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SUMMARY 

A simple model of the interplanetary magnetic field is described 
and solved analytically, In this model space is divided into three 
regions by two concentric spheres. Conductivities (with one exception) 
are assumed to be isotropic and constant in each region, and flow 
velocities a r e  regular and prescribed. The innermost region rotates 
rigidly around its center, the intermediate region contains a com- 
pressible fluid flowing radially outward at a constant velocity (an 
idealization of the solar wind), and the outer region is a t  rest .  The 
magnetic field originates at point sources a t  the origin and possiblyin a 
uniform field a t  infinity. With these assumptions methods a r e  described 
for finding the field in the general case, and also in the limit when all 
conductivities are very high. As an example the case in which the field's 
source is a point dipole aligned with the axis of rotation is solved in 
some detail. Part 11 of this study, published as a separate Technical 
Note, considers the cosmic ray anisotropy. 
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A SIMPLE MODEL OF THE 
INTERPLANETARY MAGNETIC FIELD, 

PART I: CALCULATION OF THE MAGNETIC FIELD* 

by 
David Sternt 

Goddard Space Flight Center 

INTRODUCTION 

Experimental evidence indicates that an interplanetary magnetic field originates at the sun 
and extends at least to the earth's orbit, possibly much further. Many features of this field are 
still uncertain, but two of its main properties have been predicted theoretically and seem to agree 
with observation. Both may be regarded as manifestations of the fact that a highly conducting 
fluid - here the solar wind emanating radially from the sun - tends to impart its motion to lines 
of force embedded in it. It was theorized that the solar wind stretched the lines of force, render- 
ing them almost radial and causing the field intensity B to fall off less  rapidly than it would other- 
wise (see for example Reference 1). In addition to this the field was expected to be twisted by 
solar rotation into an Archimedean spiral. This point was noted first by Chapman (Reference 2) 
who observed that the locus of a particle stream constantly emitted from a point on the sun is, a t  
any time, such a spiral. (Because the same locus is described by droplets from a rotating 
sprinkler, this is sometimes called the "garden-hose effect.") A line of force drawn out by a 
stream of particles would also follow such a spiral, and it was argued that similar twisting occurs 
in any field originating in the rotating sun. Parker gave a formal proof of this, assuming that the 
magnetic field is parallel to the velocity field as seen from a frame of reference co-rotating with 
the sun (Reference 3).  The effect has also been deduced from experimental data, from the arrival 
direction of solar flare particles (Reference 4), and from direct observation (Reference 5) by 
Mariner I1 (1962 a p l ) .  For these cases the "garden-hose angle" between B and the radial direction 
from the sun was of the order of 45 degrees. 

In this work a simple model of the interplanetary magnetic field will be investigated, first in 
the limiting case of a perfectly conducting fluid and then for finite, isotropic, and homogeneous 
conductivity. In Part I1 of this study the cosmic ray anisotropy is investigated (Reference 6). The 
description of the model follows. Space is assumed to be divided into three regions by two 

'This report supersedes Goddard Space Flight Center document X-640-63-162, August 1963. 
tThe major part of this work *as performed while the author held a National Academy of Sciences - National Research Council Pos t  - 
Doctoral Resident Research Associateship. 

1 



REGION 
m 

We shall be interested in stationary solutions., and particularly in the case when u is large and 
R, > > R , .  

concentric spheres of radii R, and R ,  (Figure 1). 
Region I, the innermost region, is assumed to 

It should be borne in mind that the preceding is a gross simplification of the actual situation. 
To stress this point, everything approximated and neglected will now be listed: 

1. It has not been established that the solar dipole plays a major role in creating the inter- 
planetary field. Certainly, the source of the field is quite complex. 

2. The solar wind is not an ordinary conducting fluid but a nearly collisionless plasma, con- 
ducting very well along the magnetic field but much less across  it. Unfortunately, since 
the direction of the conduction anisotropy depends on the magnetic field, taking it into 
account makes the equation of conduction nonlinear. Except for one case, therefore, the 
conductivity will be assumed to be isotropic. 

3. The flow and.field assumed here are laminar and regular, although observation indicates 
a large irregular component. The model developed here thus represents only the effects 
of the average interplanetary field and does not include the turbulent component. 
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4. The assumed sharp boundaries are only a convenient approximation to the actual ones, 
which are not too well lmown at the present time. 

