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Abstract

Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene
with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the
feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does
not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative
interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a
positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The
second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A
stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator
are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The
main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or
inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable
oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second
repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs
neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify
the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators.
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Introduction

Cellular clocks control important functions of the cell, such as

circadian (24-hour) rhythms, cell cycle, metabolism and signaling.

Clock operation appears to involve the coupling of two different

types of oscillators. The first are oscillators based on cytoplasmic

reactions, such as phosphorylation [1] and oxidation [2,3]. The

second are genetic oscillators depending on gene expression

regulation [4,5]. In the last decade several synthetic genetic

oscillators have been implemented in the laboratory [6–12]. The

first mathematical model of a genetic oscillator was developed by

Goodwin for periodic enzyme production [13]. This model was

the groundwork for subsequent theoretical research on genetic

oscillators in living systems, such as fungi and flies [14–19]. In

these models, the rhythms are generated by a gene with a negative

transcriptional feedback (NTF) (Fig. 1A). This NTF needs time

delay and sufficiently strong nonlinearity in the transmission of the

feedback signal for preventing the steady-state stabilization of the

system [20,21]. It has also been analyzed variants, involving two

genes, of the model presented in the Fig. 1A [22].

Positive transcriptional feedbacks (PTFs) are also present in

many cellular clocks [23–25]. Models with two or more genes

involving PTFs have been studied in genetic oscillators [26–34]. In

these models the PTFs increase the expression of repressor genes.

It has been shown how PTFs produce bistability [35,36], increase

the robustness of cellular clocks [37,38] and could provide robust

adaptation to environmental cycles [39]. Previously, it has been

demonstrated that a single gene with only PTF does not produce

oscillations [40]. Here we study a model with a simple condition to

produce biochemical rhythms in a single gene with PTF (Fig. 1B).

We chose a circadian period for the oscillator due to its relevance

in biological systems. This model is based on two common features

of genetic oscillators [4,21,26,28,38]. The first is a PTF created by

a protein that activates the transcription of its own gene. The

second is a negative interaction in which a repressor inhibits the

activity of this protein. We performed stochastic and deterministic

simulations that yielded similar results. The stochastic simulations

show that the genetic oscillator is robust to noise. This noise is

introduced in living cells by the stochasticity of gene expression

[41,42]. By means of a reduced deterministic model, we show that

the oscillations exhibit limit-cycle behavior. This means that if a

disturbance is applied to the system, the oscillations return to the

original periodic solution [43,44]. Also we show that this biological

clock can be classified as a relaxation oscillator [28,43,44]. This

type of clock is sometimes called hysteresis oscillator [26,45] or

amplified negative feedback oscillator [21,25]. The relaxation
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oscillator comprises fast and slow oscillation creation stages. In our

model these oscillations are characterized by sawtooth waveforms.

Finally, we explain how the negative interaction works through a

comparison with the dynamics of the typical enzymatic reaction.

We show that the rate of the negative interaction is amplified by

the PTF and has a saturation point.

Results

Model and simulations
The model is a simple one-gene network with two well-

differentiated parts (Fig. 2). The first is a PTF created by a protein

A, which is a transcription factor of its own gene. When this

protein binds to its promoter the transcription rate increases. The

second part is a negative interaction in which a repressor molecule

R prevents A from binding to its promoter. The molecule R can

be thought of as a protease, as a protein that sequesters A, or as

any other molecule that inhibits the function of A as shown in

Fig. 2. A different version of the model can be formulated in which

the negative interaction acts on the mRNA molecules instead of on

protein A.

Eleven biochemical reactions provide a full description of the

model (see (3) in the section Methods: Biochemical reactions and rates).

The system is assumed to have a uniform mixture of biomolecules.

For this reason, we did not take into account diffusion processes. In

this approach, the dynamics of the biochemical reactions (3) can

be described by two different formalisms known as stochastic and

deterministic approaches (see Methods: Deterministic and stochastic

simulations for more details). These two approaches can lead to

different behaviors. The stochastic dynamics of the reactions (3)

were simulated using the Gillespie algorithm [46] and the

deterministic dynamics using the following ordinary differential

equations:

dG=dt ~{k1GAzk{1Ga

dGa=dt ~k1GA{k{1Ga

dM=dt ~k2Gzk3Ga{k4M

dA=dt ~{k1GAzk{1Gazk5M{k6A{k7AR

dR=dt ~{k7ARzk8Czk9{k10R

dC=dt ~k7AR{k8C,

ð1Þ

where the variables and rates are described in the section Methods:

Biochemical reactions and rates. We used standard values within the

diffusion limit for the rates [18,38,47].

