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A Simple Model for the Interference Between Event-Based Control Loops
Using a Shared Medium

Toivo Henningsson and Anton Cervin

Abstract— Traditionally, control loops are closed using pe-
riodic sensing and actuation. When communication resources
are scarce, much may be gained by instead transmitting
only when something important has happened in the loop.
However, there are no known closed form solutions to this
kind of control problem. This paper presents a simple model
of the interference between event-based control loops caused
by sharing a common medium, based on approximating the
behavior of all loops except one foreground loop. The stationary
state distribution can be computed at low computational cost
using mostly standard linear time-invariant system theory
(applied in the spatial dimension). Control laws are optimized
to minimize state variance using the limited communication
resources. Comparison to Monte Carlo simulations of a full
model shows the simple model to be remarkably accurate.
The model is applied to investigate how the performance of N

control loops sharing a common Carrier Sense Multiple Access
channel approaches the ideal case of aperiodic control as the
number of loops grows.

I. INTRODUCTION

Event-based control holds the promise of better control
performance and lower resource consumption compared to
standard sampled-data control. In their seminal paper on
event-based control, Åström and Bernhardsson (Å&B) [1]
showed that, for an integrator process driven by white noise,
event-triggered control requires only one third of the number
of samples to achieve the same output variance as periodic,
time-triggered control. However, the reduction comes at the
cost of more irregular events. In fact, Å&B’s aperiodic con-
troller would require infinite bandwidth to be implemented
in a networked control setting.

Aiming for implementable controllers, we have previously
proposed the concept of sporadic control [6], where a
minimum inter-event time T is enforced. The parameter T

can be used to model that the communication channel stays
busy for some time when a packet is transmitted.

This paper explores how the ideal performance of Å&B
can be approached by letting N sporadic control loops share
a communication medium with limited bandwidth. As the
number of loops grows, it is expected that the medium can
be used more and more efficiently, essentially transforming
the sporadic constraint into a constraint on the average
communication rate.

A major theoretical challenge in event-based control of
stochastic systems is to find the stationary probability dis-
tribution of the state. For low-order systems, gridding of
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the state-space may be used, but this quickly becomes
infeasible for higher-order systems. In a previous study [2],
we used Monte Carlo simulations to numerically evaluate
the performance for a modest number of sporadic controllers
using a shared medium.

By contrast, in the current paper we derive a simple model
that allows rapid evaluation of the performance, even as the
number of loops becomes large. The control loops are parti-
tioned into one foreground loop, and N−1 background loops.
Only the state probability distribution of the foreground
loop and the discrete state of the medium are modelled in
detail. When the resulting problem has been solved, key
model parameters are matched to make the behavior of the
foreground and background loops appear equal.

Comparing with results from Monte Carlo simulations
of the full system model, it is seen that the simple model
is remarkably accurate in predicting the behavior of the
full system, given its simplicity. The agreement becomes
better as N grows, and, as N becomes very large, the ideal
performance of Å&B is approached.

The medium access policy assumed in the paper is Car-
rier Sense Multiple Access (CSMA) with random, delay-
free arbitration if several nodes attempt to transmit at the
same time. The network is hence collision free—this is a
key assumption for our results to hold. It is well known
that the performance of ALOHA/CSMA with collisions and
retransmissions breaks down when utilization approaches 1,
e.g., [10], [7]. Collisions are highly relevant for wireless
sensor/actuator networks and will be studied in future papers.

Related Work

Rabi and Johansson [8] analyzed how packet loss impacts
the performance of event-triggered control loops. The analy-
sis was done for a single networked loop, assuming that the
loss rate was independent of the event-triggering threshold
of the controller.

Event-triggered state estimation or control of higher-order
systems has been studied by Cogill [5], [4], however not in
the context of several competing control loops.

In all the works mentioned so far, the events are triggered
by fixed thresholds in the state space. Alternative ways to
trigger event-based controllers are proposed in [9], [11].

