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Received: 14 January 2016 – Discussion started: 29 February 2016

Revised: 9 September 2016 – Accepted: 8 March 2017 – Published: 10 May 2017

Abstract. As the melt season progresses, sea ice in the Arctic

often becomes permeable enough to allow for nearly com-

plete drainage of meltwater that has collected on the ice sur-

face. Melt ponds that remain after drainage are hydraulically

connected to the ocean and correspond to regions of sea ice

whose surface is below sea level. We present a simple model

for the evolution of melt pond coverage on such permeable

sea ice floes in which we allow for spatially varying ice melt

rates and assume the whole floe is in hydrostatic balance.

The model is represented by two simple ordinary differential

equations, where the rate of change of pond coverage de-

pends on the pond coverage. All the physical parameters of

the system are summarized by four strengths that control the

relative importance of the terms in the equations. The model

both fits observations and allows us to understand the behav-

ior of melt ponds in a way that is often not possible with more

complex models. Examples of insights we can gain from the

model are that (1) the pond growth rate is more sensitive to

changes in bare sea ice albedo than changes in pond albedo,

(2) ponds grow slower on smoother ice, and (3) ponds re-

spond strongest to freeboard sinking on first-year ice and

sidewall melting on multiyear ice. We also show that under

a global warming scenario, pond coverage would increase,

decreasing the overall ice albedo and leading to ice thinning

that is likely comparable to thinning due to direct forcing.

Since melt pond coverage is one of the key parameters con-

trolling the albedo of sea ice, understanding the mechanisms

that control the distribution of pond coverage will help im-

prove large-scale model parameterizations and sea ice fore-

casts in a warming climate.

1 Introduction

Over the past 40 years, Arctic summer sea ice extent has re-

duced by 50 %, making it one of the most sensitive indica-

tors of man-made climate change (Serreze and Stroeve, 2015;

Stroeve et al., 2007; Perovich and Richter-Menge, 2009).

This rapid decrease is at least partially due to the ice-albedo

feedback (Zhang et al., 2008; Screen and Simmonds, 2010;

Perovich et al., 2007). Moreover, if the ice-albedo feedback

is strong enough it could lead to instabilities and abrupt

changes in ice coverage in the future (North, 1984; Holland

et al., 2006; Eisenman and Wettlaufer, 2008; Abbot et al.,

2011). The albedo of ice is significantly reduced by the pres-

ence of melt ponds on its surface (Eicken et al., 2004; Per-

ovich and Polashenski, 2012; Yackel et al., 2000). Therefore,

understanding the evolution of melt ponds is essential for un-

derstanding the ice-albedo feedback and, consequently, the

evolution of Arctic sea ice cover in a warming world. This

means that accurate melt pond parameterizations must be in-

corporated into global climate models (GCMs) to improve

their sea ice forecasts (Flocco et al., 2010; Holland et al.,

2012; Pedersen et al., 2009). The main difficulties with in-

cluding accurate melt pond parameterizations in large-scale

models are that pond evolution is nonlinear and that it is the

result of a variety of different physical processes operating

on a range of length and time scales. For these reasons, it is

important to understand the mechanisms that drive the evo-

lution of melt ponds.

Typically, the evolution of pond coverage on first-year ice

proceeds in fairly consistent stages (Polashenski et al., 2012;

Perovich et al., 2003; Landy et al., 2014; Webster et al.,

2015). First the ponds grow quickly while the ice is imper-

meable. Next they drain quickly and pond coverage shrinks

as the ice transitions from impermeable to permeable. Then
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the ponds grow slowly while the ice is permeable and pond

water remains at sea level. Finally, the ponds either refreeze

or the floe breaks up. The stage when ice is highly permeable

is typically the longest, often longer than the first two stages

combined. This stage is particularly suitable to model, since

the ponds can be assumed to be at sea level and hydraulically

connected to the ocean. On multiyear ice, ponds also experi-

ence a growth and a drainage stage, but often do not drain to

sea level. On some occasions, however, ponds on multiyear

ice can drain to sea level as well.

In this paper we will present a simple “0-D” model for the

evolution of melt pond coverage on sea ice floes. We will

assume that ice is permeable, ponds are at sea level and hy-

draulically connected to the ocean, the whole ice floe is in

hydrostatic balance, and different points on the ice surface

may melt at different rates. The purpose of our model is (1) to

clarify the roles in the evolution of pond coverage played by

energy fluxes, the ice thickness, bulk ice density, ice rough-

ness, and initial pond coverage; (2) to provide a simple, yet

accurate, way to estimate the pond coverage as a function of

time; (3) to understand the behavior of melt ponds under gen-

eral environmental conditions; and (4) to investigate different

types of qualitative behavior that can arise from differential

melting and maintaining hydrostatic balance.

Skyllingstad et al. (2009) also describe pond growth on

permeable ice, but they include only pond growth by lateral

melt of pond walls. This contrasts with our model, which

includes pond growth by vertical changes of the topogra-

phy. Our models are different, but complementary, and we

will draw parallels between our two models when discussing

the possibility of lateral melt. Aside from Skyllingstad et al.

(2009), previous melt pond modeling efforts include works

by Taylor and Feltham (2004), Lüthje et al. (2006), Scott

and Feltham (2010), and Flocco and Feltham (2007), who

all created comprehensive models that allowed for more re-

alistic representations of physical processes such as heat and

salt balance, and meltwater routing and drainage. The advan-

tage of our model is its simplicity, which makes it possible to

clarify the roles of each of the physical parameters involved.

This paper is organized in the following way. In Sect. 2

we build a simple model for the evolution of pond coverage.

In Sect. 3, we compare the model to observations. In Sect. 4

we discuss realistic values of physical parameters and solve

the model numerically. In Sect. 5 we assess the impacts of

sea ice roughness and develop a simple parameterization to

estimate mean pond coverage after a certain amount of time

without solving the model. In Sect. 6 we analyze the model

analytically to gain a better understanding of the factors in-

fluencing pond evolution. In Sect. 7 we discuss lateral melt

and internal melt combined with effect of density variations.

Finally in Sect. 8 we summarize our results and conclude.

In Appendices A, B, C, and D we discuss some of the more

technical aspects of our model.

2 Building the simple 0-D model

In this section, we build the model for the evolution of melt

pond coverage and then solve it using realistic physical pa-

rameters. Before we proceed to build the quantitative model,

we will first state the assumptions and discuss the physical

mechanisms driving pond evolution.

2.1 Assumptions of the model

Our model focuses on the stage of pond evolution when ice

is highly permeable and all the meltwater created can be

quickly removed to the ocean. The beginning of this stage

can be identified as the point in time when the meltwater on

the ice surface has drained to sea level, such that the remain-

ing ponds correspond to places on the ice surface that are

below sea level. We will assume that from this point on, the

ponds are hydraulically connected with the ocean, and the

only way for pond coverage to increase is for the points on

the ice surface which were above sea level to sink or melt

below sea level. In reality, ponds can also grow through hori-

zontal melting of their sidewalls. As some observations sug-

gest that this type of growth is small at least on first-year ice

(Polashenski et al., 2012; Landy et al., 2014), we neglect it

(see Sect. 7.1 for further discussion). Furthermore, we will

assume that all the melt occurs at the surface or the bot-

tom of the ice. We thereby neglect the possibility of internal

melt. We will also assume that ice has a uniform bulk density

throughout the vertical column, and we discuss the effects of

vertical nonuniformity in bulk density together with effects

of internal melt in Sect. 7.2. Finally, we will assume that the

entire ice floe is in hydrostatic balance.

The main goal of our model is to determine the fraction of

the ice surface above sea level that falls below sea level after

some time. Therefore, we focus on the vertical displacements

of points on the surface of the ice in response to melt. To this

end, we define the ice topography, s(r), as the elevation of

the ice surface above sea level at the point r , and we define

melt ponds as those regions where s(r) < 0. There are two

main reasons why the topography might change in response

to ice melt:

1. First, the topography at a point r at the surface changes

when ice at that point melts (Fig. 1a). Here, the rate of

change of topography at a point depends only on lo-

cal characteristics of that particular point. For this rea-

son, we will call this type of motion “local.” Points on

the surface that melt locally move “downwards,” i.e., to

lower elevations above sea level.

2. Second, in order to maintain hydrostatic balance, the en-

tire ice surface can shift up or down in response to mass

being removed above or below sea level. Since we are

assuming that the entire ice floe is in hydrostatic bal-

ance, melting any region of ice moves the entire floe as

a rigid body (Fig. 1b). For this reason, we will call this
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Figure 1. (a) Local displacement represents the movement of a

point on the ice surface as a result of ice melting at that particular

point. It is a function only of local ice characteristics at that point.

For both local and hydrostatic displacements the positive direction

is defined as upwards. (b) Rigid body displacement represents the

motion of a floe as a whole in an effort to maintain hydrostatic bal-

ance because melting removes mass above or below sea level. Melt-

ing above sea level induces an upward rigid body motion of the floe,

whereas melting below sea level induces a downward motion.

type of motion the “rigid body” motion. Melting above

sea level induces an upward rigid body motion, whereas

melting below sea level induces a downward rigid body

motion. An ice floe is not a rigid body, but up to its flex-

ural wavelength (roughly 30 m on 1.5 m thick ice) we

can approximate it as such. As the flexural wavelength

is larger than the typical scale of melt ponds (roughly

10 m), the rigid body approximation is likely good.

At each point on the ice surface the change in elevation

above sea level can be calculated as the sum of these two

contributions.

In our model, ponds grow in two ways, “freeboard sink-

ing” and “enhanced melting”:

1. Freeboard sinking represents the average change in free-

board height (average height above sea level of bare

ice). In this way the topography of ice above sea level

remains unchanged. Freeboard sinking should not be

confused with rigid body motion: the average freeboard

height always decreases as a response to ice thinning,

whereas the rigid body motion can point both upward

and downward depending on whether mass is lost above

or below sea level. Both rigid body motion and average

local melting contribute to freeboard sinking.

2. Enhanced melting represents the change in the shape

of the topography without changing its average height.

Ponds can grow in this way if some regions melt faster

than average. Therefore, a positive deviation in the local

melt rate can grow ponds. Conversely, a negative devia-

tion in the local melt rate can slow down or even reverse

pond growth. Pond growth only occurs due to topogra-

phy changes near sea level. Therefore, deviations from

the mean melt rate for points high above the sea level

do not influence pond evolution since these points are

correlated with points close to sea level only through

hydrostatic adjustment, which is determined by the av-

erage melt rates rather than the deviations from the av-

erage.

2.2 Equation for the evolution of topography

We now proceed to build the quantitative model of pond evo-

lution. Following the above ideas, we divide the total rate of

change of vertical position of the point r on the surface of

the ice, ds
dt

(r), into a contribution from rigid body motion,
dsrigid body

dt
, and a contribution from local melting, dsloc

dt
(r):

ds

dt
(r) = dsrigid body

dt
+ dsloc

dt
(r). (1)

Ice above sea level (asl) must hydrostatically balance ice

below sea level (bsl). We can write this hydrostatic balance

as

masl = ρw − ρi

ρi
mbsl, (2)

where masl and mbsl represent the mass of ice above and

below sea level, and ρw and ρi represent the densities of

sea water and pure ice. Throughout the paper we use ρw =
1025 kg m−3 and ρi = 916 kg m−3.

The mass above and below sea level can change either be-

cause the ice melts or because the floe moves as a rigid body,

changing the proportion of ice above and below sea level.

Therefore, differentiating Eq. (2) and splitting into melt and

rigid body contributions, we find

dmmelt
asl + dm

rigid body

asl = ρw − ρi

ρw

[
dmmelt

bsl + dm
rigid body

bsl

]
, (3)

where dm
melt/rigid body

asl/bsl represents changes in mass above and

below sea level due to either ice melting or the entire floe

floating up or down.

The mass melted above and below sea level after some

time dt is

dmmelt
asl = −Abi

F bi

l
dt, (4a)
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dmmelt
bsl = −Amp

F mp

l
dt − A

F bot

l
dt, (4b)

where l = 334 kJ kg−1 is the latent heat of melting, F bi is the

total energy flux used for melting bare ice averaged over all

bare ice, F mp is the total energy flux used for melting ponded

ice averaged over ponded ice, and F bot is the total energy

flux used for melting the ice bottom averaged over the ice

bottom. Abi, Amp, and A are the area of bare ice, the area of

melt ponds, and the area of the entire floe, respectively.

Since floating up or down does not change the total mass of

the ice, mass changes above and below sea level due to rigid

body motion are equal with an opposite sign, dm
rigid body

asl =
−dm

rigid body

bsl . We can express dmrigid body in terms of rigid

body displacement of the floe as

dm
rigid body

asl = ρbAbidsrigid body, (5a)

dm
rigid body

bsl = −ρbAbidsrigid body, (5b)

where ρb is the bulk ice density. This is the density of sea

ice once all the brine has drained and is always less than ρi.