The stochastic approach is more realistic than the deterministic

simulation because it takes into account the randomness of the

chemical reactions. This randomness produces fluctuations in the

number of molecules. We fitted the reaction rates to obtain

circadian oscillations in the stochastic simulation. Then, we

compared the results with the deterministic simulation (Fig. 3).

For both simulations the time evolution of the protein (A),

repressor (R), protein-repressor complex (C) and mRNA (M) are

very similar. The main difference is the appearance of fluctuations

in the stochastic case around the number of molecules predicted

by the deterministic approach. The fluctuations are more evident

in the time evolution of M (Fig. 3G) than in the other

biomolecules. This is because the number of M molecules

oscillates in a lower range than A, R and C. The oscillations in

C are characterized by sawtooth waveforms. On the other hand,

there are differences between the stochastic and deterministic time

evolution of the gene. There is a single gene in the model, which

can be deactivated (G) or activated (Ga). Therefore, GzGa~1
molecule. The stochastic simulation shows realistic discrete

transitions between 0 and 1 molecules (Figs. 3I and 3K). By

Figure 2. Model of a one-gene oscillator with PTF. The model is
composed of two well-differentiated parts. The first part is a positive
feedback loop in which a gene (G) is transcribed into mRNA (M). In
turn, M is translated into protein (A). This protein is a transcription
factor of its own gene and increases the transcription rate when it binds
to the promoter. The positive feedback needs a second part, consisting
of a negative interaction in order to obtain reliable oscillations. In this
part repressor molecules (R) enter the system at a constant rate. R
inhibits the function of A. Specifically, R binds to A and forms the
complex C. In this complex, A is not able to bind to its promoter. R is
not degraded together with A and can be used several times.
Therefore, R can be thought of as a protease, a protein that sequesters
A or any other molecule that binds to and inhibits the function of A as
explained above. The zigzag arrows stand for degradations. A different
version of the model can be formulated with the negative interaction
acting over M instead of over A.
doi:10.1371/journal.pone.0027414.g002

Figure 1. Diagram of one-gene oscillators with negative and
positive transcriptional feedbacks. A. Negative transcriptional
feedback (NTF) created by a protein that represses the expression of its
own gene. This NTF needs time delay and sufficiently strong
nonlinearity in the feedback signal transmission in order to produce
reliable oscillations. The time delay is created by intermediate reactions,
such as the transcription and translation, reversibly phosphorylations or
proteins shuttling between the nucleus and the cytoplasm. The
nonlinearity can be created by reactions, such as protein cooperativity
in the gene repression or formation of protein multimers. B. Positive
transcriptional feedback (PTF) created by a protein that activates the
expression of its own gene. This PTF needs a negative interaction in the
feedback signal transmission in order to produce reliables oscillations.
The negative interaction can be a degradation, sequestration, or
inhibition carried out by a repressor molecule.
doi:10.1371/journal.pone.0027414.g001

A Single Gene Oscillator with Positive Feedback
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contrast the deterministic simulation shows unrealistic continuum

transitions (Figs. 3J and 3L). In both cases, however, the qualitative

behavior is the same. Most of the time the gene is activated by A,

although it is deactivated for a short time when the number of A in

the oscillations is low.

Model robustness to noise
The fluctuations in the stochastic simulation are the source of

so-called intrinsic noise [41,42]. In the genetic oscillator, this

intrinsic noise generates variability in both the amplitude and

period of the oscillations. The phase plane defined by C and A
illustrates this variability very clearly (Fig. 4A). The deterministic

phase plane is a well-defined curve because the oscillations are

identical (dashed line in Fig. 4A). In contrast, the stochastic phase

plane is a curve that spreads around the deterministic curve due to

intrinsic noise (solid line in Fig. 4A). We used the amplitude and

period histograms, and the autocorrelation function to quantify

the effect of this intrinsic noise on A oscillations. The results are

similar to circadian models with more chemical reactions [18,26].

The amplitude histogram shows a mean of 6,723 molecules and a

standard deviation of 858 molecules (Fig. 4B). The period

histogram shows a mean of 24.3 hours and a standard deviation

of 1.7 hours (Fig. 4C). In contrast, the absence of intrinsic noise in

the deterministic simulation produces identical A oscillations with

lower amplitude and period equal to 6,164 molecules and

23.6 hours, respectively. On the other hand, the autocorrelation

function shows a half-life time of about 120 hours (Fig. 4D).