5. In any problem of this sort, the velocity v generally is not determined a priori  but is 
solved simultaneously with B, by using the hydromagnetic flow equation (see for example 
Reference 7). This equation is nonlinear and with this approach the term v x B in Equation 1 
becomes nonlinear too. In the vicinity of the earth, of course, the mass flow dictates the 
magnetic field because of its much higher energy density; nevertheless, in the vicinity of 
what corresponds to the outer sphere of this model, the flow may be considerably distorted 
by the field. 

Unfortunately, a more realistic model would be very hard to solve analytically. It is hoped, 
however, that the results obtained here will give some qualitative insight into the behavior of the 
actual interplanetary field. 

IN FINITE CON DUCTlVlTY 

The field produced when u -m has been derived by Parker (Reference 3), with a rotating 
frame of reference. It will be derived here in a somewhat more conventional way. In general, if  
the conductivity tends to infinity and c u r l  B does not, 

Taking the c u r l  in region 11 gives, in spherical coordinates ( r ,  8 ,  @), 

dB _ -  at - u c u r l  ( i +  B o - i e B + )  . 

Utilizing 

d i v B  = 0 

gives 

(4) 

where X stands for either r z  B, , rB+, or  rB, . Under rotational symmetry X is independent of time 
and 

B, = 5(e) r - z  , (6 )  



and, by using Equation 4, 

B, = 0 .  

E, is continuous on the surface r = R,. Jus t  inside the boundary, by Equation 2, 

E, = - w R , s i n B B ,  , 

and because B, is continuous i ts  value just outside the boundary may be used. The continuity of 
E, then gives 

so that the tangent of the “garden-hose angle” is 

In general the source of the field rotates: 

a -  d 
d t  W d h ’  
- _ -  

Then Equation 5 becomes 

dX u dX x + o z  = 0 ,  

and its solution is 

x =  x(e, - G )  . 
Thus 
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and the continuity of E, when r = R, gives 

For a more detailed solution it is generally better to solve Equation 1 for finite conductivity and 
then investigate the behavior of the solution when u gets large. 

FINITE CONDUCTIVITY 

We will now turn to solving the problem for an arbitrary u. It will be assumed that u is 
uniform in each region and takes the values u l ,  u2, and u3 in regions I, 11, and 111, respectively. 
The following theorem is found useful: If a vector field B satisfies Equation 4, it may be uniquely 
resolved in the form 

(18) B = c u r l + l r  t curl  c u r l + 2 r  . 

Following Elsasser (Reference 8), we will term the component fields the toroidal and poloidal 
components, respectively. The theorem was proved f i rs t  for rotational symmetry by Lust and 
Schluter (Reference 9) and for the general case by Backus (Reference 10). In general, the follow- 
ing identities hold (Reference 11): 

c u r l +  3 grad+ x r , (19) 

c u r l c u r l +  grad (+r)  - r 02+ . (20) 
d 

By using Equation 18, a vector potential may be defined: 

A = $ l r  + , 

B = c u r l A  . 

A satisfies the gauge condition 

a 
d i v A  = r-2 ( + 1  r 3 )  , 

and the electric field E may be expressed as 

dA 
d t  grad+,, - - - E = -  (23 1 
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The problem thus reduces to solving Equation 1 for three unknown scalars $ o ,  

derivation of a general solution tends to be tedious and therefore will only be outlined in this 
section. In each of the three regions Equation 1 can be put into the form 

and $ z .  The 

(24) 
gradJi t r - q i  i c u r l r l i  = 0 

(i is the region's index). Taking the curl  and applying the uniqueness of the resolution (Equa- 
tion 18) gives 

curlr-ri  = c u r l c u r l r  C i  = 0 , 

from which 

and, after substitution in Equation 24, 

In general the expressions -qi and C i  will be functions of 
arbitrary functions of r . If these functions can be chosen so that qi vanishes, Equation 24 gives 

and $ z ,  which a r e  also defined as 

J i  = const = Ci 

Region I 

In region I 

v = o x  r = i + w r s i n B  . 