We assume it to be uniform throughout the vertical ice col-

umn, but we discuss the effects of vertical variations in ρb in

Sect. 7.2.

Substituting Eqs. (4) and (5) into Eq. (3), solving for

dsrigid body, and differentiating with respect to time, we find

the rate of change of surface topography due to rigid body

motion to be

dsrigid body

dt
=
[

ρi

ρw

F bi

lρb

]
−
[

ρw − ρi

ρw

Amp

Abi

F mp

lρb

]

−
[

ρw − ρi

ρw

A

Abi

F bot

lρb

]
. (6)

The three terms in large square brackets correspond to to-

pography change due to bare ice melting, ponded ice melting,

and ice bottom melting. Rigid body motion depends only on

spatially averaged energy fluxes, which in turn depend on

parameters such as the average insolation on the floe, the av-

erage albedo, and the average longwave, sensible, latent, and

bottom heat fluxes. If bare and ponded ice melt only from en-

ergy absorbed by the upper surface of the ice, the fluxes F bi

and F mp can also be written in terms of albedo as

F bi = (1 − αbi)Fsol + Fr, (7)

F mp = (1 − αmp)Fsol + Fr, (8)

where αbi and αmp are the average albedos of bare and

ponded ice, Fsol is the solar flux, and Fr is equal to the sum of

net longwave, net sensible, and net latent heat fluxes. This pa-

rameterization neglects light transmission and assumes that

all of the energy is deposited in the surface. Much of the

variation in albedo of ponded ice is due to the fact that the

pond bottom is partially transparent, and energy is deposited

in the ocean instead of directly in the ice. However, this does

not make much difference in our model since the energy de-

posited in the ocean is likely used for melting ice below sea

level anyway.

Local displacement, dsloc, quantifies how much the ice sur-

face topography changes as a result of local melt. We can de-

termine the local melt rate from Fsurf(r), the flux of energy

used for melting the ice surface at a point r:

dsloc

dt
(r) = −Fsurf(r)

lρb
, (9)

where the positive direction is defined as upwards. The lo-

cal flux depends on parameters such as the local albedo, the

local insolation, the local longwave, sensible and latent heat

fluxes, and the angle between ice and incoming radiation at

that point.

The flux Fsurf(r) averaged over all the points on the sur-

face of the ice above sea level equals F bi:

< Fsurf(r) >= F bi, (10)

where < .. . > represents averaging over all the points on

bare ice. For this reason, we will parameterize the rate of

local melting as

dsloc

dt
(r) = −k(r)

F bi

lρb
, (11)

where k(r) is a nondimensional number that quantifies the

deviation of the melt rate at the point r from the mean melt

rate of the bare ice surface, which depends on the detailed

conditions of ice and its environment. The parameter k could

be either greater than or less than 1. Here we will take k to be

constant in time, but in reality it need not be. Finally, accord-

ing to Eq. (1) we add Eqs. (6) and (11) to get the equation for

the evolution of the bare ice topography. We express this in

terms of melt pond fraction, x ≡ Amp

A
:

ds

dt
(r) = −

[
(k(r) − 1)

F bi

lρb

]

−
[
ρw − ρi

ρw

1

lρb

(
F bi +

x

1 − x
F mp + 1

1 − x
F bot

)]
. (12)

Here, we split the equation into two terms, enclosed by the

square brackets. The first term represents the local deviation

from the average surface melt rate, which changes the general

shape of the topography while preserving its average height

above sea level. We identify this term with enhanced melt-

ing. The second term represents a global shift of the average

elevation above sea level due to freeboard sinking.

In this way, the topographic evolution equation can be split

into two terms, enhanced melting and freeboard sinking:

ds

dt
= dsem

dt
+ dsfs

dt
, (13)

where dsem

dt
and dsfs

dt
are contributions from enhanced melting

and freeboard sinking, and they correspond to the first and

second term of Eq. (12).
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2.3 Model for the evolution of pond coverage

We now need to relate the vertical displacements near the sea

level to the change in area of the melt ponds. To this end we

define the hypsographic curve, s(xh), which relates the ele-

vation above sea level, s, to the percent of ice surface below

that elevation, xh (Fig. 2). Such curves have been measured

and reported on several occasions (e.g., Fig. 8 of Eicken et

al., 2004, or Fig. 8 of Landy et al., 2014). If the ice is highly

permeable, the melt pond fraction, x, can be inferred from

a hypsographic curve as the intersection of sea level with

the curve. Since ponds are hydraulically connected with the

ocean, the average freeboard height of bare ice, h, depends

on the pond fraction. The average freeboard height, h, can

be expressed in terms of the ice thickness H and the pond

fraction as

h = ρw − ρi

ρw

H

1 − x
. (14)

Here, the average freeboard height is defined as the eleva-

tion of the ice surface above sea level averaged over bare ice.

For two ice floes of the same thickness, the one with higher

pond coverage will also need to have a higher average free-

board in order to maintain hydrostatic balance.

The above sea level part of every measured hypsographic

curve we tested can be fit relatively well with a tangent func-

tion (Fig. 2a, red line). We will assume that this fit holds for

a wide range of different sea ice floes and use it to initial-

ize our model with different physical parameters. We give

the exact form of this function in Appendix A (Eq. A1). To

get a hypsographic curve for a particular initial pond frac-

tion, xi , and ice thickness, H , we set it to zero at the initial

pond coverage, s(xh = xi) = 0, and rescale it vertically to get

a freeboard that hydrostatically balances the floe. The topog-

raphy below sea level is not important for the evolution of

pond coverage if the pond coverage grows, and we replace it

with a straight line.

We show several curves for different initial ice thickness

and initial pond coverage in Fig. 2b and c. We note that the

initial pond fraction, xi , corresponds to the pond fraction

when ice first becomes permeable. Once we choose xi and

H , the tangent function Eq. (A1) has only two unconstrained

parameters, p1 and p2, that determine the exact shape of

the curve. Knowing additional physical parameters, such as

ice roughness, we can constrain additional parameters of this

curve. Throughout this paper we will mostly use p1 and p2

that fit the measurements of the hypsographic curve made

by Landy et al. (2014) for 25 June 2011 or the measure-

ments made during the SHEBA mission along the topogra-

phy profile “1” on 10 July 1998. However, when examining

the effects of sea ice roughness, we will vary these param-

eters to get curves of different shape. Several examples of

hypsographic with different p1 and p2 are shown in Fig. 2d.

In the case of pure freeboard sinking the overall shape of

the hypsographic curve does not change as the ice melts. In-

Figure 2. Hypsographic curves showing the percentage of the sea

ice surface that is lower than a particular elevation. Pond coverage

on highly permeable sea ice can be inferred from here as the in-

tersection of sea level (horizontal blue line) with the hypsographic

curve. (a) A hypsographic curve measured by Landy et al. (2014)

on 25 June 2011 (solid black line) and a hypsographic curve mea-

sured during SHEBA along a 100 m long “topography profile 1”

on 10 July 1998 (black dashed line). The vertical dashed lines rep-

resent the pond coverage, assuming that ice is permeable. The red

line represents a fit to the part of the hypsographic curve above sea

level with a tangent function, Eq. (A1). (b) Adjusted hypsographic

curves for different initial pond coverage and the same ice thick-

ness. (c) Adjusted hypsographic curves for the same initial pond

coverage and different ice thickness. (d) Hypsographic curves for

different shape parameters, p1 and p2, defined and discussed in Ap-

pendix A, Eq. (A1). Parameter p1 controls the amount of curvature,

while p2 controls the position of the inflection point of the tangent

function.

stead the whole curve is shifted following a displacement of

dsfs (Fig. 3a). We can calculate the resulting change in pond

coverage as

dx

dt
= dxh

ds
(x)

dsfs

dt
, (15)

where dsfs is the vertical displacement of the bare ice topog-

raphy due to freeboard sinking (as determined by the second

term in Eq. 12), and dxh

ds
(x) is the change in pond fraction for

a vertical shift of the ice surface of dsfs when the pond frac-

tion is equal to x. It is equal to the reciprocal of the derivative

of the hypsographic curve, s(xh), evaluated at xh = x. Sub-

stituting dsfs

dt
from Eq. (12) we find

dx

dt
= dx̂h

dŝ
(x)

[
Sbi + Smp

x̂

1̂ − x
+ Sbot

1

1̂ − x

]
, (16)

where x̂ ≡ x
xi

and 1̂ − x ≡ 1−x
1−xi

are the pond and bare ice

fractions normalized by the initial pond and bare ice frac-

tions, and dx̂h

dŝ
(x) ≡ h

1−xi

dxh

ds
(x) is the nondimensional slope
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Figure 3. Explanation of different models of pond growth. Models

evolve a hypsographic curve, s(xh), above sea level to find the pond

coverage evolution. Evolution of the hypsographic curve below sea

level is not relevant for pond growth and, apart from the 1-D model,

is not captured well in these models. (a) Freeboard sinking shifts

the entire hypsographic curve downward following a displacement

of dsfs. (b) Enhanced melting acts on a constant ice fraction, δ,

and there is no freeboard sinking. The hypsographic curve changes

only between xh = x and xh = x +δ and remains unchanged other-

wise. After a time 1t = s(x+δ)
dsem/dt

pond coverage grows by δ. The 0-D

model, Eq. (26), assumes that the total pond evolution is the sum of

pond evolution due to such enhanced melting and freeboard sinking

(panel a). (c) The 1-D model prescribes a melt rate at each point

on the hypsographic curve as a function of height above sea level,
ds
dt

(s). (d) A simplified model that assumes both freeboard sink-

ing and enhanced melting (Appendix B). Enhanced melting occurs

only below height 1s. After some time, the fraction of ice affected

by enhanced melting, δ, becomes constant, meaning that a constant

fraction model (panel b) and a constant height model are equivalent

if δ and 1s are related appropriately.

of the hypsographic curve. We have defined the strengths

of pond growth by freeboard sinking due to melting bare,

ponded, and ice bottom, Sbi, Smp, and Sbot, as

Sbi ≡ (1 − xi)
2F bi

Hlρb
, (17a)

Smp ≡ (1 − xi)xiF mp

Hlρb
, (17b)

Sbot ≡ (1 − xi)F bot

Hlρb
. (17c)

The nondimensional factors x̂, 1̂ − x, and dx̂h

dŝ
(x) are cho-

sen to be of the order unity, so that Sbi, Smp, and Sbot control

the strengths of pond growth by melting bare ice, melting

ponded ice, and melting ice bottom. The reciprocals of the

strengths represent the timescales of the growth modes.

The set of parameters needed to describe pure freeboard

sinking can be further reduced by rewriting Eq. (16) as

dx

dt
= dx̂h

dŝ
(x)

[
S1

x̂

1̂ − x
+ S2

1

1̂ − x

]
, (18)

where S1 ≡ Smp −xiSbi/(1−xi) and S2 ≡ Sbot +Sbi/(1−xi)

represent a minimal set of parameters needed to describe

pure freeboard sinking. However, these parameters do not

have a clear physical interpretation, and we will henceforth

focus only on Sbi, Smp, and Sbot.

Next we need to consider the contribution from enhanced

melting. Before doing so we need to make some assumptions

about the nature of enhanced melt. There are multiple phys-

ical processes that can cause the melt rate to deviate from

the mean. One process that stands out as being particularly

important is albedo decrease due to ice wetting: ice close to

sea level will likely be wet and therefore have a lower albedo

compared to ice higher up. The deviation from the mean melt

rate in this case depends primarily on the height above sea

level. Another potential contribution to height-dependent en-

hanced melt may effectively come from random fluctuations

in the melt rate around the average: ice near the sea level has

a higher probability of falling below sea level due to random

fluctuations than ice higher up. After falling below sea level,

ice becomes ponded, melts faster, and is unable to return to

its previous position. Other processes, such as lateral melt,

may not depend on height above sea level, but for now we

neglect this possibility (see Sect. 7.1 for discussion).

Because of the processes described above, we will assume

that the deviation from the mean melt rate, k(r)−1, depends

only on height above sea level, s. In this scenario, we need

to consider enhanced melting together with freeboard sink-

ing, as freeboard sinking constantly supplies new ice to low

elevations to be affected by enhanced melting. Effects of en-

hanced melting and freeboard sinking can be approximately

separated if, instead of height dependence, enhanced melt-

ing is constrained to act on a fixed fraction of bare ice. In

this case, a constant fraction of bare ice that would experi-

ence enhanced melting would evolve, at least approximately,

independently of freeboard sinking.

Therefore, we will consider two cases of enhanced melt-

ing. Firstly, we will consider a height-dependent enhanced

melting. In particular, we will assume that k(0 < s < 1s) ≡
k and k(s > 1s) ≡ 1, where 1s is a height above which there

is no enhanced melting and below which enhanced melt-

ing is constant k > 1. This is the case we ultimately wish

to describe. We describe a potential model for pond growth

under this assumption in Appendix B and Fig. 3d. How-

ever, from a practical viewpoint, it is simpler to consider en-

hanced melting which acts upon a fixed fraction of bare ice.