The stochastic approach produces good oscillations in A even

when there are fewer than 30 molecules of M, R and C. (Figs. 4E–

H). We changed the value of some rates to obtain this simulation

as in [38] (see caption of Fig. 4). In the deterministic approach,

where intrinsic noise is not present, these changes do not alter the

dynamics of A significantly and produce a low number of M, R,

and C molecules. In particular, the amplitude and the period are

slightly lower (Fig. S1). In the stochastic simulation the rate

changes reduce the amplitude and period means to 6,166

molecules and 21.3 hours, respectively (Fig. S2A). The effects of

intrinsic noise is now more pronounced because the number of M,

R, and C molecules is low. This is reflected in an increase of the

amplitude and period standard deviations to 2,132 molecules and

5.2 hours, respectively (Fig. S2B).

In cells, there are also fluctuations in the number (or activity) of

molecules such as polymerases, ribosomes and degradation

machinery. These fluctuations are the source of so-called extrinsic

noise [41,42]. We performed stochastic simulations varying the

parameters in order to account for some aspect of extrinsic noise in

the robustness study of the model. The results show that this

oscillator is robust to small parameter variations (Fig. 4I) like more

other complex models of genetic oscillators [27]. The largest

amplitude and period changes occurred for variations in k3 (see

Table S1). The changes in the mean period and amplitude were

always less than 15% and 31%, respectively. Particularly, variations

in the rates k1, k{1, k2, k6, k7 and k10 produced changes of less than

3% and 8% in the mean period and amplitude, respectively. The

changes in the standard deviation of the period and the amplitude

were always less than 13% and 27%, respectively.

Reduced deterministic model
To identify the types of biomolecules mainly responsible for

oscillations, it is useful to reduce the deterministic model by means

of the quasi-steady-state assumption (QSSA) [43,48]. This

approximation differentiates between fast and slow variables.

The greater the time-scale separation between the variables the

more accurate the approximation is. In this approach it is assumed

that fast variables quickly reach the equilibrium, i.e., their

derivatives are zero. This assumption means that slow variables

are responsible for the system dynamics. In this model, we

assumed that the fast variables are G, Ga, M and R, and the slow

variables are A and C. Then, the set of Eq. (1) can be simplified to

dA=dt ~
azbA

czA
{A

k9zk8C

dzA
{k6A

dC=dt ~
k9A{dk8C

dzA
,

ð2Þ

where a~Gtk{1k2k5=k1k4, b~Gtk3k5=k4, c~k{1=k1, d~
k10=k7 and Gt~GzGa. A good way to check if this

Figure 3. Stochastic and deterministic simulations of the model. A, C, E, G, I, K. Stochastic time evolution of the protein (A), repressor (R),
protein-repressor complex (C), mRNA (M), gene (G) and activated gene (Ga), respectively. B, D, F, H, J, L. Deterministic time evolution of A, R, C,
M , G, and Ga, respectively. In both simulations, the time evolution of A (A and B), R (C and D) and C (E and F) are very similar except for the
presence of fluctuations in the stochastic case. This phenomenon is more pronounced in the time evolution of M (G and H). The oscillations in C
show sawtooth waveforms. There is a single gene in the model; hence GzGa~1 molecule. In the time evolution of G (I and J) and Ga (K and L), the
stochastic simulation shows discrete transitions between 0 and 1 molecules. By contrast, the deterministic simulation shows unrealistic continuous
transitions. The time evolution of Ga shows that the gene is activated most of the time (K and L).
doi:10.1371/journal.pone.0027414.g003

A Single Gene Oscillator with Positive Feedback
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Figure 4. Model robustness to noise. A. Stochastic and deterministic phase plane defined by C and A. The general shape of the curves is the
same in both cases, but the deterministic curve (dashed line) is well defined because the oscillations are identical. In contrast, the stochastic curve
(solid line) spreads around the deterministic one. B, C. Amplitude and period histograms of the stochastic simulation of A, respectively. D.
Autocorrelation of the stochastic oscillations in the number of A molecules. The half-life of the autocorrelation is about 120 hours (intersection of
dashed lines). E–H. Model robustness to intrinsic noise when the number of molecules is low. The changed rates are k4~1000 hour{1 , k5~5000
hour{1 , k7~25:5 molecules{1 hour{1, k8~132:6 hour{1 and k9~1 molecules hour{1 . In particular, we multiplied the rates k4 and k5 by 100 to
obtain a low number of M molecules. Simultaneously, we multiplied the rates k7 and k8 , and divided the rate k9 by 51 to obtain a low number of R
and C molecules. The initial conditions are Ga0~1 and G0~M0~A0~R0~C0~0 molecules. The mean value of M is 0.48 molecules. I. Model
robustness to extrinsic noise. Scatter plot of amplitude versus period that shows the robustness of the model to parameter variation (data is
presented in Table S1). Two stochastic simulations were performed for each parameter in which the value was increased and decreased by 15%. The x
and y coordinates of each data point correspond to the mean values of the period and amplitude, respectively. The horizontal and vertical error bars
are the standard deviation of the period and amplitude, respectively. The intersection between dashed lines shows the point obtained without
changing the value of any rate (Figs. 4B and 4C). (B, C, D and each data point in I were calculated for 1,000 successive cycles. We assumed that a cycle
occurs if the number of proteins A increases to 1,000 molecules and then decreases to 700 molecules. The amplitude was calculated as the greatest
number of A molecules in each cycle. The period was calculated as the time interval that it takes the number of proteins A to reach 1,000 molecules
for the first time in two successive cycles.)
doi:10.1371/journal.pone.0027414.g004