Outline

The rest of the paper is laid out as follows: Section II
presents the system model and the optimal control problem.
The equations for the stationary state distribution are derived
in Section III and solved in Section IV, by reducing the



linear problem from infinite dimension to a small finite
dimension that can be solved efficiently. Model parameters
are adjusted in Section V to match key parameters between
the foreground loop and the background loops. The influence
of the packet length distribution is investigated in Section VI.
Results and comparison to other models are presented in Sec-
tion VII and possible directions for future work are discussed
in section VIII. Conclusions are given in Section IX.

II. PROBLEM FORMULATION

This section presents the system model, which includes
the foreground loop and medium state, the conditions to
match the foreground and background loops, and the optimal
control problem that we want to solve.

A. System Model

The process controlled in the foreground loop is modelled
as an integrator disturbed by white noise according to

dy = udt + σdw, (1)

where w is a Wiener process with unit incremental variance.
The control signal u will be zero except when the foreground
loop is able to generate a control event, at which time it will
contain a Dirac impulse.

The control law is simple: whenever |y| ≥ r for some
threshold r, the controller tries to take the channel and
transmit a new packet. If it succeeds, the state y is reset
to zero immediately1.

The CSMA channel model is summarized in Fig. 1:

• Whenever the channel is Available, anyone may trans-
mit, causing a transition into the Busy state. The fore-
ground loop will do so when the integrator state reaches
the threshold |y| ≥ r; the background loops will do so
at an expected rate λb.

• The transmission of a packet takes an expected time
T = λ−1

p . A new packet may then be initiated immedi-
ately, or the channel will become available, which will
happen at a rate λa ≤ λp when |y| < r.

• If several transmitters are contending for the channel
when it is released, one is picked at random. The
foreground loop will be able to gain the channel in the
Busy state at a rate λprio ≤ λp − λa when it wants to
(i.e., when |y| ≥ r).

The state of the system is thus (y, k) ∈ R × Zn (n =
2 in this case), where k is the state of the channel, so
the stationary probability density function (pdf) f(y) and
probability flow in the y direction ϕ(y) are

f(y) =

(
fa(y)
fb(y)

)

, ϕ(y) =

(
ϕa(y)
ϕb(y)

)

.

The control law imposes the linear constraints

fa(y) = 0 ∀ |y| ≥ r, ϕ(0) =

(
0

ϕfg

)

,

1It is trivial to account for a fixed delay in the control action, see [3].

Available

Busyreset

|y| ≥ r

λb

λa + λprio (|y| ≥ r)

λa
(|y| < r)

Fig. 1. Continuous-time Markov chain model of the channel state dynamics
under CSMA. The dynamics depends on the integrator state y: the reset
transitions are triggered only when |y| ≥ r; when |y| < r there is instead
a transition to the Available state.

where ϕfg is the rate of reset, since the channel never stays
available when |y| ≥ r, and all resets cause inflow into the
Busy state at y = 0.

When |y| < r, the channel state will evolve according to
(

ṗa

ṗb

)

=

(
−λb λa

λb −λa

)(
pa

pb

)

,

where pa and pb are the probabilities to be in the Available
and Busy states respectively. When |y| ≥ r, the channel state
will evolve according to

ṗb = −(λa + λprio)pb;

the leakage corresponds to the rate of reset triggered from
the Busy state.

B. Matching Conditions

We must require the foreground packet rate ϕfg to be a
proportional share of the total packet rate Nfu = λppb, i.e.

λppb = Nϕfg. (2)

To model equal prioritization of all loops, we demand that in
the Busy state with |y| ≥ r, the intensity to gain the channel
is the total packet rate λp divided by the expected number
of loops waiting to gain the channel, i.e.

λoutside = λa + λprio =
λp

1 + (N − 1)poutside|b
. (3)

Finally, we choose the clearing rate λa according to

λa = λp − λb, (4)

meaning that the average rate of background packets is λb

in the Busy state as well as in the Available state.