In this case, we will assume that k(x < xh < x + δ) ≡ k and

k(xh > x + δ) ≡ 1, where δ is a fraction of ice affected by

enhanced melting (Fig. 3b). In Appendix B, we show that,
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if δ is appropriately chosen, a height-dependent model and a

fixed fraction model become equivalent. Therefore, we will

first solve a model assuming a fixed δ and no freeboard sink-

ing and then relate it to a fixed 1s model by choosing the

appropriate δ.

We note that the assumption that k(r) = 1 high above the

sea level and k(r) > 1 near the sea level is strictly not true

since averaged over all of bare ice k(r) needs to equal 1.

However, it is approximately true if 1s or δ are small, such

that the area where k(r) 6= 1 is small compared to the total

area of bare ice. Also, we have assumed k(r) = 1 high above

the sea level without loss of generality, since deviations from

the mean melt rate high above the sea level are not important,

as only ice close to sea level may become ponded.

Now we proceed to consider the case of “pure enhanced

melting” that assumes a fixed fraction of the ice, δ, melts,

and there is no freeboard sinking (Fig. 3b). If there is no to-

pographic variation above sea level, and the entire ice floe

above sea level has the same height, h, the pond coverage

would grow by δ after a time 1t = h
dsem/dt

, where dsem/dt

is the rate of change of topography due to enhanced melting

as determined by the first term of Eq. (12). Therefore, the

pond growth rate in this case would be 1x
1t

= δ
h

dsem

dt
. If there

is non-negligible topography above sea level described by the

hypsographic curve, the time 1t it takes for pond coverage

to grow by δ would be 1t = s(xh=x+δ)
dsem/dt

. Here, s(xh = x + δ)

is the original hypsographic curve evaluated at xh = x + δ.

We will assume this expression generally holds for enhanced

melting. Thus, we arrive at the expression for pond growth

due to pure enhanced melting with fixed δ:

dx

dt
= δ

s(x + δ)

dsem

dt
. (19)

If δ is small compared to the variation in the hypsographic

curve, we can substitute s(x + δ) with s(x). This is only not

justified near the beginning of the melt, when s(x) ≈ 0. Sub-

stituting dsem

dt
from Eq. (12) we find

dx

dt
= Sem

1

ŝ(x + δ)
, (20)

where ŝ(x) ≡ s(x)
h

is the nondimensional hypsographic

curve, and the strength of the enhanced melting, Sem, is de-

fined as

Sem ≡ ρw

ρw − ρi

(1 − xi)δ(k − 1)F bi

Hlρb
. (21)

Ultimately, however, our goal was to describe the height-

dependent enhanced melting. In Appendix B, we showed

that such a model can be approximated with a fixed fraction

model, if we appropriately relate δ and 1s. Here we simply

state the result:

δ = ρw

ρw − ρi

21s(1 − xi)
2

3H
(

1 + dsem

dsfs

) . (22)

Here, dsem

dsfs
represents the ratio of the topographic rate of

change due to enhanced melting to freeboard sinking and is

given by

dsem

dsfs
= ρw

ρw − ρi

|F bi|(k − 1)

|F bi| + xi

1−xi
|F mp| + 1

1−xi
|F bot|

, (23)

where |F | are the representative values of energy fluxes,

e.g., their time averages. Therefore, the strength of height-

dependent enhanced melting becomes

Sem =
(

ρw

ρw − ρi

)2
21s(1 − xi)

3(k − 1)F bi

3H 2lρb

(
1 + dsem

dsfs

) . (24)

We have made a number of assumptions in deriving the

expression for enhanced melting. Below we compare this

model to a more complicated “1-D” model and show that

all these assumptions are justified. We also show that if the

function describing the local melt rate, k(s), has a nontriv-

ial dependence on height above sea level, parameter Sem is

better replaced with a parameter:

< Sem >≡
(

ρw

ρw − ρi

)2
2(1 − xi)

3F bi

3H 2lρb

∞∫

0

k(s) − 1

1 + dsem

dsfs
(s)

ds. (25)

In this way, we have separated the effects of freeboard

sinking and enhanced melting. Finally, we will assume that

contributions from freeboard sinking and enhanced melting

can be added independently. Therefore, we solve Eq. (16)

for pure freeboard sinking and Eq. (20) for enhanced melt-

ing independently, and we add them together to get the full

evolution of pond coverage, x(t):

x(t) = xfs(t) + xem(t) − xi, (26)

where xfs(t) and xem(t) are solutions to Eqs. (16) and (20),

both forced using the same parameters and initialized with

the same initial pond fraction xi . This concludes the 0-D

model.

Equation (26) represents a sum of solutions to two simple

ordinary differential equations, in which the rate of change

of pond fraction depends on the pond fraction. Here, we have

reduced the number of parameters from the original 10 (H ,

xi , ρb, F bot, Fsol, Fr, αbi, αmp, k, and 1s) to 4 (Sbi, Smp,

Sbot, and Sem). The strengths of freeboard sinking, Sbi, Smp,

and Sbot, depend only on the parameters that are available

in GCM simulations and are relatively easily measured in

observational studies. The enhanced melting strength, Sem,

however, also depends on the difficult-to-measure parame-

ters k and 1s that describe the melt rate near the sea level

and may also have contributions from processes that are

not height dependent. Furthermore, as we discuss below, ice

roughness can also play an important role in pond evolu-

tion. With reliable constraints on these parameters, our model

would be a useful parameterization in GCMs for pond growth

after ice becomes permeable.
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Figure 4. (a) A comparison between pond evolution in the 0-D model and the 1-D model. The black curve represents the 0-D model. The

blue, green, and red curves represent the 1-D model for different functions k(s) shown in panel (b). These different functions were chosen

such that the integral parameter < Sem > (Eq. 25) is the same as for the 0-D model. The yellow curve represents the 1-D model where

enhanced melting acts on a constant fraction of bare ice, δ, chosen according to Eq. (22). The magenta curve represents the 1-D model

with pond albedo varying with depth. There is significant agreement between all of the curves, suggesting that the simplifications made in

the simple model were justified. Since including variable pond albedo does not change the pond evolution significantly, this detail can be

neglected when estimating the pond coverage on permeable ice. (b) The blue, green, and red lines represent functions k(s) − 1 used to run

the 1-D model.

2.4 Testing the model

In order to test the assumptions we made to simplify the

model, we have developed a “1-D” model in which we ex-

plicitly determine pond evolution when both freeboard sink-

ing and enhanced melting are happening simultaneously.

Apart from resolving the melt rates in one dimension, the

underlying assumptions for the 1-D model are essentially the

same as for the simple model. For this reason, we simply

give an outline for this model, without discussing it in much

detail.

In the 1-D model, we evolve the hypsographic curve by

prescribing a melt rate, dsloc, to each point on the hyp-

sographic curve depending on the height above sea level

(Fig. 3c). The hypsographic curve high above sea level melts

at a uniform rate, whereas the hypsographic curve slightly

above sea level melts at an enhanced rate. Parts of the curve

below sea level melt at a uniform rate determined by the flux

used for melting ponded ice, F mp. Finally, hydrostatic ad-

justment is calculated by finding the ice thickness directly at

each time step and placing the floe in hydrostatic balance.

The evolution of pond coverage obtained from this model is

shown in Fig. 4a. The comparison with the simple 0-D model

is excellent.

The 1-D model allows us some freedom to test the detailed

assumptions of the 0-D model. First, we can test how the

functional form of k(s) affects the pond evolution (Fig. 4b).

The functions k(s) were chosen such that they all have the

same integral parameter < Sem > defined in Eq. (25). Fig-

ure 4a shows that in each of these cases the evolution of pond

coverage proceeds nearly identically. Second, we can test the

difference between an assumption that enhanced melting acts

below a constant height 1s and an assumption that enhanced

melting acts on a constant fraction of ice, δ. The yellow line

in Fig. 4a shows that if δ and 1s are chosen according to

Eq. (22), both assumptions yield very similar results. Finally,

we can test the effects of varying pond albedo. In reality pond

albedo decreases as the ponds deepen. We assume a depen-

dence of pond albedo on pond depth reported in Table VII of

Morassutti and Ledrew (1996) for mean broadband albedo.

The magenta line in Fig. 4a shows that allowing for pond

albedo to vary has a negligible effect on pond evolution.

We should note that, when both freeboard sinking and

enhanced melting occur simultaneously, the agreement be-

tween the 0-D model and the 1-D model becomes poor if the

hypsographic curve is convex (e.g., Fig. 2d, blue curve), and

the 0-D model should be used with care. Happily, the mea-

sured hypsographic curves are mostly concave, in which case

the agreement between the two models is excellent.
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3 A 0-D model can approximate observations well

using realistic parameters

In Fig. 5, we compare the results from our model to obser-

vations made on a 200 m long albedo line during SHEBA

(red line). Ice along the albedo line was level multiyear ice,

but the ponds drained to sea level after some time, which

makes them amenable to our model (Perovich et al., 2003).

The pond coverage along the albedo line dropped to a mini-

mum around the end of June. Therefore, we choose to model

only the period after 1 July. In order to keep the albedo line

pristine, no thickness measurements were made. However,

relatively close to the albedo line, topography measurements

were made along a level multiyear ice profile roughly ev-

ery 10 days. After approximately 10 July, ponds along the

topography profile also drained to sea level. We show the

topography profile pond coverage in blue dots (we have ar-

tificially subtracted 0.05 from the pond coverage to facilitate

comparison with the pond coverage along the albedo line).

The pond coverage both along the topography profile and

along the albedo line follows roughly the same trend, sug-

gesting that the physical parameters driving the pond evolu-

tion in the two places are likely similar. Based on the average

freeboard height, we estimate the ice thickness on 10 July

to be roughly 1.4 m along the topography profile, meaning

that on 1 July ice thickness was around 1.6 m. Therefore,

we assume the same thickness for the ice along the albedo

line and use a hypsographic curve corresponding to the one

measured along the topography profile on 10 July (Fig. 2a,

dashed line). In order to run our model, we use the melt rates

of bare ice, ponded ice, and ice bottom measured directly us-

ing ablation stakes during SHEBA (Perovich et al., 2003).

We choose a realistic ρb = 850 kg m−3 (Timco and Frederk-

ing, 1996). We have no way of directly constraining the pa-

rameters 1s and k that control the strength of enhanced melt-

ing. Therefore, we treat Sem as a fitting parameter. Choosing

Sem = 0.22 month−1 fits the observations well by eye. This

value can be obtained using 1s = 15 cm and k = 1.7, which

likely fall at the upper end of the range of reasonable values

for these constants (see Sect. 4 for a discussion on 1s and

k). Such a high value of Sem can be explained by a signifi-

cant contribution from lateral melting.

The full black line in Fig. 5 represents a solution to the

full Eq. (26). The agreement between model and observa-

tion is excellent, with a maximum discrepancy of 3 % pond

coverage at the end of the melt season. The dashed black

line represents the contribution to pond growth due to free-

board sinking, whereas the dotted line corresponds to en-

hanced melting. Almost all pond growth in this case is due

to enhanced melting. This is due to ice topography. On mul-

tiyear ice, meltwater typically collects in depressions formed

by ponds in previous years. The topography created in this

way is highly bimodal, and, after drainage, ponds typically

have steep walls. Bare ice topography, in contrast, is rela-

tively smooth, preventing new pond formation. This is ap-

parent in the hypsographic curve we used. Such a topography

inhibits freeboard sinking, and pond coverage grows mostly

by enhanced melting acting near the pond sidewalls, growing

the existing ponds. In addition to height-dependent enhanced

melting we introduced in the previous section, in this case

there is likely a significant contribution from lateral melting

as well. This contribution helps explain the high value of Sem

we had to choose to get a close agreement between our model

and observations. First-year ice topography, in contrast, per-

mits ample pond growth through freeboard sinking. Observa-

tions suggest that on first-year ice ponds grow primarily due

to freeboard sinking (Polashenski et al., 2012; Landy et al.,

2014).

4 Numerical solutions

We now solve Eq. (26) numerically to gain intuition about the

behavior of our model. We use a set of realistic parameters

we will henceforth refer to as the “default parameters.”

For shortwave, longwave, latent, and sensible heat fluxes,

we use values inferred by Skyllingstad et al. (2009) using

hourly measurements from the SHEBA mission. We use the

bottom heat flux inferred from measurements of ice bottom

ablation during the SHEBA mission (Perovich et al., 2003).