A Single Gene Oscillator with Positive Feedback
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approximation is correct is to compare the numerical solution of

the complete and the reduced systems. Both numerical solutions

agree except for quantitative differences in the period and the

amplitude (Figs. 5A and 5B). These differences are due to the

fact that the time-scale separation between fast and slow

variables is not large enough for QSSA to be more accurate.

Despite these differences, we can conclude that A and C are

mainly responsible for the system dynamics. The other types of

biomolecules can be considered to be at equilibrium. The

fluctuations in the fast variables do not significantly affect the

system dynamics [38]. This explains the robustness of the model

when the number of molecules is low (Figs. 4E–H). In fact, the

system produces reliable oscillations even if the average of M is

less than one molecule (Fig. 4H), and, surprisingly, even when

the driven C molecules oscillate in a range of less than 30
molecules (Fig. 4F).

The oscillations in the reduced deterministic model exhibit

limit-cycle behavior (thin solid line in Fig. 5C). Therefore, if an

external disturbance is applied to the oscillator, the system will go

back to oscillating with the period and amplitude of its limit cycle.

The unstable fixed point of the system is C0~552:4 and A0~56:3
molecules (circle in Fig. 5C). For a bifurcation analysis of

parameters k8 and k9 indicating the range of values that produces

limit-cycle oscillations, see Methods: Bifurcation diagram.

This genetic clock belongs to the so-called relaxation

oscillators [28,43,44]. The mechanism responsible for the

oscillations is represented by the nullclines AN and CN

(Fig. 5C). These nullclines are the solution of the equations

dA=dt~0 and dC=dt~0, respectively. The nullcline CN is a

straight line and the nullcline AN has the characteristic ‘‘Z’’

shape of relaxation oscillators [43–45]. The shape of the A
nullcline is the same as the hysteresis diagram obtained if C is

assumed constant (Fig. S6). Therefore, this genetic clock

contains some features of hysteresis in its oscillatory mecha-

nism. The A nullcline has two branches that we can call ‘‘high’’

and ‘‘low’’ (Fig. 5C). These branches are steady states if the C is

a constant (Fig. S6). In each oscillation the system switches from

one branch to the other using the number of C molecules as a

transient signal. This process can be explained following the

limit-cycle trajectory. When A and C are about 1 and 200

molecules, respectively, their number increases until A reaches

its maximum of about 7,330 molecules and C reaches about

650 molecules. This is the transient from the low to the high

branch. Then, the number of A molecules is reduced to about 0

molecules, whereas C reaches its maximum of about 1,260

molecules. This is the transient from the high to the low

branch. Finally, the number of C molecules is quickly reduced

and the trajectory moves along the nullcline AN , returning to

the starting point where a new cycle begins.

This genetic clock is characterized by containing fast and slow

stages. The time evolution of C shows these two well-differentiated

stages (Fig. 5D). In the slow stage A&d and k9A&dk8C, then the

second differential equation in (2) can be approximated by

dC=dt&k9. In this stage, therefore, the number of C molecules

Figure 5. Model of the genetic oscillator reduced by QSSA. A, B. Comparison between the reduced (solid line) and complete (dashed line)
deterministic simulation of the time evolution of A and C, respectively. C. Phase plane. Limit cycle (thin solid line) and nullclines AN (thick solid lines)
and CN (thick dashed line). The unstable fixed point of the system (marked by circle 0) is C0~552:4 and A0~56:3 molecules. The AN and CN

nullclines are the solution of equations dA=dt~0 and dC=dt~0, respectively. The two branches in the nullcline AN are called ‘‘high’’ and ‘‘low’’. D.
Slow and fast stages in the reduced system. The solid line is C and the dotted line is A. C exhibits a sawtooth waveform. (The arrows in C and D
represent the direction of the oscillations. One and two arrows mean slow and fast stages, respectively).
doi:10.1371/journal.pone.0027414.g005
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increases linearly according to equation C!k9t. In the fast stage

A%d and k9A%dk8C, then the second differential equation in (2)

can be approximated by dC=dt&{k8C. In this stage, the number

of C molecules decays exponentially according to equation

C! exp ({k8t). The two stages play different roles. The slow

stage is characterized by the formation of a pulse of A molecules.