The following relations hold for v and any vector A : 

1 
v = T c u r l  (wrz) , 

( A * V ) v  = o x  A ,  

6 
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(for example see Reference 12, Equation 1.4.3). To resolve v x B in the manner of Equation 18 
note that 

v x B = v x c u r I A  

= 

= g r a d ( A * v )  - w ( i r  - a a+ Ar + i e  % t id 2) , 

g r a d  ( A .  V )  - ( A x  c u r i v )  - (A * V)  v - (v * V ) A  

v x B = - g r a d  

The rest of Equation 1 is easily resolved in the prescribed manner by using Equations 18 and 21- 
23, which give 

The option to add an arbitrary radial function to $l and $, is used to make both q1 ( r )  and C1 ( r )  

vanish, so that 

So far no use has been made of the fact that the field's source co-rotates with region I. There- 
fore  the equations hold even when the field originates, say, in region I11 as a fixed "interstellar 
field." If Equations 11-13 are introduced, 

V2qJl  = 0 , 

V2$, = 0 . 

If the field's source is assumed to be concentrated at the origin, it is useful to expand $l and$, 
in spherical harmonics; the expansion of $, then has a singularity at the origin corresponding to 
the source of the field. For instance, if this source is a dipole with moment M, inclined at an 
angle K to the rotation axis, then 

(33) 
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$, = brim pn PI (e) exp im (4 -ut) + Pp- ,  [COS K COS 8 + s i n  K sin e COS (4- ut)] , (34) 
n m  

where 

Region II 

In this region 

v = ui, 

The contribution of the toroidal component to v x B is 

u(ir  x curl  i r  $, r )  = u i x grad$1 r x ir)]  [. ( 

and the contribution of the poloidal component is, by Equation 19, 

d u d  
u [ i r  x grad 

All the other terms of Equation 1 a r e  the same as for region I. Therefore 

($, r I] = - curl  [T z (+2 r)] 

(39) 5 , ( r )  = P 1 - , [ x  '$2 + ; z ( $ , r ) I -  u d V2$2  . 

As in region I, 
Equations 11-13 the angular part  of $1 is now expanded in spherical harmonics: 

and $, are chosen so that r l z  and 5, vanish and e ,  equals a constant, C,. From 
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Inserting this into Equation 38 and using the independence of spherical harmonics gives, for any 
n andm, 

Multiplying by r R t  and defining 

gives 

The magnetic Reynolds number associated with radial outflow (in region 11) may be defined by 

2a = p o u 2 R o u  , 

and that associated with rotation by 

2azw = p o u 2 R t w  . 

Substituting 

Ynm - - unm expap 

and defining complex Reynolds numbers 2azc of order m, 

1 we have 

(44) 
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the general solution of Equation 43 may be written (Reference 13, p. 337, Equation 256) 

By defining 

gnmi = p-'unmi expap , 

with i = 1, 2, we can write the general forms of and +z in region II as 

Region 111 

In this region Equation 1 has no v x B term. Consequently 

As before, +, and +, are chosen so that 7 ,  and 5 ,  vanish and E ,  is a constant, c,. Now 
expanded in a fashion similar to that used for Equation 40, 

is 

I f m  = othe terms have no time dependence, Equation 49 shows they a r e  harmonic, and Hm ( r )  is 
proportional to r-@+'). If m # 0,the solution proceeds as for region II. By defining 
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and a complex magnetic Reynolds number 2u3= for region 111, 

aSc 2 -  - - 2 i m a a o  , 

it is found that 

'nm " - Znm [*(* + 1 )  p-2 +u,zc 3 = 0 , 

which has the same form as Equation 43. This leads to 

where 

There is a choice of sign for the real  part  of . By choosing uSr  a s  positive, hml ( p )  contains 
exp u3, P which causes it to diverge. Therefore, all Anml vanish and Equation 53 becomes 

In a similar manner 

Contributions by a fixed outside source may be included in Equation 55. Usually Equations 11-13 
then no longer hold and the calculation is somewhat different. 