The albedo of bare ice can vary between 0.5 and 0.7 (Hane-

siak et al., 2001), while the albedo of melt ponds can vary be-

tween 0.1 and 0.6, depending on pond depth and conditions

of ice at the pond bottom (Morassutti and Ledrew, 1996; Per-

ovich et al., 1998; Perovich, 1996). Here we prescribe a de-

fault bare ice albedo of 0.55 and a default pond albedo of

0.2. We use a realistic bulk ice density of ρb = 850 kg m−3

(Timco and Frederking, 1996). We use an initial ice thickness

of 1.5 m and use the first-year ice topography measured by

Landy et al. (2014) adjusted for the prescribed ice thickness

and initial pond fraction (usually xi = 0.2). We will assume

enhanced melting is entirely due the albedo dependence on

height above sea level. Some preliminary results based on

field measurements of bare ice albedo on first-year ice sug-

gest that albedo changes from around 0.3 near sea level to

around 0.55 at a height of around 10 cm above sea level, af-

ter which the correlation between albedo and surface eleva-

tion tapers off (Chris Polashenski, personal communication,

2017). Using such an albedo and the average values of short-

wave, longwave, latent, and sensible heat fluxes, we can esti-

mate the rate of melt as a function of height above sea level,

k(s) = F(s)

F bi
. Using Eq. (25), we can then find the integral pa-

rameter < Sem >. We choose 1s = 6 cm and k = 1.7 to cor-

respond to the same integral parameter. We should note that

there is significant scatter in the data, and measurements cor-

respond to only one study. Therefore, this is a rough estimate

of enhanced melting, but it is likely of the correct order of

magnitude.

Figure 6a shows the solution to Eq. (26) for different ini-

tial conditions. We can see that ponds grow more rapidly
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Figure 5. A comparison between measurements of pond fraction

made during SHEBA along the albedo line (red line), along a to-

pography profile (blue dots), and our model (black line). The blue

dots have been shifted downward by 0.05 to make a more obvious

comparison between albedo line and topography profile trends. The

black dashed line is the contribution to our model from freeboard

sinking and the black dotted line is the contribution from enhanced

melting. Ponds grow almost entirely due to enhanced melting as a

result of the steep topography of multiyear ice.

when the initial pond coverage is lower, and the pond evo-

lution curves cluster together as time progresses. This is be-

cause lower initial pond coverage corresponds to lower initial

freeboard height, making the pond growth more rapid. The

dashed line corresponds to the solution using the fluxes time-

averaged over the 30-day run. The solutions using the aver-

aged fluxes are very similar to the ones using time-varying

fluxes, meaning that daily and even monthly variations in

the forcing have little effect on pond growth. This insensi-

tivity to short timescale variations in the forcing means that

pond coverage evolution may be faithfully represented in the

large-scale models, as it would not be affected by the coarse

timescales of those models. Henceforth, we will use the time-

averaged fluxes.

A larger ice thickness means a higher freeboard. For this

reason, ponds grow more slowly on thicker ice. Because the

pond growth rate is inversely proportional to ice thickness,

pond coverage is more sensitive to variations in ice thickness

when the ice is thin (Fig. 6b). In Fig. 6b we see that a 0.5 m

difference in the initial ice thickness (between a floe 1.5 m

and a floe 2 m thick) can mean a 20 % difference in pond

coverage at the end of the melt season.

Figure 6c shows the dependence of pond coverage on

albedo. A variation of 0.1 in bare ice albedo has a much

larger effect on pond evolution than the same change in pond

albedo. The reason is that melting ponded ice only affects

pond coverage through downward rigid body motion of the

floe, whereas melting bare ice grows the ponds through both

Figure 6. Numerical solutions to Eq. (26) with parameters varied

around the defaults described in the text. (a) Varying initial pond

coverage. Solid lines represent solutions using full time-varying

fluxes, while dashed lines represent solutions using time-averaged

fluxes. The two solutions are very similar, so we subsequently use

only the time-averaged fluxes. (b) Varying ice thickness. Ponds

grow slower on thicker floes. (c) Varying pond and bare ice albedo.

Different colors represent different bare ice albedos, and full, dot-

ted, and dashed lines represent different pond albedos. A change in

bare ice albedo has a much larger effect on pond fraction than the

same change in pond albedo. (d) Varying the 1s and k. For k = 0.8,

the ponds shrink. However, pond evolution for k < 1 is not repre-

sented well in our model, so this curve serves only as an illustration.

enhanced melting and freeboard sinking. Furthermore, when

pond coverage is low, rigid body motion due to ponded ice

melting is less efficient than that due to bare ice melting be-

cause it is proportional to melt pond fraction.

The parameters controlling the strength of enhanced melt-

ing are the least constrained parameters in our model. In

Fig. 6d we show the dependence of pond evolution on the

height below which enhanced melting is active, 1s. Explor-

ing a range of realistic values for 1s, 0 < 1s < 15 cm, we

find that the pond fraction at the end of the melt season can

vary by about 30 %. This difference would be larger if we

chose a smaller ice thickness. The effects of changing k are

relatively small, so long as k is large enough (not shown). For

example, using current parameters, pond coverage evolution

becomes fairly insensitive to k when k > 1.5. Smaller values

of k, however, can significantly impact pond evolution. If k

is sufficiently smaller than 1, Sem can become negative and

the pond coverage can stop growing. In this case, ice near the

sea level melts slowly enough such that an upward rigid body

movement due to melting ice high above sea level pushes the

ice near sea level upwards, preventing pond coverage growth.

The evolution of such a pond coverage cannot be represented

well in our model since the equation for enhanced melting
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Figure 7. Exploring the effects of sea ice roughness. (a) Pond evolution due to pure freeboard sinking for hypsographic curves with different

shape parameters p1 and p2. The x axis shows nondimensional time t̂ = t (Sbi+Smp+Sbot)

1−xi
. Color represents normalized roughness, σ̂ , with

blue colors corresponding to small σ̂ and red colors corresponding to large σ̂ . Thick red solid line represents pond evolution on the measured

first-year ice hypsographic curve, and the thick red dashed line represents pond evolution on the measured multiyear ice hypsographic curve.

All else equal, rougher ice has a larger pond fraction. (b) Pond evolution due to pure enhanced melting for hypsographic curves with different

shapes. The x axis shows nondimensional time t̂ = tSem
1−xi

. Cartoon examples of hypsographic curves and their approximate positions along

the σ̂ axis are also shown.

becomes invalid in this case, and the blue curve in Fig. 6d

serves therefore simply as an illustration.

5 Pond evolution is slower on smoother ice

The evolution of pond coverage in our model depends on

the detailed shape of the hypsographic curve, which is not

captured by the strengths of freeboard sinking and enhanced

melting. As we show below, pond coverage is sensitive to

such details and in particular to ice roughness. Below we

will introduce the “effective strengths”, S∗, which approxi-

mately capture the effects of roughness and allow us to esti-

mate mean pond coverage after a period of time. Using effec-

tive strengths, we will demonstrate how multiyear ice topog-

raphy suppresses pond growth by freeboard sinking, while

first-year ice topography permits it.

In the tangent function parameterization, Eq. (A1), the ex-

act shape of the hypsographic curve is determined by param-

eters p1 and p2. Here, we will not discuss these parameters

individually but will rather focus on often measured bare ice

roughness, σ , defined as the standard deviation of surface el-

evation of ice above sea level:

σ ≡
(∫ 1

xi
s2(xh)dxh

1 − xi

− h2

) 1
2

. (27)

We will use the nondimensional form of bare ice roughness,

defined as σ̂ ≡ σ
h

. Typically, a concave hypsographic curve

(e.g., Fig. 2d, red curve) will have a small σ̂ , whereas a con-

vex hypsographic curve (e.g., Fig. 2d, blue curve) will have

a high σ̂ .

During the permeable stage, all else equal, ponds will grow

more rapidly on rougher ice, since a larger fraction of ice

is close to sea level. This is not true on impermeable ice,

as meltwater filling deep topographic lows on rough ice will

cover a smaller area relative to the same amount of meltwa-

ter filling shallow topographic lows on smooth ice. For this

reason, the initial pond coverage will likely be smaller on

rougher ice due to a smaller pond coverage during the imper-

meable stage.

Figure 7 shows the pond coverage evolution due to pure

freeboard sinking (Fig. 7a) and pure enhanced melting

(Fig. 7b) for hypsographic curves with different parameters

p1 and p2 and all other parameters kept constant. For each

choice of p1 and p2, we find the normalized bare ice rough-

ness, σ̂ , represented by the color of the curves. Blue colors

correspond to low roughness and red colors to high rough-

ness. Pond evolution on measured topographies (Fig. 2a) is

also shown. We can see that although roughness does not

fully determine the pond evolution, it is a viable proxy for

how pond coverage will evolve, with high roughness curves

typically having a higher average pond coverage.
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We wish to quantify the effect of roughness by its impact

on the mean pond coverage. In particular, we hope to find the

“effective strengths”, S∗(σ̂ ), which include the roughness ef-

fects and allow us to easily estimate the average pond cover-

age after some time t :

< x(t) >≈ 1

2
S∗t + xi, (28)

where < x(t) >≡
∫ t

0 x(t)dt

t
. Effective strengths are propor-

tional to strengths of freeboard sinking and enhanced melting

we derived in Sect. 2.3. In general they themselves may de-

pend on time and are independent of time only if pond cover-

age evolution is linear, x(t) = St +xi , in which case S∗ = S,

where S is either Sfs ≡ (Sbi +Smp +Sbot) in the case of free-

board sinking or Sem in case of enhanced melting.

In Appendix C, we describe the procedure to estimate the

effective strengths as functions of nondimensional roughness

and time. Here, we only state the result:

S∗
fs ≈

[
1.3σ̂ 2

](
Sbi + Smp + Sbot

)
, (29a)

S∗
em ≈

[
1 +

(
2√
t̂em

− 3

2

)
σ̂

]
Sem, (29b)

where S∗
fs is the effective strength of freeboard sinking, S∗

em

is the effective strength of enhanced melting, and t̂em ≡ Semt
1−xi

is the nondimensional time of pond evolution due to en-

hanced melting. The terms in square brackets represent the

corrections due to roughness. If both freeboard sinking and

enhanced melting occur simultaneously the total effective

strength is the sum of these two, S∗ = S∗
fs + S∗

em. Knowing

the effective strengths allows us estimate the mean pond cov-

erage after a period of time without having to run the model.

Roughness has a different effect on freeboard sinking and

enhanced melting. Freeboard sinking is roughly indepen-

dent of time and proportional to the square of nondimen-

sional roughness. Therefore, it is very sensitive to variations

in roughness: doubling the ice roughness roughly quadru-

ples the mean pond coverage due to freeboard sinking after

some time. Enhanced melting depends roughly linearly on

roughness. However, as roughness tends to zero, the effec-

tive strength remains nonzero, S∗
em(σ̂ → 0) → Sem. There-

fore, ponds on smooth ice grow primarily due to enhanced

melting. Effective strength also depends on the nondimen-

sional time, t̂ , and is higher and more sensitive to variations

in roughness early in the melt season.

Multiyear ice topography shown in Fig. 2a, dashed line,

has σ̂ ≈ 0.25 and is significantly smoother than first-year ice

topography shown in Fig. 2a, solid line, which has σ̂ ≈ 0.55.

From Eq. (29) it follows that freeboard sinking on multiyear

ice is roughly 5 times less efficient in growing the ponds than

on first-year ice.

6 Analyzing the 0-D model yields useful insight into

factors influencing the pond evolution

Extracting the dependence of a desired property on physical

parameters and understanding its scaling is the main strength

of our model. These types of relationships would be difficult

to obtain in a more complex model.

The parameters S∗
bi, S∗

mp, S∗
bot, and S∗

em control the mean

rates of pond growth by melting different regions of ice.

Roughly, they represent the amount of pond growth per unit

time by freeboard sinking due to melting bare ice, freeboard

sinking due to melting ponded ice, freeboard sinking due to

melting ice bottom, and enhanced melting. Knowing these

parameters allows us to estimate mean pond coverage after

a period of time with significant accuracy without having

to run the numerical model. Moreover, analyzing them can

yield useful insight into the behavior of melt ponds under

general circumstances.

We can estimate the change in magnitude of the strength

of each of the growth modes when a physical parameters p

changes by 1p as

1S∗
i =

∂S∗
i

∂p
1p, (30)

where 1S∗
i is the change in magnitude of the effective

strength of the ith growth mode. This equation holds so

long as the change in the physical parameter is not too

large. A change in pond growth rate can then be estimated

as 1S∗ =
∑

i1S∗
i . Then, using Eq. (28), we can roughly

estimate a change in mean pond fraction, 1 < x >, after

some time, 1t , following a change in physical parameter, p,

as 1 < x >≈ 1
2
1S∗1t . This provides a means to estimate

changes in mean pond coverage under different environmen-

tal conditions.