On the other hand, the decay of C into R in the fast stage provides

the necessary conditions for a new pulse. These two stages produce

oscillations in C with sawtooth waveforms (solid line Fig. 5D).

How the negative interaction works
The negative interaction decreases the number of free A

molecules and takes the system back to the start of a new cycle.

The detailed explanation of how this interaction works is related to

the dynamics of the typical enzymatic reaction SzE
c1

c{1

D
c2 PzE, where S, E, D and P are the substrate, enzyme,

complex substrate-enzyme and product, respectively. The total

number of enzymes (Et~EzD) is constant in the system. The

rate of catalysis in this reaction is defined as u:dP=dt~c2D. The

value of this rate can be approximated by QSSA. The result of this

approximation is the well-known Michaelis-Menten equation

u&VmaxS=(KMzS), where Vmax~c2Et and KM~(c{1zc2)=
c1 [43]. In this equation, the rate uincreases asymptotically as a

function of S. The rate u reaches a maximum value (Vmax) when

the amount of S is large compared with the constant KM . In this

situation, the enzymes are saturated because most are part of

complex D, and adding more S does not increase the rate u:
Therefore, D&Et, and the rate of the catalysis u reaches the

constant value c2Et.

In our model, the negative interaction is AzR
k7

k{7

C
k8 R,

where we assumed k{7~0 to simplify the model. We can think of

A, R, and C as S, E and D, respectively. Therefore, the rate of

the negative interaction can be defined as u:k8C (Fig. 6A). This

rate represents the number of degraded A molecules per hour.

The negative interaction works as follows. The number of A
molecules increases quickly due to the positive feedback. This rise

causes most of the R molecules to bind to A molecules forming

the complex C. At this point, the system reaches the saturation

level (circle in Fig. 6A). The total number of repressor molecules

in the system is Rt~RzC. Therefore, at the saturation point,

C&Rt and the rate u reaches the value k8Rt. The negative

interaction is not fast enough to decrease the growth of A
molecules immediately after the saturation point is reached. This

is because the number of Rt molecules is low at this point.

Nevertheless, new R molecules enter the system at rate k9.

Therefore, Rt increases linearly over time (Rt!k9t) compared

with the enzymatic reaction in which Et is constant. This means

that the rate of the negative interaction increases linearly

according to equation u!k8k9t. The value of u increases until

the negative interaction is fast enough to reduce the number of A
molecules and take the system back to the start of a new cycle.

The maximum rate reached by the negative interaction is umax~
3,180 molecules/hour (square in Fig. 6A).

In this model there is not an explicit negative feedback loop at

the genetic level. It has been conjectured that all biochemical

oscillators involve some sort of negative feedback loop [21]. In this

genetic clock, an effective negative feedback loop appears in the

reduced model (see the section Methods: The Jacobian matrix).

Intuitively, this effective negative feedback loop can be explained

as follows: when C is rare, A is increased by the positive feedback.

This rise in the production of A leads to the accumulation of C,

which in turn increases u. This accumulation of C increases until

the negative interaction is fast enough to reduce the number of A

molecules. In this model, we assumed that C is not degraded. If

this complex is degraded according to the reaction C
k11 w, u

increases at a slower rate, and its maximum value (umax) is reduced

(Figs. 6B and S5). The oscillations stop when k11~0:6 hour{1

(Fig. S5G), because not enough C is accumulated in order to

increase u.

This genetic oscillator does not need cooperative binding

reactions nor the formation of protein multimers, in contrast to the

one-gene oscillator with TNF (Fig. 1A). It has been demonstrated

that protein sequestration produces an effective high nonlinearity

[49,50]. But this high nonlinearity is not observed if the repressor

molecule is recycled [49]. In our model the repressor R can be

used several times. Therefore, the negative interaction does not

produce an effective high nonlinearity (see Supporting Information:

Text S1).