C. Optimal Control

The design objective is to choose an optimal threshold
r = r∗ to minimize the state variance

Jy = E(y2)

for each loop. We may also want to trade some increase in
Jy to decrease the average event rate fu of each loop. In the
Å&B case, the tradeoff is given by (see [1])

Jy = 1
6
σ2f−1

u = 1
6
r2. (5)



III. THE STATIONARY DISTRIBUTION PROBLEM

We consider now the general case of simultaneous evolu-
tion of an integrator state according to (1) (with u = 0) and
a continuous time Markov chain. The state of the system is
(y, k) ∈ R × Zn, where k is the state of the Markov chain.
The pdf over the state is f : R 7→ R

n.

A. The Spatial Dynamics

The Fokker-Planck equation for the pdf f under the
Brownian motion (1) with u = 0 is

ḟ(y) = 1
2
σ2f ′′(y) = −ϕ′(y),

where ḟ and f ′ are the derivatives with respect to time
and integrator state y respectively, and ϕ(y) is the flow of
probability in the y direction. We may thus take ϕ(y) to be
ϕ(y) = − 1

2
σ2f ′(y). Simultaneously, the Markov chain state

k evolves by the transition intensity matrix Am as

ḟ = Amf.

Summing the probability flows from the integrator drift
and the Markov chain gives the combined dynamics

ḟ(y) = 1
2
σ2f ′′(y) + Amf.

Assuming stationarity, ḟ = 0 now gives the spatial dynamics

f ′′(y) +
2

σ2
Amf = Df = 0, (6)

which can also be expressed in state space form as

x′(y) =

(
0 − 2

σ2 Am

I 0

)

x(y), x(y) =

(
f ′(y)
f(y)

)

.

B. Moments

Aside from the actual stationary pdf f(y), we will also
need moments such as marginal probability over the Markov
chain states F (0) and state variance V , according to

F (0) =

∫ ∞

0

f(y)dy, V =

∫ ∞

0

y2
1

T f(y)dy.

Since the model is symmetric with respect to the origin, we
consider f to be defined only over y ≥ 0; the extension to
the non-symmetric case is straightforward. The easiest way to
find these moments is to work them into the spatial dynamics.

The moments can be computed from




F (y)
F1(y)
F2(y)



 =

∫ ∞

y





f(y)
1

T F (y)
F1(y)



 dy, (7)

where we collect individual integrals for the zeroth moment,
but sum over the Markov chain states for higher moments to
reduce the computational complexity. The variance is found
as V = 2F2(0) by partial integration twice to eliminate the
factor y2 in the integrand.

Combining (6) and (7) gives the extended dynamics

x′
e(y) =









0 − 2
σ2 Am

I 0
−I 0

−1
T 0

−1 0









︸ ︷︷ ︸

Afull









f ′(y)
f(y)
F (y)
F1(y)
F2(y)









,

︸ ︷︷ ︸

xe(y)

(8)

with boundary conditions x → 0 as |y| → ∞. We see that
(8) has a triangular structure such that the the integrated
densities Fi depend on f and f ′ but not vice versa.

C. Causal/Anticausal Decomposition

The operator D of (6) can be factored into a causal part
D− and an anticausal part D+ according to

D =
d2

dy2
+

2

σ2
Amf = D+D− = D−D+,

D+ =
d

dy
− A+, D− =

d

dy
+ A+, A+ =

√

−
2

σ2
Am.

The square root exists since Am must have a full zero
eigenspace, or the temporal dynamics ṗ = Amp would have
an unbounded solution. Since Am has all eigenvalues in the
left half plane, A+ will have eigenvalues λ in the sector
ℜ(λ) ≥ |ℑ(λ)|. The poles of the spatial dynamics (6) will
be the eigenvalues of ±A+, thus satisfying |ℜ(λ)| ≥ |ℑ(λ)|.

IV. SOLVING THE SPATIAL DYNAMICS

The stationary density f(y) is the solution to a set of linear
equations composed of the spatial dynamics (8) which is
piecewise constant in y, additional linear conditions specified
in the model, and the normalization condition

∫
f(y)dy = 1.

By solving (8) over an interval, we can eliminate the interior
values of xe(y), leaving a low-dimensional set of linear
equations to solve for f(y). The moments and interior values
of f(y) can then be reconstructed.