6.1 Ponds are more sensitive to changes in bare ice

albedo than changes in pond albedo

We will illustrate the use of effective strengths using an ex-

ample where we vary the ice and pond albedos. If the bare

ice albedo changes by 1αbi, the change in growth rate would

be roughly

1S∗ =


S∗

bi +
ρw−ρi

ρw
(dsem/dsfs)

2 + (k − 1)
(

1 + dsem

dsfs

)
(k − 1)

S∗
em




× Fsol

F bi

1αbi ≈ −0.9
1

month
1αbi. (31)
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If the melt pond albedo changes by 1αmp, the change in

growth rate would be roughly

1S∗ = −


S∗

mp + (ρw − ρi)xi(dsem/dsfs)
2F mp

ρw

(
1 + dsem

dsfs

)
(k − 1)(1 − xi)F bi

S∗
em




× Fsol

F mp

1αmp ≈ −0.2
1

month
1αmp. (32)

It follows from these estimates that after a month the mean

pond fraction would differ by roughly 4.5 % for a bare ice

albedo difference of 0.1 and by around 1 % for a pond albedo

difference of 0.1. Therefore, variation in pond albedo affects

pond evolution roughly 5 times less than variation in bare

ice albedo. This explains our observation from Fig. 6c that

pond evolution is much more sensitive to variations in bare

ice albedo than to variations in pond albedo. In this way, we

also extract the dependence of sensitivity on physical param-

eters. A major difference between the two sensitivities is their

dependence on the initial pond coverage: the sensitivity to

pond albedo is proportional to xi , whereas the sensitivity to

bare ice albedo is proportional to 1 − xi . In the above ex-

ample we used xi = 0.2, which explains most of the large

difference between the two sensitivities. If the pond cover-

age were higher, variations in the pond albedo could become

more important than variations in bare ice albedo. For exam-

ple, assuming no enhanced melting, the sensitivity to pond

albedo would become greater than the sensitivity to bare ice

albedo at 50 % pond coverage
(

1S∗
mp

1S∗
bi

= xi

1−xi

1αmp

1αbi

)
.

6.2 Under global warming, pond feedback could lead

to significant ice thinning

We now use the effective strengths to roughly estimate the

impact of global warming on the pond coverage. At high lat-

itudes, feedbacks due to changes in albedo, the atmospheric

lapse rate, and clouds can amplify the forcing due to global

warming (Holland and Bitz, 2006). For this reason forcing at

high latitudes is generally larger than direct radiative forcing

due to an increase in CO2 concentration. In a global warm-

ing scenario, the pond growth rate would increase because

the ice melts faster but also because ice at the beginning of

the melt would be thinner. We can emulate a global warming

scenario by increasing the flux Fr by a certain amount, 1Fr ,

and by assuming that the initial ice thickness decreases by

1H ≡ ∂H
∂Fr

1Fr , where ∂H
∂Fr

is the ice thinning per 1 W m−2

of warming. Therefore, we split the change in pond growth

rate due to global warming, 1S∗, into a contribution from

direct forcing, 1S∗
F , and a contribution from ice thinning,

1S∗
H . Using the above formalism, we find

1S∗
F ≡

∑

i

∂S∗
i

∂Fr

1Fr

=
[

S∗
bi

F bi

+
S∗

mp

F mp

+
ρw−ρi

ρw
(dsem/dsfs)

2 + (k − 1)(1 − xi)

(1 + dsem

dsfs
)(k − 1)(1 − xi)

S∗
em

F bi

]
1Fr

≈ 0.5%

Wm−2 × month
1Fr , (33a)

1S∗
H ≡

∑

i

∂S∗
i

∂H

∂H

∂Fr

1Fr

= −
(
S∗

bi + S∗
mp + S∗

bot + 2S∗
em

) 1

H

∂H

∂Fr

1Fr

≈ 1.9%

W/m2 × month
1Fr , (33b)

1S∗ ≡ 1S∗
F + 1S∗

H ≈ 2.4%

Wm−2 × month
1Fr . (33c)

The numbers in Eq. (33) were obtained using the default val-

ues of the parameters, and ∂H
∂Fr

= −0.05 m3 W−1 roughly es-

timated using the Eisenman and Wettlaufer (2008) model.

This means that after a month’s growth global warming

would increase mean pond coverage by roughly 1.2 % per

1 W m−2 of warming. Nearly half of this increase in the mean

pond coverage comes from an increase in the strength of en-

hanced melting due to ice thinning. Simulating a 30-day melt

numerically using our model predicts an increase in mean

pond coverage with forcing at a rate of 1.5 % per 1 W m−2

of warming for small forcing (1Fr ≈ 0), which confirms the

approximate validity of our linearization. For larger forcing,

the sensitivity of pond coverage to forcing increases because

the ice thins. Our linearized estimate, Eq. (33), also gives the

dependence of the sensitivity on physical parameters. In a

likely scenario where the forcing is around 10 W m−2, our es-

timate predicts that after a month mean pond coverage would

increase by around 15 %, which corresponds to around 12 cm

of ice thinning solely due to the pond feedback. Ice thinning

after a month directly due to forcing would be only around

9 cm, meaning that the pond feedback must be taken into ac-

count to understand ice thinning under global warming. In-

creased forcing could also lead to changes in initial pond cov-

erage, changes in ice roughness, or changes in 1s or k. We

ignored these feedbacks, as we have no way of reliably esti-

mating
∂p
∂Fr

for these parameters.

6.3 Different growth modes yield different pond

evolution

Each of the four growth modes has different effects on the

pond coverage. We will now look in detail at each of the

growth modes, their effect on the pond evolution, and their

scaling with physical parameters. Figure 8 shows the de-

pendence of growth rate on pond fraction and solutions to
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Figure 8. (a) Dependence of growth rate on pond coverage for different modes of pond growth. The y axis shows the growth rate, dx
dt

, for

each of the growth modes calculated using the default parameters and xi = 0. Pond growth rate for bare ice melting (blue line) first increases

up to a certain pond coverage and then decreases. Ponded ice melting (green line) increases with pond coverage from dx
dt

= 0 at x = 0 to very

high values at high pond coverage. The ice bottom melting rate (red line) gradually increases with pond coverage. The vertical enhanced

melting rate (cyan line) decreases with pond coverage. The black line represents a realistic combination of the four growth modes and shows

that pond growth is dominated by enhanced melting early in the season and by freeboard sinking late in the season. The dashed magenta line

represents lateral melting estimated using parameters described in Sect. 7.1. (b) Solutions to Eq. (26) when only one of the growth modes is

active. The x axis shows the normalized time, where 0 corresponds to the beginning of the melt and 1 to entire floe being flooded.

Eq. (26) when only one of the strengths is nonzero, assum-

ing a first-year ice topography. Figure 9 shows the evolution

of pond coverage distribution when only one of the strengths

is nonzero.

All modes of growth depend in the same way on the bulk

ice density, ρb. Each of the strengths is inversely proportional

to ρb, meaning that ponds grow faster on ice with a lower

bulk density. The effect is, however, modest: within a reason-

able range of 916 kg m−3 > ρb > 750 kg m−3, pond growth

rate can vary by at most 20 %.

We will first discuss freeboard sinking. Common to all

modes of freeboard sinking is the dependence on ice thick-

ness. Each freeboard sinking growth mode is inversely pro-

portional to the ice thickness, S∗
fs ∝ 1

H
, meaning that, all else

equal, ponds grow proportionally slower on thicker ice.

Although ice roughness may have a different effect on

each of the individual modes of freeboard sinking, for sim-

plicity we will assume that they are all affected by rough-

ness in the same way, as parameterized in Eq. (29). In that

case, each of these strengths is roughly proportional to the

square of the nondimensional ice roughness, S∗
fs ∝ σ̂ 2, mean-

ing that pond growth due to freeboard sinking is suppressed

on smooth ice.

We will now focus on individual components of freeboard

sinking. The parameter S∗
bi controls pond growth by free-

board sinking due to melting bare ice. On first-year ice, ow-

ing to the shape of the hypsographic curve, the pond growth

rate by bare ice melting increases up to a certain pond cov-

erage and decreases afterwards (Fig. 8, blue line). S∗
bi is pro-

portional to the flux F bi and depends on the initial pond cov-

erage as S∗
bi ∝ (1 − xi)

2. The quadratic dependence on ini-

tial bare ice fraction means that ponds on floes with less

initial pond coverage grow faster. It also means that floes

that start off less ponded can at some point become more

ponded than floes that start off more heavily ponded. We

can see this in Fig. 9a, where the pond coverage distribu-

tion narrows up to a certain point, after which it starts to

widen again because floes with lower xi overtake the floes

with higher xi . Using the default values of physical parame-

ters of F bi = 85 W m−2, H = 1.5 m, xi = 0.2, and σ̂ = 0.55,

we get S∗
bi ≈ 0.13 month−1.

The parameter S∗
mp controls pond growth by freeboard

sinking due to melting ponded ice. The pond growth rate

increases with pond fraction from 0 at x = 0 to very high

values at high pond coverage and can be the dominant mode

of pond growth if the pond coverage is high enough (Fig. 8,

green line). For this reason, giving a representative number

to pond growth rate, such as Smp, is only meaningful if the

melt season is short enough such that pond coverage during

that period does not change substantially. The dependence

on initial pond coverage is S∗
mp ∝ xi(1 − xi). For this reason

the pond coverage distribution widens over time when S∗
mp

is dominant (Fig. 9b). Using F mp = 171 W m−2 and other

parameters the same as above, we get S∗
mp ≈ 0.07 month−1.

Although in this case, melting ponded ice affects pond evo-

lution less than bare ice melting, it can become stronger if
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Figure 9. In this figure we have evolved an ensemble of 105 floes

with varying initial pond coverage according to Eq. (26) when only

one of the growth modes is active. Red curves represent the ini-

tial pond fraction distribution, blue curves represent the pond frac-

tion distribution after a time, t , while the green curves represent

the pond fraction distribution after 2t . A time used in panel (a) is

t = 1
2

1−xi
Sbi

, in panel (b) it is t = 1
6

1−xi
Smp

, and in panels (c) through (f)

it is t = 1
4

1−xi
S

, where xi is the mean pond fraction of the initial

distribution and S is an appropriate strength. We show how differ-

ent growth modes have different effects on the pond fraction distri-

bution. (a) Bare ice melting first narrows the distribution and then

widens it. (b) Ponded ice melting widens the distribution. (c) Bot-

tom ice melting narrows the distribution, while the mean of the dis-

tribution increases at an increasing rate. (d) Enhanced melting nar-

rows the distribution, while the mean of the distribution increases

at a decreasing rate. (e) Using realistic parameters, the pond distri-

bution slowly narrows and accelerates. (f) Due to lateral melting,

pond coverage distribution does not change width, and the growth

is linear.

the pond coverage is higher. For example, S∗
mp and S∗

bi are

roughly the same at x = 0.35, while at x = 0.5 S∗
mp is roughly

twice as large as S∗
bi.

The parameter S∗
bot controls pond growth by freeboard

sinking due to melting of the ice bottom. The pond growth

rate due to bottom melting increases with increasing melt

pond fraction, although more gradually than in the ponded

ice melting case (Fig. 8, red line). Since the growth rate is

proportional to the bare ice fraction, S∗
bot ∝ (1−xi), the pond

coverage distribution gets concentrated over time (Fig. 9c).

Using F bot = 20 W m−2 and other parameters the same as

above, we get S∗
bot ≈ 0.04 month−1. The contribution from

ice bottom melting becomes larger than the contribution from

bare ice melting only at high x.

Now, we will turn to enhanced melting. The parameter S∗
em

controls pond growth by enhanced melting and is the least

constrained in our model due to the many poorly constrained

physical processes that potentially contribute to it. Here we

will only consider enhanced melting due to height-dependent

processes (Eq. 24) and leave lateral melting for the discus-

sion (Sect. 7.1).

Because the growth rate by enhanced melting is inversely

proportional to the hypsographic curve, pond growth by en-

hanced melting is very fast at the beginning of the melt

and decelerates afterwards (Fig. 8, cyan line). The enhanced

melting strength is inversely proportional to the square of

the ice thickness, S∗
em ∝ 1

H 2 , meaning that it is significantly

more sensitive to variations in thickness than freeboard sink-

ing. However, it is significantly less sensitive to variations

in ice roughness (Eq. 29). Even on perfectly smooth ice,

σ̂ = 0, ponds will grow due to enhanced melting. In that case,

however, lateral melt, rather than height-dependent enhanced

melting, may dominate.

The strength of enhanced melting is proportional to the

height below which enhanced melting is operational, S∗
em ∝

1s. If we take ice wetting as a physical example, this means

that enhanced melting is sensitive to microphysical processes

that determine how high above sea level the ice will be wet.

The dependence on the parameter k depends on its mag-

nitude. It appears in S∗
em in the term k−1

dsem/dsfs+1
. The term

dsem/dsfs is proportional to k − 1. Therefore, if dsem/dsfs ≪
1, enhanced melting is proportional to k − 1. However, if

dsem/dsfs ≫ 1, enhanced melting becomes independent of k.