Discussion

Genetic networks with NTFs and PTFs play an important role

in cellular clocks. In this paper, we provided a simple model

illustrating that a single gene with PTF has also the potential to

produce reliable oscillations. The sufficient additional requirement

is a simple and usual negative interaction of degradation,

sequestration or inhibition acting on the positive feedback signal.

The model presented in this article has a different oscillatory

mechanism than the well-established NTF one-gene oscillator

model. Our model can be classified as a relaxation oscillator. A

two-gene model has been proposed as a different way of producing

reliable circadian oscillations in cellular clocks [26], which also is a

relaxation oscillator. This two-gene model is important because it

is robust to noise [38]. The model introduced in this paper is a

simpler way to produce relaxation oscillations than the previous

two-gene oscillator. A comparison with our model reveals that the

activation of the repressor gene is not a necessary condition to

produce reliable circadian oscillations in the two-gene oscillator.

We demonstrated that our model produces circadian oscillations

that are just as robust to noise as the two-gene oscillator and other

more complex models [18,27]. Similarly to the two-gene oscillator,

our model produces good oscillations when the average number of

mRNA molecules is less than one. In fact, the number of proteins

oscillates satisfactorily even when the other types of molecules

involved in the clock are less than 30. Therefore, this model is a

simpler genetic relaxation oscillator than the current two-gene

clocks [25]. Our model does not need the activation of a second

repressor gene by the PTF, cooperative binding reactions nor the

formation of protein multimers.

A single gene with PTF and a negative interaction in the

feedback signal is an alternative and simple way of generating

reliable oscillations. Our study suggests that PTF, besides

increasing robustness in cellular clocks, could be more directly

and deeply involved in the production of oscillations than at first

thought. Further research is necessary to elucidate the presence

and the role of this genetic oscillator in natural cellular clocks. On

the other hand, thanks to its simplicity, this model has the potential

to be a new tool for engineering synthetic genetic oscillators. In

this case the period and amplitude of the oscillations could be

possibly controlled by externally manipulating the entry rate of the

repressor molecules.

Methods

Biochemical reactions and rates
The biochemical reactions that fully describe the model in the

Fig. 2 are as follows:

A Single Gene Oscillator with Positive Feedback
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Activation=deactivation: GzA
k1

k{1

Ga

Slow transcription: G
k2 GzM

Fast transcription: Ga
k3 GazM

mRNA degradation: M
k4 w

Translation: M
k5 MzA

A degradation: A
k6 w

Complex creation: RzA
k7 C

Complex decay into R: C
k8 R

R creation or entryð Þ: w
k9 R

R degradation or exitð Þ: R
k10 w,

ð3Þ

where G denotes the gene without A bound to its promoter, M

denotes mRNA transcribed from G, A denotes the activator

protein translated from M, Ga denotes the gene with A bound to

its promoter, R denotes the repressor and C denotes R bound to

A. All the biochemical species are measured in molecules. The

description of the rates is as follows: k1 is the binding rate of A to

the promoter of G, k{1 is the unbinding rate of A from the

promoter of G, k2 is the basal transcription rate, k3 is the activated

transcription rate, k4 is the degradation rate of M, k5 is the

translation rate, k6 is the degradation rate of A, k7 is the binding

rate of R to A, k8 is the decay rate of C into R, k9 is the creation

(or entry) rate of R and k10 is the degradation (or exit) rate of R.

We used standard values within the diffusion limit for the rates

[18,38,47]. They are as follows: k1~1 molecules{1 hour{1,

k{1~50 hour{1, k2~50 hour{1, k3~500 hour{1, k4~10
hour{1, k5~50 hour{1, k6~0:1 hour{1, k7~0:5 molecules{1

hour{1, k8~2:6 hour{1, k9~51 molecules hour{1 and k10~1
hour{1. The cell has a single copy of the gene: Gt~GzGa~1
molecule. The initial conditions are: G0~0, Ga0~1, M0~5,

A0~1000, R0~5, and C0~1200 molecules. The initial condi-

tions have been chosen to obtain a first cycle with an amplitude

similar to the limit-cycle oscillations. Note that the rates k1 and k7

include the volume of the system V . Hence, these rates can be

written as k1~k�1=V and k7~k�7=V , where the rates k�1 and k�7
are expressed in M{1 hour{1. In order to generate circadian

oscillations, first, we varied all the reaction rates, according to the

values used in [18,38] and [47], until we got oscillations with a

period of around 24 hours in the stochastic simulation. Then we

fine-tuned the oscillations varying rates k8 and k9 until a period

closer to 24 hours was achieved.

