes that at this pressure
ll of the compliant porosity is closed and corresponds to the fact that
dry as function of pressure has leveled off at this pressure value.

ompliant porosity

Compliant porosity �c cannot be directly measured; however, it
an be estimated from the variation of total porosity with pressure.
or instance, this variation can be estimated by measuring volumet-
ic strain as a function of pressure using strain gauges. Once the total
orosity variation is known, stiff porosity can be estimated by fitting
linear trend to total porosity in the high-pressure range where com-
liant porosity is assumed closed �and thus total porosity equals stiff
orosity� �Figure A-1�. Compliant porosity can be obtained as a dif-
erence between total porosity and the linear trend of stiff porosity
xtrapolated to the lower pressures �Walsh, 1965; Mavko and Jizba,
991; Pervukhina et al., 2010�. However, note that because compli-
nt porosities are usually 0.001 or less, high-accuracy measurements
f total porosity variations with pressure are required.

If such precise porosity measurements are not available, compli-
nt porosity can be estimated from the stress dependency of dry elas-
ic moduli obtained from ultrasonic measurements as suggested by
ervukhina et al. �2010�. Stress dependency of the dry bulk modulus
an be approximated as follows �Shapiro, 2003�

1/Kdry�P��1/Kh� ��c0/Ph�exp��P/Ph�, �44�

here �c0 is compliant porosity at zero pressure and Ph is a charac-
eristic pressure at which compliant porosity closes. The parameters
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Asimple squirt-flow model N119
c0 / Ph and Ph can be obtained by fitting of the stress dependency of
ulk moduli using equation 44 and �c0 can be estimated as a ratio of
hese fitting parameters. Then the pressure variation of compliant
orosity can be written as

�c�P���c0 exp�P/Ph� . �45�

Note that neither of the two compliant porosity estimation ap-
roaches utilizes the velocity or attenuation measurements on satu-
ated samples. Therefore, these estimates are independent of disper-
ion/attenuation data.

spect ratio of the contact gap

Like compliant porosity, aspect ratio � of the grain contact gap
annot be directly measured. It is tempting to estimate the gap aspect
atio from the variation of, say, dry moduli with compliant porosity
e.g., using elastic effective medium theory; Küster and Toksöz,
974; Berryman, 1980�. However, the aspect ratio that controls fluid
ressure relaxation in the flat intergranular gap may not be related to
he aspect ratio of penny-shaped cracks that control the pressure
ariation of the effective elastic moduli of the dry rock. In this study,
e use gap aspect ratio � as a free-fitting parameter and estimate it as

he value that provides the best fit for modulus-pressure dependency
n saturated samples �Figures 4 and 7�.
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