Using default parameters, we find this transition happens at

around k ≈ 1.2. In the example of ice wetting, this means

that enhanced melting is sensitive to albedo variations near

sea level when ice near sea level has a similar albedo to the

rest of the floe. However, if the albedo near sea level is sig-

nificantly lower than the average, pond growth is insensitive

to variations in properties of ice near sea level.

Enhanced melting is proportional to the cube of the bare

ice fraction, S∗
em ∝ (1−xi)

3, making it very sensitive to vari-

ations in initial pond coverage. For this reason, the pond cov-

erage distribution gets quickly concentrated (Fig. 9d), and it

is possible for initially less ponded floes to overtake initially

more ponded floes. If we assume ice wetting is the only phys-

ical process responsible for enhanced melting, we can place a

rough estimate on S∗
sm. Taking k = 1.7, 1s = 0.06 m, and t =

30 days, we get for default parameters S∗
em ≈ 0.31 month−1.

This suggests that the contribution to mean pond coverage

from enhanced melting is slightly larger than the contribu-

tion from freeboard sinking after 30 days of melt.

The black line in Fig. 8 shows the total pond evolution us-

ing the default physical parameters. The pond growth rate

when both freeboard sinking and enhanced melting occur

is not simply a sum of the growth rates of the four modes

since the equations for freeboard sinking and enhanced melt-

ing are solved separate of each other. Therefore, the depen-

dence of growth rate on pond coverage (Fig. 8a, black line)

was obtained by finding the derivative of the pond evolution

curve. The pond growth rate first decreases with pond frac-

tion, indicating that enhanced melting dominates early in the
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Figure 10. The red curve is the results of Skyllingstad et al. (2009).

The black curve is the solution to Eq. (34) with F lat = KlatF mp.

The pond albedo and the shortwave, longwave, sensible, and latent

heat fluxes used to find F mp are the same as used in Skyllingstad et

al. (2009) and Klat = 1.5. A nearly perfect agreement between the

two curves suggests that a single nondimensional constant, Klat, is

enough to describe pond growth by lateral melting, and the compli-

cated physics of lateral melting are important only in determining

the value of Klat.

season and then increases, indicating that freeboard sinking

dominates later in the season. The pond coverage distribu-

tion using realistic parameters narrows with time (Fig. 9e).

Since each growth mode affects the pond coverage distribu-

tion in a distinct way, fitting both the evolution of the mean

and the standard deviation of the pond coverage distribu-

tion in observational data could add constraints on the rel-

evant strengths. Using the above values of strengths, we find

that after a month of growth bare ice melting contributes to

roughly 25 % of mean pond coverage, ponded ice melting

contributes to around 13 %, ice bottom melting contributes

to around 7 %, and enhanced melting contributes to roughly

55 %.

7 Discussion

7.1 Lateral melting of pond walls by pond water

In our model, we focused on vertical changes in topography,

and neglected pond growth by lateral melting of pond side-

walls by pond water. We will now briefly discuss this possi-

bility.

This type of melt was the main focus of Skyllingstad et

al. (2009), who carefully calculated the lateral melt rates of

pond sidewalls by pond water. The red line in Fig. 10 shows

their results. The rate of change of pond fraction due to a

lateral melt flux F lat is

dxlat

dt
= P

A

F lat

lρb
, (34)

where P is the total perimeter of the ponds and A is the area

of the floe. If F lat is constant and the dependence of P on

pond fraction is weak, pond growth is linear, which explains

the roughly linear pond coverage evolution in Skyllingstad et

al. (2009). In Fig. 10, black line, we solve Eq. (34) assuming

a lateral melt flux proportional to the ponded ice melting flux,

F lat = KlatF mp, where Klat is a constant. We use the same

energy fluxes used by Skyllingstad et al. (2009) and esti-

mate P
A

≈ 0.1 m−1 from the aerial photographs taken during

SHEBA. A nearly perfect match is obtained with Klat = 1.5.

Therefore, a single constant that relates the rate of melt of

ponded ice to the rate of melt of pond walls, Klat, is enough

to capture the effects of lateral melting on pond growth. This

suggests that the complicated physics of lateral melting can,

to a large extent, be ignored. More work would, however, be

needed to determine to what degree Klat varies under differ-

ent circumstances.

If we ignore the topographic variation above sea level,

pond growth due to enhanced melting also becomes linear

(Eq. 20). Therefore, lateral melting can approximately be

considered a contribution to enhanced melting, Sem, although

it scales differently with physical parameters than the height-

dependent enhanced melting (Eq. 24). It is important to note

that in this model lateral melt does not depend on ice thick-

ness, H , or on initial pond coverage, xi , although, in reality,

it may depend on these to some degree. For this reason, the

pond coverage distribution width does not change in time,

while the mean increases linearly (Fig. 9f).

It is not simple to understand the contribution of lateral

melting to pond growth when both lateral and vertical melt-

ing occur simultaneously. Each point along the pond bound-

ary can expand either by lateral melting or by vertical melt-

ing, but not by both. This is because when a point along the

pond boundary melts laterally, it creates a completely verti-

cal slope at that point. Therefore a small vertical shift will

not grow the ponds, and a large vertical shift will outgrow

the lateral expansion. Therefore, if pond growth due to verti-

cal melting is strong, the contribution from lateral melting

will be small. This is consistent with observations of Po-

lashenski et al. (2012) and Landy et al. (2014), who found

that on first-year ice the contribution from lateral melting is

small. However, steep topography on level multiyear ice in-

hibits pond expansion through vertical motion and could lead

to lateral melting being the dominant mode of growth. This

is consistent with our findings of a large contribution from

enhanced melting to pond growth on multiyear ice during

SHEBA (Fig. 5).

The Cryosphere, 11, 1149–1172, 2017 www.the-cryosphere.net/11/1149/2017/
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7.2 Effects of density variations and internal melt

So far, we have assumed that all the melt occurs on either

the top or the bottom surface of the ice. However, some of

the melt can happen internally, in the bulk of the ice. Inter-

nal melt occurs when trapped brine pockets with high salt

content expand and dilute in order to reach a thermodynamic

equilibrium with the surrounding ice. This phenomenon has

been reported to occur both above and below sea level. Inter-

nal melt leads to a reduction in bulk ice density, ρb, which in

turn affects pond evolution. Accounting for internal melt cor-

rectly can be quite challenging as it requires detailed knowl-

edge of the vertical structure of internal melt and bulk den-

sity. Nevertheless, we find that although the effects of inter-

nal melt and density variation may be significant when con-

sidered individually, if considered together they are likely

small.

If internal melt is uniform throughout the vertical ice

column, the only effect is a gradual reduction in ρb over

the course of the melt season, slightly increasing the pond

growth rate. If, however, internal melt has a vertical struc-

ture, it will create a vertically nonuniform bulk ice density

which can have more complicated effects on pond evolution.

Variations in bulk density and internal melt affect pond evo-

lution in the following ways: (1) mass transported across sea

level due to rigid body movement depends on the bulk den-

sity at sea level; (2) the volume of ice removed by local melt

depends on the bulk ice density at the surface; (3) freeboard

height depends on average bulk densities above and below

sea level; and (4) internal melt induces rigid body motion

by melting mass above and below sea level, without chang-

ing the ice surface. We outline the procedure to include these

effects in the pond evolution model in Appendix D. The re-

sulting equation for pond coverage evolution has the same

form as Eq. (26), with only the strengths modified. Here,

we only qualitatively discuss our findings. Pond evolution is

most sensitive to the following:

1. The difference between the internal melt rate above and

below sea level, easl−ebsl, creating a rigid body motion.

Here, easl/bsl is the energy density used for internal melt-

ing, averaged over all ice above or below sea level. More

internal melt above (below) the sea level will create an

upward (downward) rigid body motion of the floe, slow-

ing down (speeding up) pond growth.

2. The difference between the bulk ice density at the sur-

face and the bulk ice density at sea level, ρb(h)−ρb(0),

changing the ratio of topographic change due to lo-

cal melt to rigid body motion. Using default parame-

ters, rigid body motion is upwards, slowing down pond

growth. Therefore, a lower (higher) bulk ice density at

the surface relative to sea level increases (decreases) the

rate of local melt relative to rigid body motion, speeding

up (slowing down) pond growth.

If considered as independent processes, vertical variations

in bulk ice density and internal melt can significantly al-

ter the rate of pond growth. For example, assuming ρb(0) =
850 kg m−3, ρb(h) = 750 kg m−3, and no internal melt leads

to a roughly 60 % increase in the pond growth rate. However,

these processes depend on each other and have the opposite

effects on pond evolution. For example, a high rate of inter-

nal melt above sea level, slowing down pond growth, will

lower the bulk ice density above sea level, speeding up pond

growth.

Density and internal melt can be related via a differential

equation,
∂ρb(z)

∂t
= − e(z)

l
− ∂ρb(z)

∂z

dsrigid body

dt
, where z is a ver-

tical coordinate within the ice column. Assuming vertically

uniform rates of internal melt above and below sea level, an

approximate long-time solution to this equation yields a ver-

tically uniform bulk density below sea level, and a linearly

decreasing bulk density above sea level. This also defines a

long-time relationship between the vertical profiles of inter-

nal melt and bulk ice density, easl−ebsl = l
h

dsrigid body

dt
(ρb(0)−

ρb(h)). Using densities from the example in the paragraph

above, and the rate of internal melt obtained in this way, leads

to a roughly 10 % increase in pond growth rate, significantly

less than the 60 % we found when considering only the ef-

fects of vertical density structure.

A long-time effect of vertically nonuniform internal melt

and density is always a significant compensation between the

two, although there may be transient effects. For this reason,

we believe that including a vertical structure of density or

internal melt in the simple model of pond evolution model is

most likely unnecessary.

7.3 Under certain conditions, ponds can stop growing

Here, we will entertain the possibility of pond growth by ver-

tical motion of the topography stopping entirely for a period

of time. This is an example of a possible transient effect of

internal melting, which, although interesting, seems unlikely.

If there is enough mass removed above sea level to induce

an upward rigid body motion that is able to compensate for

the effects of local melting near the sea level, points near

the sea level would move upwards, ds
dt

> 0, and pond growth

would stop. This could, for example, occur if there is strong

internal melting above sea level. After a time, however, high

internal melt above sea level would lower the bulk ice density

at the surface, thereby increasing the rate of local melt and

reinitializing pond growth.

We will use an equation for ds
dt

that includes the effects of

vertically nonuniform internal melt and bulk ice density we

derive in Appendix D, Eq. (D2). Requiring that ds
dt

(x) > 0 for

any x, we find the condition for pond growth stopping as

k <
ρb(h)

ρb(0)

ρi

ρw

(
1 + h

F bi

(
easl − ebsl

ρasl

ρbsl

))
− ρw − ρi

ρw

F bot

F bi

, (35)

where ρasl/bsl is the average bulk density above and below

sea level. Using the values of internal melt and bulk densities
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from the previous chapter and taking
ρasl

ρbsl
≈ 1, we find that in

order for ponds to stop growing, k has to be less than 0.85.

This is unlikely as ice near the sea level likely melts faster

than ice higher up. Nevertheless, if internal melt has not had

enough time to adjust densities above and below sea level,

it is possible that pond growth could be stopped for a time

by the action of internal melt above sea level. For example,

assuming the same internal melt as in the previous example

but a uniform bulk ice density (ρb(h) = ρb(0)), pond growth

would be stopped at k = 1. In this case it is likely that growth

by lateral melt would take over, as Eq. (35) ensures only that

pond growth by vertical motions is prevented.

8 Conclusions

We presented a simple analytical model for melt pond evo-

lution on permeable Arctic sea ice. The model is represented

by two ordinary differential equations in which the rate of

change of pond coverage depends on pond coverage. The

model is governed by four parameters, Sbi, Smp, Sbot, and

Sem, that control the rate of pond growth by bare ice melting,

ponded ice melting, ice bottom melting, and enhanced melt-

ing. Using this model we are able to reproduce observations

well.

Our main finding is that we can estimate the mean pond

coverage as a function of time without running the model by

using “effective strengths”: S∗
bi, S∗

mp, S∗
bot, and S∗

em. Here all

the physical parameters combine in a known way which per-

mits understanding of the behavior of pond coverage under

general conditions. The most important conclusions we draw

from analyzing the effective strengths are as follows:

1. Ponds grow slower on smoother ice, with freeboard

sinking roughly proportional to the square of the bare

ice roughness and enhanced melting increasing roughly

linearly with roughness.

2. Ponds respond to both freeboard sinking and enhanced

melting on first-year ice and almost entirely to enhanced

melting on multiyear ice.

3. The pond growth rate is more sensitive to changes in

bare sea ice albedo than changes in pond albedo unless

the ice is already mostly covered in ponds.