Dete ministic and stochastic simulations
Models based on chemical reactions in a well stirred system are

usually described by two different formalisms from a mathematical

point of view:

Deterministic: this formalism is suitable for large numbers of

molecules. It is described by a set of coupled ordinary differential

equations that follow the law of mass action. These equations are

called reaction rate equations and they can only be solved analytically

for simple systems. For more complex systems numerical methods

are necessary. In this approach the amount of each chemical

species and the time are continuous. The velocity at which

reactions occur is given by the reaction rate constants k, or simply

rate.

Stochastic: this formalism is suitable for small numbers of

molecules because it takes into account the randomness of the

chemical reactions. It is described by the so-called master equation,

which is the time evolution of the probability that the system has a

certain number of molecules of each chemical species at time t.

Few systems can be solved analytically with the master equation. It

is possible, however, to simulate the stochastic behaviour with the

Gillespie algorithm [46]. In this approach the amount of each

chemical species and the time are discrete, and the rates k turn

into probabilities.

Bifurcation diagram
We calculated the bifurcation diagram for parameters k8 and

k9. These are key parameters for two reasons. First, the rate of the

negative interaction u is proportional to k8 and k9 when the

saturation point is reached. Second, the fast and slow stages in the

relaxation oscillations depend on k8 and k9, respectively.

Figure 6. Rate of the negative interaction. A. Rate of the negative interaction (u~k8C). This rate represents the number of degraded A
molecules per hour. The graph was plotted by multiplying the number of C molecules in Fig. 3F by k8 . The circle (0) indicates the saturation point. At
the saturation point the rate increases linearly (u!k8k9t) because new R molecules enter the system at rate k9. The square (h) indicates the
maximum rate of the negative interaction (umax~ 3,180 molecules/hour). B. Plot of umax against k11, where k11 is the rate of the reaction: C w.
Each point corresponds to a deterministic simulation with k11 equal to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 hour{1 , respectively (see Fig. S5 for more
detailed information). The oscillations stop when k11~ 0.6 hour{1 (0) (Fig. S5G).
doi:10.1371/journal.pone.0027414.g006
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Specifically, we studied the range values of k9 that produce stable

oscillations through a bifurcation diagram. Then we studied how

this range changes when the parameter k8 varies.

The bifurcation diagram of the reduced model depending on k9

shows two Hopf bifurcation points (Fig. S3A). The first Hopf

bifurcation appears at k9~4:78 molecules hour{1 and the second

at k9~217:6 molecules hour{1. Most of the values of k9 between

these two points produce stable oscillations. Only for a short range

of values around these points are the oscillations unstable (white

circles in Fig. S3A). The oscillations have an amplitude of from

2,000 to 16,000 molecules, and a period of from 7 to 170 hours

(Fig. S3B). The velocity of the reaction w
k9 R in (Eq. 3) does not

depend on any biomolecule involved in the oscillator. Therefore,

parameter k9 can be interpreted as an external signal controlling

the behaviour of the clock.

The variation of parameter k8 changes the position of the two

Hopf bifurcation points (white circles in Fig. S4). The different

positions of these points define the regions with stable oscillations

depending on the values of k8 and k9 (regions I and II in Fig. S4).

If parameter k8 is increased, the range of values of k9 that

produces stable oscillations decreases. This range shrinks faster if

k8 is greater than 20 hour{1. We plotted an equivalent graph for

the stochastic model because it is more realistic than the reduced

graph (black circles in Fig. S4). In particular, we assumed that

oscillations occurs in a region if the correlation in the first period is

greater than 0.2. The stochastic model produces oscillations in the

regions II and III (Fig. S4). The range of oscillations in the

complete deterministic model is close to the region II.

The Jacobian matrix
The Jacobian matrix of the reduced system (2) is:

J~
a11 a12

a21 a22

� �
~

cb{a

(czA)2
{

d(k9zk8C)

(dzA)2
{k6 {

k8A

dzA

d(k9zk8C)

(dzA)2
{

dk8

dzA

0
BBB@

1
CCCA,ð4Þ

where the element a12 and a22 are always negative, the element

a21 is always positive and the element a11 can be positive or

negative depending on the values of the rates. With the rates given

in the section Methods: Biochemical reactions and rates and the fixed

point of the reduced system (Fig. 5C) the sign pattern for the

Jacobian matrix is:

J~
z {

z {

� �
: ð5Þ

A two-component negative feedback loop is created in the reduced

model because a12a21v0 (see Chapter 9 of the reference [48]).

The Jacobian matrix (5) has a tipically sign pattern that produces

Hopf bifurcation in chemical systems with two variables [43,48].

The two-component systems with this sign pattern in the Jacobian

matrix are called activator-inhibitor models [48].