The extended dynamics (8) can be solved using standard
linear time invariant system theory. We must be careful since
the dynamics is reversible, consisting of matching stable and
antistable, or rather causal and anticausal parts.

A. Bounded Intervals

We want to solve (8) over an interval [y0, y1]. LTI system
theory gives that this relation can be expressed as

xe(y1) = eAfull∆yxe(y0), ∆y = y1 − y0. (9)

This formulation may, however, be very ill conditioned.
Premultiplying (9) by the scaling matrix (eAfull∆y + I)−1

gives the equivalent relation

h
(
− 1

2
Afull∆y

)
xe(y1) = h

(
1
2
Afull∆y

)
xe(y0), (10)

where the analytical function h is given by

h(At) =
(
eAt + e−At

)−1
eAt = 1

2

(
I + tanh(At)

)
.



This formulation will in general be much better conditioned
than (9). 2

The function h(±At) can be evaluated efficiently through
the doubling recursion

h(2At) =
(

h(At)2 + h(−At)2
)−1

h(At)2;

h(±2−nAt) is first evaluated for some suitable n such that
e±2−nAt is reasonably conditioned, h(±At) is then found in
a modest number of steps. If A is first put on Schur form
h(At) will be triangular, and all necessary matrix inversions
can be done efficiently through back substitution.

B. Semiinfinite Intervals

When solving (6) over a semiinfinite interval [y0,∞)
we must insist that Am has some leakage (thus having
eigenvalues strictly in the left half plane) to be able to satisfy
the boundary conditions that f → 0 as y → ∞. The solution
of (6) is then

f(y) = e−A+(y−y0)f(y0), (11)

implying the equivalent boundary conditions at y = y0

f ′(y0) + A+f(y0) = 0.

The integrals Fi can be found by direct integration of (11).

C. Interpolating the Probability Density Function

Given the boundary conditions x(y0), x(y1), the pdf f(y)
can be interpolated according to

D−D+f = D−g = 0, D+f = g.

First, g is solved for in the causal direction, with initial
conditions given by

g(y0) = (D+f)(y0) = f ′(y0) − Af(y0).

Then, f is solved for in the anticausal direction, with initial
conditions f(y1) and input g(y). With semiinfinite intervals,
it is enough to solve outwards from the finite endpoint.

V. MATCHING THE LOOPS

Now that we can solve a problem instance given specific
model parameters, we want to adjust the model parameters
λa, λb and λprio so that all N loops behave the same, i.e.
the matching conditions (2), (3) and (4) are fulfilled. The
condition (4) is simply realized by parametrizing λa in λb,
which implies the restriction λb ∈ [0, λp].

Suppose that we know λb, λa and want to find λprio to
satisfy (2). The spatial dynamics inside the threshold is then
known, and the corresponding linear relations can be used.
The spatial dynamics for the outside gives that

pb,outside =
fb(r)

2

−f ′
b(r)

,

2Half of the eigenvalues of h(At) will satisfy |λ+| ∈ [0.5, 1.07], each
corresponding to an eigenvalue |λ−| ∈ [0, 0.5] of h(−At) with the same
eigenspace, and vice versa for the other half of the eigenvalues. (This can
be seen by looking at the behavior of log(|h(at)|) along the boundary line
at = (1±i)t); log(|h(at)|) is a harmonic function on |ℜ(at)| ≥ |ℑ(at)|).

since fb(y) is a decaying exponential function for y ≥ r.
Inserting this expression into (2) gives the relation

fb(r)
2

−f ′
b(r)

+ pb,inside −
N

λp

ϕfg

︸ ︷︷ ︸

linear in (fb(r), f ′

b
(r))

= 0.

Fixing e.g. f ′
b(r) we get a quadratic equation in fb(r), with

one positive solution. We can now solve for λoutside from

f ′
b(r) = −

√

2

σ2
λoutsidefb(r).

When all parameters are known, the solution is finally
normalized to unit total probability. We can normalize after-
wards, since all other conditions on f(y) are purely linear.