4. Under a global warming scenario, the pond feedback

could lead to ice thinning comparable to thinning due to

direct forcing.

5. The dependence of ice albedo on height above sea level

is likely a significant control on pond evolution.

6. The pond coverage distribution over an ensemble of

floes likely narrows over time.

7. Pond evolution is insensitive to small timescale varia-

tions in the forcing.

8. If freeboard sinking is suppressed by topography, lat-

eral melting likely plays an important role, making it a

significant factor on multiyear ice.

9. The complicated physics of lateral melting can be sum-

marized by a single nondimensional constant Klat that

relates the lateral melt flux to the flux used for melting

the pond bottom.

10. The vertical structure of density and internal melt can

likely be ignored.

As melt pond coverage is one of the key controls on sum-

mer Arctic sea ice albedo, some representation of it in GCMs

is necessary for predicting the future of sea ice and its im-

pact on global climate. With the exception of enhanced melt-

ing, our model depends only on parameters that are either

available in large-scale models or that can be reasonably es-

timated. Therefore, if stricter constraints can be placed on

the strength of enhanced melting, our model may present an

accurate and computationally low-cost representation of sea

level melt ponds that could be used in GCMs.

Code availability. Code to produce all of the figures in the paper

along with relevant data is available at http://hdl.handle.net/11417/

304, doi:10.6082/M1B27S7X.

Data availability. The data used are cited in the main text of the

paper. Also, relevant SHEBA data can be found at http://data.eol.

ucar.edu/codiac_data/sheba/data/perovich/ICEWEB/.
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Appendix A

A good fit to measured hypsographic curves is a tangent

function (Fig. 2):

s(xh) = a
[
tan
( π

2m
p1 ((xh − xi) − p2(1 − xi))

)

+ tan
( π

2m
p1p2(1 − xi)

)]
(A1a)

m ≡ max(p2(1 − xi), (1 − xi) − p2(1 − xi)) . (A1b)

Although this function has a cumbersome form, the param-

eters involved have a clear interpretation. The requirement

that the initial pond fraction is at xh = xi is automatically

satisfied as this is a zero of the function Eq. (A1). The pa-

rameter a is determined by the requirement of hydrostatic

balance, < s(xh) >= h. Therefore, after specifying the ini-

tial pond fraction, xi , and the initial ice thickness H , the

only two unconstrained parameters are p1 and p2. Param-

eter 0 < p1 < 1 determines the level of “variability” of the

curve: if p1 is close to 0, s(xh) is roughly linear, whereas

if p1 is close to 1, s(xh) is highly curved. Parameter p2 de-

termines the position of the inflection point of the tangent

function relative to xi . Therefore p2 < 0 means that the in-

flection point is to the left of xi , and s(xh) is fully convex.

For p2 > 1, the inflection point is to the right of xh = 1, and

s(xh) is fully concave. If 0 < p2 < 1, s(xh) transitions from

concave to convex at xh = xi + p2(1 − xi). We note that the

nondimensional bare ice roughness, σ̂ , for a hypsographic

curve defined in this way does not depend on ice thickness

or initial pond coverage, but only on parameters p1 and p2.

For the hypsographic curve measured by Landy et al. (2014)

for 25 June 2011, the values of the shape parameters are

p1 ≈ 0.8 and p2 ≈ 0.4, whereas for the hypsographic curve

measured during SHEBA (Fig. 2a, dashed line) the parame-

ters are p1 ≈ 0.9 and p2 ≈ 0.5.

Appendix B

In order to make a connection between a model where a con-

stant fraction of bare ice, δ, is affected by enhanced melting

and a model where ice below a fixed elevation, 1s, is af-

fected, we need to estimate how δ scales with 1s. It is im-

portant to make this connection since several physical mech-

anisms that significantly affect the melt rate depend on the

elevation of ice above sea level. To do this, we will use an

alternative model where we assume both freeboard sinking

and enhanced melting occur simultaneously, and enhanced

melting only affects ice below 1s (Fig. 3d). We define xs to

be the fraction of ice below 1s, x to be the fraction of the ice

below sea level, and δ ≡ xs − x to be the difference between

the two. xs evolves only due to freeboard sinking, whereas x

evolves due to both freeboard sinking and enhanced melting.

The equations for the evolution of xs and x are

dxs

dt
= dxh

ds

∣∣∣∣
xs

dsfs

dt
(B1a)

dx

dt
= dx

ds

[
dsfs

dt
+ dsem

dt

]
. (B1b)

Here, dsfs

dt
and dsem

dt
are determined by Eq. (12). Since free-

board sinking does not change the shape of the topography

and xs evolves only due to freeboard sinking, dxh

ds
|xs is sim-

ply the inverse slope of the original hypsographic curve eval-

uated at xs . In contrast, the hypsographic curve near sea level

is affected by enhanced melting and therefore changes shape

over time. For this reason, dx
ds

, which relates the change in

pond fraction, dx, to the vertical change in the hypsographic

curve at sea level, ds, changes with time. Nevertheless, if

1s is small enough, we can approximate the hypsographic

curve between x and xs to be a straight line, meaning that
dx
ds

≈ xs−x
1s

= δ
1s

. This approximation closes our alternative

model. This model provides a similar level of agreement with

the 1-D model as the 0-D model Eq. (26) but is more compli-

cated to analyze. For this reason, we focus on Eq. (26) to an-

alyze pond evolution and use Eq. (B1) only in what follows.

We note that if the hypsographic curve is convex, Eq. (B1)

agrees better with the 1-D model than Eq. (26). This config-

uration is, however, unrealistic.

Using dx
ds

= δ
1s

and subtracting dx
dt

from dxs

dt
in Eq. (B1),

we get an equation for evolution of δ:

dδ

dt
= dxh

ds

∣∣∣∣
(x+δ)

dsfs

dt
− δ

1s

[
dsfs

dt
+ dsem

dt

]
. (B2)

Since dsfs

dt
+ dsem

dt
is larger than dsfs

dt
, δ decreases until it reaches

a constant value after some time. Therefore, a constant 1s

model and a constant δ model become equivalent after some

time. Therefore, finding the value of δ for which dδ
dt

= 0 rep-

resents a natural way to relate the two models.

The values of dsfs

dt
, dsem

dt
, and dxh

ds
|(x+δ) themselves depend

on pond fraction, x (Eq. 12). Furthermore, dsfs

dt
and dsem

dt
de-

pend on the energy fluxes used for melting the ice, which

may fluctuate in time. For these reasons, δ is never fully

constant. To deal with this, we estimate the magnitudes of
dsfs

dt
, dsem

dt
, and dxh

ds
|(x+δ) by substituting x → xi ,

dxh

ds
|(x+δ) →

1−xi

h
, and energy fluxes, F , with their representative values,

|F |, e.g., their time averages. We then find the magnitude of

δ as

δ = C
ρw

ρw − ρi

1s(1 − xi)
2

H

1
dsem

dsfs
+ 1

, (B3)

where C is a nondimensional number that does not depend

on physical parameters, there to compensate for the crude ap-

proximations of using only the initial pond fraction and the

average slope of the hypsographic curve. Comparing to 1-D
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model, we find C ≈ 2
3

. The term dsem

dsfs
is the ratio of magni-

tudes of dsem

dt
and dsfs

dt
and is given by

dsem

dsfs
= ρw

ρw − ρi

|F bi|(k − 1)

|F bi| + xi

1−xi
|F mp| + 1

1−xi
|F bot|

. (B4)

Using δ defined in this way in the 0-D model, Eq. (26), pro-

vides excellent agreement with Eq. (B1) and the 1-D model

run with constant 1s. We note that this agreement is reached

in the long-time limit, and for times shorter than roughly
1s

(dsem/dt+dsfs/dt)
some disagreement can persist. Although the

magnitude of the disagreement depends on the shape of the

hypsographic curve, it is typically not very large, and the 0-D

model provides a reasonable estimate of pond evolution even

for short times.

Appendix C

Here we describe the procedure we used to estimate the ef-

fective strengths of Eq. (29). We write the effective strengths

as

S∗ = f (σ̂, t̂)S, (C1)

where f (σ̂, t̂) is a nondimensional function of nondimen-

sional roughness σ̂ and nondimensional time t̂ ≡ St
1−xi

, and

S is either Sfs ≡ (Sbi + Smp + Sbot) in the case of freeboard

sinking or Sem in the case of enhanced melting. The nondi-

mensional time, t̂ , defined in the above way measures how

far the melt season has progressed, with t̂ = 0 corresponding

to the beginning of pond growth and t̂ = 1 roughly corre-

sponding to the end of pond growth with entire floe flooded.

The function f (σ̂, t̂) measures how much the mean pond

coverage deviates from a mean coverage of linearly evolv-

ing ponds. For a linear pond evolution, x(t) = St + xi , the

function f (σ̂, t̂) = 1.

We separately consider freeboard sinking and enhanced

melting. For all the curves in Fig. 7a and b, we find f (σ̂, t̂) at

several different times t̂ as f (σ̂, t̂) = 2<x(t)>−xi

St
. We show

the results in Fig. C1a and b, where f are plotted as func-

tions of roughness and different colors correspond to differ-

ent times t̂ . For any given time, the scatter comes from the

fact that the hypsographic curve is not fully determined by

roughness.

In the case of freeboard sinking, ffs does not depend much

on t̂ . A quadratic ffs(σ̂, t̂) = cσ̂ 2 fits the scatter data well.

Based on best fit estimates, we find c ≈ 1.3 (Fig. C1a, red

dashed line).

In the case of enhanced melting, fem depends strongly on

time t̂ . We choose to parameterize fem with a linear func-

tion of the form fem(σ̂, t̂) = 1 + c(t̂)σ̂ . We can approximate

c(t̂) by exactly solving the equation for enhanced melting,

Eq. (20), for a linear hypsographic curve, s(xh) ∝ (xh − xi).

Finding the roughness and < x(t) > in this case, we find

c(t̂) ≈
(

2√
t̂
− 3

2

)
. Red dashed lines in Fig. C1b show fem pa-

rameterized in this way.

Appendix D

Here, we outline the procedure to include the effects of ver-

tically nonuniform internal melt and bulk ice density. We as-

sume that the bulk ice density, ρb, and the energy density

used for melting the ice internally, e, have a vertical struc-

ture, ρb(z) and e(z), where z is positive upwards, z = 0 cor-

responds to sea level, and z = h corresponds to ice surface.

Mass transported across sea level depends on the bulk den-

sity at the sea level, the rate of local melting depends on the

bulk ice density at the surface, and the freeboard height de-

pends on the average densities above and below sea level,

ρasl/bsl. Internal melt above and below sea level creates a rigid

body motion. This is summarized as

dmrigid body = ρb(0)Abidsrigid body, (D1a)

dmmelt
asl = −Abi

F bi

l
dt − Abih

easl

l
dt, (D1b)

dmmelt
bsl = −Amp

F mp

l
dt − A

F bot

l
dt − AHd

ebsl

l
dt, (D1c)

h = ρw − ρi

ρw

H

1 − x

1

1 − 1ρb
ρi

ρw

, (D1d)

dsloc

dt
(r) = −k(r)

F bi

lρb(h)
, (D1e)

where Hd is the ice draft depth defined as the volume of ice

below sea level divided by the area of the ice floe, easl/bsl is

the energy density used for internal melting averaged over

all ice above or below sea level, and 1ρb ≡ ρbsl−ρasl

ρbsl
is the

relative difference in mean bulk density above and below sea

level.

With these changes, we can find the equation for pond cov-

erage evolution straightforwardly by repeating all of the steps

from Sect. 2. We first derive the equation for the vertical mo-

tion of points near the sea level

ds

dt
= −

[
(k − 1)

F bi

lρb(h)

]

−
[

1

lρb(0)

(
F bi

(
ρb(0)

ρb(h)
− ρi

ρw

)
+ (ρw − ρi)x

ρw(1 − x)
F mp

+ ρw − ρi

ρw(1 − x)
F bot +

ρi

ρw
hebsl(1e − 1ρb)

)]
, (D2)

where 1e ≡ ebsl−easl

ebsl
is the relative difference in average en-

ergy density used for internal melting below and above sea

level. The two terms in square brackets correspond to en-

hanced melting and freeboard sinking. Then we repeat the

procedure to relate Eq. (D2) to the change in pond coverage.