Software
Code for stochastic and deterministic simulations was written in

FORTRAN and XPPAUT (http://www.math.pitt.edu/bard/

xpp/xpp.html), respectively. Simulations have been contrasted

using CAIN software (http://cain.sourceforge.net/). The stability

analysis to determine steady states and limit cycles was performed

with XPPAUT. The histograms and autocorrelation function were

plotted using FORTRAN and GNU Octave (http://www.gnu.

org/software/octave/). The code for complete and reduced

deterministic simulations in XPPAUT is available in File S1 and

File S2. The code for stochastic and deterministic simulations in

CAIN is available in File S3.

Supporting Information

Figure S1 Time evolution of A with and without a low
number molecules. Comparison between deterministic simu-

lation of the time evolution of A with (dashed line) and without

(solid line) a low number of M, R, and C molecules. (Solid line

graph: the values of the parameters are as in the section Methods:

Biochemical reactions and rates. Dashed line graph: the changed rates

are k4~1000 hour{1, k5~5000 hour{1, k7~25:5 molecules{1

hour{1, k8~132:6 hour{1 and k9~1 molecules hour{1.)

(PDF)

Figure S2 Amplitude and period histograms of the
stochastic simulation of A. A, B. Amplitude and period

histograms of the stochastic simulation of A, respectively. The

values of the parameters are as in the section Methods: Biochemical

reactions and rates but now we set k4~1000 hour{1, k5~5000
hour{1, k7~25:5 molecules{1 hour{1, k8~132:6 hour{1 and

k9~1 molecules hour{1. (A and B were calculated for 1,000

successive cycles. We assumed that a cycle occurs if the number of

proteins A increases to 1,000 molecules and then decreases to 700

molecules. The amplitude was calculated as the greatest number of

A molecules in each cycle. The period was calculated as the time

interval that it takes the numbers of proteins A to reach 1,000

molecules for the first time in two successive cycles.)

(PDF)

Figure S3 Bifurcation diagram of the reduced model. A.
Bifurcation diagram depending on k9. The solid/dashed line

represents stable/unstable fixed points. Black/white circles are the

maximum and minimum values of A during unstable/stable

oscillations. HB denotes a Hopf Bifurcation point. HB1 and HB2

appear when the value of k9 is 4.78 and 217.6 molecules hour{1,

respectively. B. Period of the stable oscillations in A.

(PDF)

Figure S4 Oscillatory regions in the reduced and
stochastic models depending on k8 and k9. Region I.
Oscillations in reduced model. Region II. Oscillations in both

reduced and stochastic model. Region III. Oscillations in the

stochastic model. Region IV. No oscillations in any model. White

circles represent the locus of Hopf bifurcations in the reduced

model (data are presented in Table S2). Black circles represent

locus of oscillations in the stochastic simulation (data are presented

in Table S3). We assumed in the stochastic case that oscillations

occur in a region if the correlation in the first period is greater than

0.2. (The lines connecting circles are designed to clearly single out

the different regions.)

(PDF)

Figure S5 Rate of the negative interaction for different
values of k11. Rate of the negative interaction (u~k8C) for

different values of k11, where k11 is the rate of reaction C w.

Deterministic simulations A, B, C, D, E, F and G correspond to

k11 equals 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 hour{1, respectively.

The values of the other parameters are as in the section Methods:

Biochemical reactions and rates. The oscillations stop when k11~

0.6 hour{1 (G). If k11 is increased, u increases slower, and its

maximum value (umax) is lower. The value of umax corresponds to
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the peak of the oscillations (umax is the value of the steady state in

G).

(PDF)

Figure S6 Hysteresis diagram. Hysteresis diagram depend-

ing on C. The curve is the solution of the equation dA=dt~0,

where C is assumed constant. The two solid lines in the diagram

are the two stable steady states ‘‘high’’ and ‘‘low’’ as a function of

C. The dashed line represents the unstable points in the diagram.

(PDF)

TableS1 Data points of Fig. 4I.
(PDF)

Table S2 Data points of locus Hopf bifurcation in
reduced model (Fig. S4).
(PDF)

Table S3 Data points of locus of oscillations with less
than 20% of correlation in the first period in the
stochastic model (Fig. S4).
(PDF)

Text S1 The negative interaction does not produce an
effective high nonlinearity.
(PDF)

File S1 Complete deterministic model (XPPAUT soft-
ware).

(ODE)

File S2 Reduced deterministic model (XPPAUT soft-
ware).

(ODE)

File S3 Stochastic and deterministic model (CAIN
software).

(XML)
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