To match also the priority according to (3), we can use
i.e. secant search over λb. We know that λoutside ∈ [λa, λp];
a secant search over λb to satisfy (2) for each of these fixed
endpoints gives a suitable starting interval for the priority
matching. Sometimes there is no λb ∈ [0, λp] that satisfies
(2) with λoutside = λp; we then use λb = λp as the right
endpoint of the search instead.

VI. CORRECTION FOR THE WAITING TIME

DISTRIBUTION

So far, we have assumed that each packet occupies the
medium for an exponentially distributed waiting time, which
allows to use a simple Markov chain model for the channel
state. We will now investigate the influence of the waiting
time distribution on the state variance Vy(t) = E(y(t)2) to
derive a first order correction to the state cost Jy .

By the dynamics (1), Vy(t) evolves between events as

Vy(t) = σ2t + Vy(0);

during a waiting time τ this gives the accumulated variance

Vacc(τ) =

∫ τ

0

Vy(t)dt = 1
2
σ2τ2 + τVy(0).

The waiting time of one packet is τ,E(τ) = T , which gives
the expected final and accumulated variances

E
(
Vy(τ)

)
= σ2T + Vy(0),

E
(
Vacc(τ)

)
= 1

2
σ2

(
T 2 + V(τ)

)
+ TVy(0).

Keeping T fixed, the final state variance when the packet
is completed stays fixed as well. The accumulated variance,
however, depends also on the variance V(τ). Compared to
a fixed waiting time, an exponential waiting time will make
Vacc bigger by the term

∆Vacc = 1
2
σ2 V(τ) = 1

2
σ2T 2.

Since the total packet rate is Nfu = λppb, λp = T−1, the
state cost Jy with exponential waiting times is bigger by

∆Jy = Nfu∆Vacc = 1
2
σ2pbλ

−1
p . (12)



VII. RESULTS

All results are derived with the parameters σ = 1 and λp =
N . The latter means that the network bandwidth scales in
proportion to the number of loops. This scaling is convenient
since it makes the Å&B performance independent of N . The
relative state variance and packet rate of the control schemes
are unaffected by the choice of σ and λp since the integrator
has no time constant.

We will compare the following models:
• Å&B’s ideal, aperiodic controller, with r = fu = 1 and

Jy = 1
6 [1]. This is a lower bound on the achievable

performance.
• A Monte Carlo simulation model with N sporadic

control loops competing for the network under CSMA
with random arbitration [2]. The transmission time of
each packet is assumed fixed and equal to T = N−1.
Via bisection search over r, the optimal performance has
been found for N ∈ {1, 2, 3, 5, 10, 20, 45, 100, 200}.
The time granularity of the model was N−110−3 and
each simulation ran for 108 time steps.

• The simple model proposed in this paper. In the model,
the transmission times are exponentially distributed with
mean T = N−1 = λ−1

p ; the cost correction (12) has
been subtracted from Jy to predict the state variance
with fixed rather than exponential packet times.

A. Probability Densities

Fig. 2 shows the stationary pdf f(y) obtained by the
simple model with N = 10 loops. The optimal threshold
r = r∗ is chosen to minimize state variance Jy . The pdf of
Å&B is shown for reference.

We see that, just as in the Å&B case, the pdf of the
integrator state y varies linearly inside the threshold, with
a break in the origin because of inflow from reset. In the
simple model however, the inflow goes into the Busy state,
while the outflow from reset is divided between the Available
state at the threshold and the Busy state outside the threshold.

The resulting difference between the pdf:s of the Å&B
case and the simple model is that the latter includes an
exponential tail outside the threshold r, while the loop is
waiting to gain access to the channel.

B. Threshold Dependence

Figs. 3 and 4 show the dependence of state cost Jy and
packet rate fu on threshold r, with N = 10 and N = 105

loops. Monte Carlo (MC) results with N = 10 loops and
Å&B results are shown for comparison.

We see that the state cost Jy has a minimum around r = 1,
while fu drops monotonically with the threshold. By using
a threshold r > r∗, it is possible to trade a decreased packet
rate fu for an increased state cost Jy; nothing is gained by
using r < r∗. The simple model is remarkably accurate in
predicting the Monte Carlo results for the full model, given
the radically lower computation complexity.