The resulting equation has the same form as Eq. (26), with
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Figure C1. Determining the effective strengths, S∗ ≡ f (σ̂, t̂)S. Points represent estimates of the correction f (σ̂, t̂) for each of the curves in

Fig. 7 evaluated at different times t̂ ≡ St
1−xi

. The function f (σ̂, t̂) is evaluated as f (σ̂, t̂) ≡ 2(< x(t) > −xi)/(St). Different colors correspond

to different times with black corresponding to early in the season and magenta to late in the season. Nondimensional roughness, σ̂ , is

shown on the x axis. (a) ffs(σ̂, t̂) evaluated for the freeboard sinking curves in Fig. 7a. There is no obvious dependence on t̂ . Freeboard

sinking becomes completely suppressed as roughness tends to zero. The dashed red line represents the fit to these estimates of the form

ffs(σ̂, t̂) = aσ̂ 2. (b) fem(σ̂, t̂) evaluated for the enhanced melting curves in Fig. 7b. There is a clear dependence on t̂ . Enhanced melting

proceeds even as roughness tends to zero. Red dashed lines are fits to these data of the form fem(σ̂, t̂) = 1 + c(t̂)σ̂ , where c(t̂) ≡ 2√
t̂
− 3

2
.

only the strengths modified:

Sint =
(1 − xi)

ρi

ρw
ebsl (1e − 1ρb)

lρb(0)
, (D3a)

Sbi =
(1 − xi)

2
(

1 − 1ρb
ρi

ρw

)(
1 + ρw(ρb(0)−ρb(h))

ρb(h)(ρw−ρi)

)

Hlρb(0)
F bi,

(D3b)

Smp =
(1 − xi)xi

(
1 − 1ρb

ρi

ρw

)

Hlρb(0)
F mp, (D3c)

Sbot =
(1 − xi)

(
1 − 1ρb

ρi

ρw

)

Hlρb(0)
F bot, (D3d)

Sem =
(

ρw

ρw − ρi

)2 21s(1 − xi)
3(k − 1)

(
1 − 1ρb

ρi
ρw

)2

3H 2lρb(0)
(

1 + dsem
dsfs

) F bi.

(D3e)

Here, the strength of internal melting, Sint, should be in-

cluded in the equation for freeboard sinking. The term dsem

dsfs

is given by the ratio of the two terms in square brackets in

Eq. (D2). The equation for pond growth, Eq. (26), using the

above strengths, Eq. (D3), should also be supplemented with

an equation for evolution of bulk density:

∂ρb(z)

∂t
= −e(z)

l
− ∂ρb(z)

∂z

dsrigid body

dt
. (D4)
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1170 P. Popović and D. Abbot: Melt pond coverage on permeable Arctic sea ice

Appendix E: Nomenclature

Parameter Meaning

t , t̂ Time and nondimensional time, t̂ = St
1−xi

s(r) Surface elevation above sea level at point r

s(xh), ŝ(xh),
d̂s

dx̂h
Hypsographic curve, nondimensional hypsographic curve, ŝ(xh) = s(xh)

h
, and its nondimen-

sional derivative, d̂s
dx̂h

= 1−xi

h
ds

dxh

dsrigid body, dsloc(r) Change in surface elevation due to rigid body motion and due to local melting at point r

dsfs, dsem, dsem/dsfs Change in surface elevation due to freeboard sinking, enhanced melting, and the magnitude

of their ratio

dm
melt/rigid body

asl/bsl Change in mass above and below sea level due to ice melting or rigid body motion

x, x̂, 1̂ − x Pond fraction, normalized pond fraction x̂ = x
xi

, and normalized bare ice fraction, 1̂ − x =
1−x
1−xi

xi Initial pond fraction

xh Fraction of ice below an elevation given by the hypsographic curve

xs Fraction of ice below 1s

xfs(t), xem(t), xlat(t) Pond coverage evolution due to freeboard sinking, enhanced melting, and lateral melting

A, Abi, Amp Areas of the floe, bare ice, and melt ponds

P Total perimeter of the ponds

ρw, ρi, ρb Densities of salt water, pure ice, and bulk ice once all the brine has drained

l Latent heat of melting

H , h Initial thickness of the ice and average initial freeboard height

σ , σ̂ Bare ice roughness and nondimensional bare ice roughness, σ̂ = σ
h

p1, p2 Shape parameters of the hypsographic curve that control the “amount of variability” of the

curve and the location of the inflection point

k(r) Ratio of the melt rate at point r to the average rate of bare ice melting

1s Height above sea level below which there is enhanced melting

δ Fraction of the ice affected by enhanced melting

αbi, αmp Albedos of bare ice and melt ponds

Fsol, Fr Solar energy flux and the sum of longwave, latent, and sensible heat fluxes

F bi, F mp, F bot, F lat Fluxes of energy used for melting bare ice, ponded ice, ice bottom, and lateral melting aver-

aged over bare ice, ponded ice, ice bottom, and the pond perimeter

|F | Representative values of fluxes, e.g., their time averages

Klat Constant relating the flux of energy used for melting ponded ice to the flux of energy used

for lateral melting

Sbi, Smp, Sbot, Sem Strengths of bare ice melting, ponded ice melting, ice bottom melting, and enhanced melting

S∗
bi, S∗

mp, S∗
bot, S∗

em Effective strengths of bare ice melting, ponded ice melting, ice bottom melting, and enhanced

melting, that take into account the effects of bare ice roughness

S∗
fs Effective strength of freeboard sinking, S∗

fs = S∗
bi + S∗

mp + S∗
bot

S∗ Total effective strength, S∗ = S∗
bi + S∗

mp + S∗
bot + S∗

em
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supported by a NASA Earth and Space Science Fellowship. This

work was partially supported by the National Science Foundation

under NSF award number 1623064 and under NSF award number

0940261, which is part of the Mathematics and Climate Research

Network.

Edited by: D. Feltham

Reviewed by: two anonymous referees

References

Abbot, D. S., Silber, M., and Pierrehumbert, R. T.: Bifurcations

leading to summer Arctic sea ice loss, J. Geophys. Res., 116,

D19120, doi:10.1029/2011JD015653, 2011.

Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge,

J. A., and Frey, K.: Hydraulic controls of summer Arc-

tic pack ice albedo, J. Geophys. Res., 109, C08007,

doi:10.1029/2003JC001989, 2004.

Eisenman, I. and Wettlaufer, J. S.: Nonlinear threshold behavior

during the loss of Arctic sea ice, P. Natl. Acad. Sci. USA, 106,

28–32, doi:10.1073/pnas.0806887106, 2008.

Flocco, D. and Feltham, D. L.: A continuum model of melt pond

evolution on Arctic sea ice, J. Geophys. Res., 112, C08016,

doi:10.1029/2006JC003836, 2007.

Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of

a physically based melt pond scheme into the sea ice com-

ponent of a climate model, J. Geophys. Res., 115, C08012,

doi:10.1029/2009jc005568, 2010.

Hanesiak, J. M., Barber, D. G., De Abreu, R. A., and Yackel, J. J.:

Local and regional albedo observations of arctic first-year sea ice

during melt ponding, J. Geophys. Res.-Oceans, 106, 1005–1016,

doi:10.1029/1999JC000068, 2001.

Holland, M. M. and Bitz, C. M.: Polar amplification of cli-

mate change in coupled models, Clim. Dynam., 21, 221–232,

doi:10.1007/s00382-003-0332-6, 2003.

Holland, M. M., Bitz, C. M., and Tremblay, B.: Future abrupt re-

ductions in the summer Arctic sea ice, Geophys. Res. Lett., 33,

L23503, doi:10.1029/2006GL028024, 2006.

Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke,

E.: Improved Sea Ice Shortwave Radiation Physics in CCSM4:

The Impact of Melt Ponds and Aerosols on Arctic Sea Ice, J.

Climate, 25, 1413–1430, doi:10.1175/jcli-d-11-00078.1, 2012.

Landy, J., Ehn, J., Shields, M., and Barber, D.: Surface and melt

pond evolution on landfast first-year sea ice in the Canadian

Arctic Archipelago, J. Geophys. Res.-Oceans, 119, 3054–3075,

doi:10.1002/2013JC009617, 2014.

Lüthje, M., Feltham, D. L., Taylor, P. D., and Worster, M. G.: Mod-

eling the summertime evolution of sea-ice melt ponds, J. Geo-

phys. Res., 111, C02001, doi:10.1029/2004JC002818, 2006.

Morassutti, M. P. and Ledrew, E. F.: Albedo And Depth

Of Melt Ponds On Sea-Ice, Int. J. Climatol., 16, 817–

838, doi:10.1002/(SICI)1097-0088(199607)16:7<817::AID-

JOC44>3.0.CO;2-5, 1996.

North, G. R.: The Small Ice Cap Instability in Diffusive Climate

Models, J. Atmos. Sci., 41, 3390–3395, 1984.

Pedersen, C. A., Roeckner, E., Lüthje, M., and Winther, J. G.: A

new sea ice albedo scheme including melt ponds for ECHAM5

general circulation model, J. Geophys. Res., 114, D08101,

doi:10.1029/2008JD010440, 2009.

Perovich, D. K.: The Optical Properties of Sea Ice, No. MONO-

96-1, Cold Regions Research and Engineering Lab Hannover,

Germany, 1996.

Perovich, D. K. and Polashenski, C.: Albedo evolution of

seasonal Arctic sea ice, Geophys. Res. Lett., 39, L08501,

doi:10.1029/2012GL051432, 2012.

Perovich, D. K. and Richter-Menge, J. A.: Loss of Sea

Ice in the Arctic, Annu. Rev. Marine. Sci., 1, 417–441,

doi:10.1146/annurev.marine.010908.163805, 2009.

Perovich, D. K., Roesler, C. S., and Pegau, W. S.: Variability in

Arctic sea ice optical properties, J. Geophys. Res., 103, 1193–

1208, doi:10.1029/97JC01614, 1998.

Perovich, D. K., Grenfell, T. C., Richter-Menge, J. A., Light, B.,

Tucker III, W. B., and Eicken, H.: Thin and thinner: Sea ice mass

balance measurements during SHEBA, J. Geophys. Res., 108,

8050, doi:10.1029/2001JC001079, 2003.

Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman,

K., and Nghiem, S. V.: Increasing solar heating of the Arc-

tic Ocean and adjacent seas, 1979–2005: Attribution and role

in the ice-albedo feedback, Geophys. Res. Lett., 34, L19505,

doi:10.1029/2007gl031480, 2007.

Polashenski, C., Perovich, D., and Courville, Z.: The mechanisms

of sea ice melt pond formation and evolution, J. Geophys. Res.,

117, C01001, doi:10.1029/2011JC007231, 2012.

Scott, F. and Feltham, D. L.: A model of the three-dimensional evo-

lution of Arctic melt ponds on first-year and multiyear sea ice, J.

Geophys. Res., 115, C12064, doi:10.1029/2010JC006156, 2010.

Screen, J. A. and Simmonds, I.: The central role of diminishing

sea ice in recent Arctic temperature amplification, Nature, 464,

1334–1337, doi:10.1038/nature09051, 2010.

Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and

implications for seasonal ice forecasting, Philos. T. Roy. Soc. A,

373, 20140159, doi:10.1098/rsta.2014.0159, 2015.

Skyllingstad, E. D., Paulson, C. A., and Perovich, D. K.: Simula-

tion of melt pond evolution on level ice, J. Geophys. Res., 114,

C12019, doi:10.1029/2009JC005363, 2009.

Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze,

M.: Arctic sea ice decline: Faster than forecast, Geophys. Res.

Lett., 34, L09501, doi:10.1029/2007GL029703, 2007.

Taylor, P. D. and Feltham, D. L.: A model of melt pond evo-

lution on sea ice, J. Geophys. Res.-Oceans, 109, C12007,

doi:10.1029/2004JC002361, 2004.

www.the-cryosphere.net/11/1149/2017/ The Cryosphere, 11, 1149–1172, 2017

http://dx.doi.org/10.1029/2011JD015653
http://dx.doi.org/10.1029/2003JC001989
http://dx.doi.org/10.1073/pnas.0806887106
http://dx.doi.org/10.1029/2006JC003836
http://dx.doi.org/10.1029/2009jc005568
http://dx.doi.org/10.1029/1999JC000068
http://dx.doi.org/10.1007/s00382-003-0332-6
http://dx.doi.org/10.1029/2006GL028024
http://dx.doi.org/10.1175/jcli-d-11-00078.1
http://dx.doi.org/10.1002/2013JC009617
http://dx.doi.org/10.1029/2004JC002818
http://dx.doi.org/10.1002/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-0088(199607)16:7<817::AID-JOC44>3.0.CO;2-5
http://dx.doi.org/10.1029/2008JD010440
http://dx.doi.org/10.1029/2012GL051432
http://dx.doi.org/10.1146/annurev.marine.010908.163805
http://dx.doi.org/10.1029/97JC01614
http://dx.doi.org/10.1029/2001JC001079
http://dx.doi.org/10.1029/2007gl031480
http://dx.doi.org/10.1029/2011JC007231
http://dx.doi.org/10.1029/2010JC006156
http://dx.doi.org/10.1038/nature09051
http://dx.doi.org/10.1098/rsta.2014.0159
http://dx.doi.org/10.1029/2009JC005363
http://dx.doi.org/10.1029/2007GL029703
http://dx.doi.org/10.1029/2004JC002361
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