11 
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CONTINUITY CONDITIONS 

On the boundaries the components of 6, the tangential component of E, and the normal com- 
ponent of curl B are continuous. The operator A' is defined by (Reference 10) 

l a  a 1 I32 
s ine  80 sine as + - - s in2e  ad2 
-- I r\2 = 

so that 

and 

From Equations 18 and 20 

(59) rBr = - , 

and the fact that all boundaries are spherical implies the continuity of all expansion terms of 3,  , 
as expressed in Equations 34, 47, and 55. In a similar way 

r(cur1 B), = - A2 $l 

implies the continuity of the terms of . On a spherical boundary curl r$l, is also continuous. 
By Equation 18 so is curl curl r$ ,  and it may be shown from this that dG2/ar is also continuous 
across the boundaries. Finally, by using the above results with Equations 21 and 23 $o is also 
found to be continuous. Thus four conditions a r e  to be met by each of the two boundaries and by 
eight sets of undetermined coefficients, Because the source of the field is poloidal, the continuity 
of the components of $2 and d$,/dr makes i t  possible to evaluate 
found, by using Equations 30, 37, and 48 to express the continuity of $o. Finally $o is obtained by 
using the same three equations. 

independently. Next $l is 

As u1 and u2 increase without limit, the solutions tend to approach those obtained before by 
assuming E = - (v  x 8). In general, the solutions diverge in region III unless u3 is kept finite. 
This may be interpreted as meaning that, in a system having stationary and rotating ideal con- 
ductors in contact, infinite currents will be excited by unipolar induction. If the hydromagnetic 
equation were used this divergence would not occur, because infinite forces would act  on the flow 
and distort its pattern. 
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In the example that follows this divergence is avoided in a different way, namely by the 
assumption that in region I11 conductivity is arbitrary (finite or infinite) along lines of force, and 
zero across them. 

A WORKED EXAMPLE 

As a simple illustration of the preceding discussion, the case will now be considered for a 
field source of dipole of moment M, located a t  the origin and aligned with the axis of rotation. This 
source produces an axisymmetric field and therefore the variables $I and t as well as the expan- 
sion index m are absent. It is found convenient to use dimensionless units and to define 

r 
P = R , '  

2 u l  = p o c l u R o  . 

The scalars defining the field then obey the following equations. In region I 

V 2 $ ,  = 0 , 

v2+2 = 0 , 

and from Equation 30 

In region 11 

v23,  - 0 ,  

2 a  d 
v2 $I2 - - - a p ( 3 2 p )  = 0 9 

3 0 ,  = $ , P  - z a p ( 3 1 p )  + c,, . 
i a  - 

And in region 111, if an isotropic conductivity c3 is assumed, 

v2qJ, = 0 , (64) 
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v2 = 0 , (65 1 

*Ol = - 

As mentioned at the end of the previous section, in order to prevent divergence as o3 -a and also 
to take into account, a t  least  partially, the anisotropy of conductivity, i t  will be assumed that in 
region I11 the conductivity is o3 for flow along lines of force and zero for flow across them. Then, 
in region I11 

B x c u r l B  = 0 , 

B * c u r l  B = p o o 3  ( E .  B) . 

These equations are nonlinear; however, i t  will be shown that a solution having the required form 
near the boundary is obtained by taking 

from which 

E - B  = 0 .  

By using Equations 18 and 20 and applying the treatment of Equation 24, Equation 69 gives 

V2$J2  = 0 , 

$Jl = 0 .  

The unknown scalars are expanded: 

For region I, as in Equations 33 and 34, 

For region I1 
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And for region 111, with p1 = RJR, , 

To begin with, 3, is derived. For n # 1 the continuity equations of $, anda$,/ar yield a set of four 
equations with unknowns bn,  bnl, b,, and Bn . Because of the form of the source term in Equa- 
tion 74 these equations are homogeneous and all coefficients vanish. For n = l ,  by Equation 44, 

Denoting differentiation with respect to p by primes gives 

b, + P = b11g11(1) + b,,g, ( 1 )  9 

J -2B1 
= b, p1 gl; (p1) + bl, p1g1; (p1) . 

The complete solution is rather lengthy. If a >> 1, which represents the "high conductivity" case, 
and p1 >> 1, in region I 

(8 1) 

in region 11 

and in region 111 

+, 5 (5) cos8 
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The poloidal field in region III is thus that of an axial dipole, whereas in region II 

which may be compared with Equations 6-8. In region I 

Br = (8) case (2p-3 + 1) , 

Be = (4) sine (p-3 - 1) . 