As the threshold r grows, all curves tend to the Å&B case,
which serves as a lower bound on Jy and an upper bound
on fu. For N = 10 loops, the convergence is gradual. For

−2 −1 0 1 2
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0.6

0.8

1

 

 

f

y

Available
Busy
Total
Å&B

Fig. 2. The stationary pdf f(y) according to the simple model with N =
10 loops and optimal threshold r = 0.96. The Å&B pdf is shown for
comparison.
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Fig. 3. State cost Jy as a function of threshold r according to the simple
model for different number of loops N , along with the Å&B case and Monte
Carlo results for the full model. The Å&B case serves as a lower bound
for both N = 10 and N = 105, with the two essentially coinciding in the
latter case beyond the optimum r = r∗.

N = 105, we can distinguish two domains: when r ≥ r∗, Jy

and fu essentially coincide with Å&B; when r ≤ r∗, fu lies
at the channel capacity while the state cost Jy deteriorates
as the threshold r decreases.

It thus seems that for large N , performance follows the
Å&B case as soon as the necessary average packet rate fu

lies within the peak packet rate of the channel; the minimal
state cost J∗

y is achieved at this break point.

C. Dependence on the Number of Loops

The threshold r was optimized using golden section search
to minimize state cost Jy as a function of N . Fig. 5 shows
optimal state cost Jy , packet rate fu and threshold r as N

varies from 1 to 105 for the simple model, along with full
model Monte Carlo and Å&B results for comparison.

We see that as N increases, Jy drops from about 0.4
towards the Å&B case of Jy = 1

6
. The simple model

is slightly optimistic about Jy for N = 1, and slightly
pessimistic for N ≥ 2. Convergence to the Å&B case is
very close at N = 103.

The rise in packet rate fu with N shows a similar pattern
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Fig. 4. Packet rate fu as a function of threshold r according to the simple
model for different number of loops N , along with the Å&B case and Monte
Carlo results for the full model. The Å&B case serves as an upper bound
for both N = 10 and N = 105, with the two essentially coinciding in the
latter case beyond the optimum r = r∗.
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Fig. 5. Optimal state cost Jy , packet rate fu, and threshold r as a function
of number of loops N . Results are shown for the simple model, full model
Monte Carlo simulations, and the aperiodic Å&B case (for which Jy =
1
6
, fu = r = 1).

to the drop in Jy; this rise is in fact necessary to bring Jy

down since the Å&B performance (5) lower bounds Jy(fu).
In accordance, the slightly lower state cost Jy of the full
model Monte Carlo results is accompanied by a higher packet
rate fu, realized by a quicker drop in threshold r.

VIII. FUTURE WORK

A main direction for continued research is to apply the
same kind of modelling developed in this paper to other
channel models, such as with partial and full collisions. It is
then probably better to trigger control events at a bounded
intensity once the threshold is crossed. Points that deserve
further study include

• How should the shared medium best be utilized when
collisions lead to packet drop?

• How does a partial collisions model transition from
CSMA behavior to full collision behavior as time to
detect that the channel is busy changes?

• Can the model be extended to general first order process
dynamics, or to processes with higher state dimension?

IX. CONCLUSION

Event based control offers the promise to better utilize
limited communication resources than traditional periodic
control. The potential benefit increases with the number of
control loops sharing the same medium, as they may be able
to trade use of the communication channel between each
other to be able to gain access when it is most needed.
The potential for interference, however, also increases; the
question is which of the effects dominates.

This paper presents a simple model for the interaction
between N event based control loops sharing a common
medium in the form of a CSMA channel. The model includes
the medium and a single foreground loop, approximating
the behavior of the other (background) loops. The resulting
model can be evaluated with little computational resources,
independent of N .

Comparison to Monte Carlo simulations of the simulta-
neous evolution of all loops shows that the simple model
predicts the behavior of the full model with remarkable
accuracy, given its simplicity. As the number of loops in-
creases, they are able to share the medium more and more
efficiently, making the sporadic channel constraint appear
more and more like an average capacity constraint, resulting
in significantly improved performance .
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