The lines of force of this solution are given in Figure 2, for the limit of high conductivity. 

Figure 2-Lines of  force for the poloidal component, in the limit o f  very high conductivity. 
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Because of Equation 72, $, is expressed by only three sets of undetermined coefficients and 
the fact that $o is continuous when r = R, does not have to be invoked. By Equation 30, in region I 

Because 

only for n = 0,2 do the coefficients of $, satisfy inhomogeneous equations and therefore differ 
from zero. The monopole te rms  do not contribute to the magnetic field, so that only the quadru- 
pole par t  has to be evaluated. In region 11 

from which 

where 

2w 
Y = - x ( b , + P )  9 

A,  = - 3 a l ( l - ~ ) e x p 2 a ,  

A, = 2al (az + 3 u +  

w-' [ 1 - exp 2a (P- P,)] p, ( 6 ' )  + f ( r )  9 

This again tends to produce cumbersome expressions. When a >> 1 and p 1  >> 1 ,  in region 11 

$1 

and in region I 



I 111 1 1 , 1 1 1 ,  I m . ,,,, , --,. ..-...-..... - .... . . . .. ... -. . . . 

In region 11, by Equation 19, 

(93 1 

which should be compared with Equation 7. 

Finally, $o is derived. Equation 70 implies that in region 111 the lines of force of B lie on 
equipotentials of $ o .  B in that region was found to be a dipole field and its lines of force are 

sin2 e 
P const . 

Thus in region 111 

By Equations 44 and 45, or by direct calculation of a 8-independent solution of Equation 61, the 
monopole term of $lis, in region 11, 

$1 (mono) = ao,p-' exp 2up + aO2p-' , 

which with Equation 63 gives 

By assuming as before that u >> 1 and p1 >> 1, Equations 63 and 9 1  give, in region 11, 

$01 = Y P ,  ( 8 )  + c 2 2  

Combining this with Equations 87 and 94 shows that 

c,, = - y . 

Thus in region 11 

3 
#ol = - 7 y s i n 2 8  , 

h d  in region 111 

(95) 
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It should be noted that in region 11 $,, does not depend on r .  The equipotentials thus tend to be 
(with large a and p , )  cones of constant e. 

The potential in region I is determined in the same manner. If a ,  >> 1, the term containing 
$, in Equation 86 may be neglected and 

$01 = (+)(+ pz + p-1) sin2 e . (97) 

The approximation involved here is the same as for Equation 2, so that Equation 70 holds in all 
regions and the magnetic lines of force lie on equipotential surfaces. Thus Figure 2 may also be 
viewed as a cross  section of the equipotentials of the electric field. 

It is interesting to note that, in the limiting case of high conductivity, the electric potential 
in region 11, especially near the equatorial plane, is different from that at infinity. In particular, 
the equatorial plane is an equipotential in which, by Equation 97, 

The quantity P/R,, which is of the order of the field at r = R, , will be taken as 1 gauss; Equa- 
tion 98 then gives a potential of about 2 x 10' volts. This result may have some connection with 
the modulation of cosmic radiation by the solar activity cycle which resembles that produced by 
an electric field (Reference 14); however, the value of $Jo deduced here is too small by a factor 
5-10, and it should be borne in mind that when the solar dipole reverses its direction, as observed 
in 1958 (Reference 15), 3, reverses  its sign. 

To the preceding example may be added a homogeneous "interstellar magnetic field" Bo 
which, in order to preserve symmetry, will' be assumed to be parallel to the rotation axis (for an 
arbitrarily directed Bo the calculation is more involved). Such a field can be represented by a 
poloidal potential 

1 
$J2 = Bo r COS 0 , 

so that Equation 77 is replaced by 

(99) 

. 
The inclusion of Bo causes a term R,B,/2 to be added on the left of the last two of Equa- 

tions 80. When these equations are solved, i t  turns out that b,, (the important coefficient in 
region 11) is modified by a factor of 
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which generally will differ very slightly from unity for large a and P,. Thus I&, and consequently 
and +,,, are only negligibly affected in region I and in most of region 11. Note that it is quite 

possible for the outlying interplanetary field to be much weaker than the surrounding interstellar 
one. The solar wind then scoops out a cavity in the interstellar field, as first suggested by 
Davis (Reference 16). 
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