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ABSTRACT 

A quadratic nonlinear generalization of the linear Rotta model for the slow pressure- 

strain correlation of turbulence is developed. The model is shown to satisfy realizability 

and to give rise to no stable non-trivial equilibrium solutions for the anisotropy tensor in 

the case of vanishing mean velocity gradients. The absence of stable non-trivial equilibrium 

solutions is a necessary condition to ensure that the model predicts a return to isotropy for 

all relaxational turbulent flows. Both the phase space dynamics and the temporal behavior 

of the model are examined and compared against experimental data for the return to 

isotropy problem. It is demonstrated that the quadratic model successfully captures the 

experimental trends which clearly exhibit nonlinear behavior. Direct comparisons are also 

made with the predictions of the Rotta model and the Lumley model. 
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1. Introduction 

The return to isotropy problem in turbulence has served as a cornerstone for the calibration 

of models for the slow pressure-strain correlation. The slow pressure-strain correlation is 

the part of the pressure-strain correlation that is independent of the mean velocity gradi- 

ents. It is experimentally observed that an initially anisotropic, homogeneous turbulence 

produced by the application of constant mean velocity gradients undergoes a relaxation 

to a state of isotropy when the mean velocity gradients are removed. Rotta' was the first 

to develop a turbulence model for the slow pressure-strain correlation which captured the 

return to isotropy behavior within the framework of second-order closure models. While 

the model (which is linear in the anisotropy tensor) performs reasonably well for small 

initial anisotropies, it can give rise to considerable errors for more general turbulent flows 

undergoing a relaxation from an initial state that is strongly anisotropic. This was pointed 

out by Lumley2 who emphasized the need to incorporate nonlinear effects and developed a 

general nonlinear representation for the slow pressure-strain correlation based on invariant 

tensor representation theory. Subsequent experiments (see Gence and Mathieu' and Choi 

and Lumley') have unequivocally confirmed the nonlinear nature of the return to isotropy 

problem. 

In this paper, a quadratic model for the slow pressure-strain correlation, which contains 

only one independent constant, will be derived and calibrated. It will be demonstrated 

that this simple nonlinear model provides for a more complete description of the return to 

isotropy problem than either the linear Rotta modell or the quasi-linear model of Lumley2 

and Shih and Lumley5 (where nonlinearity is introduced through the invariants of the 

anisotropy tensor). In addition to doing a fairly good job in matching the results of 

four independent sets of experimental data, the quadratic model will be shown to satisfy 

realizability and to possess no stable non-trivial fixed points for the anisotropy tensor in 

relaxational turbulent flows. The latter constraint, which appears to have been overlooked 

in the previous literature on the subject, is a crucial constraint that nonlinear models 

must satisfy in order to ensure the return to isotropy in relaxational turbulent flows. 
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The mathematical properties and dynamical performance of the proposed model will be 

discussed in detail. 

2. Formulation of the problem 

In conventional, second-order turbulence modeling, transport equations for the Reynolds 

stress tensor and the dissipation rate E are solved in addition to solving the Reynolds 

averaged Navier-Stokes equations for the mean velocity vi. The exact transport equation 

for the Reynolds stress is 

where 

given that u; is the fluctuating velocity, p is the fluctuating pressure, p is the mass density, 

and v is the kinematic viscosity. In (l), Pi, is the production, T ; j k  is the diffusive trans- 

port, D;, is the dissipation rate tensor, I I i j  is the pressure-strain correlation, an overbar 

represents an ensemble mean, and a comma denotes a partial derivative with respect to 

the spatial coordinates. A transport equation is also usually carried for the dissipation 

rate E, which is defined as follows 

E = vu;,jui,j 

The typical approach to modeling the unknown correlations T;,k, Dij and n;, in (1) is to 

express them as functions of the Reynolds stress tensor w, the gradients of the Reynolds 

stress tensor ( w ) , k ,  the mean velocity gradients Ti,,, the dissipation rate E, and the 

kinematic viscosity Y at  lower turbulence Reynolds numbers. 
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At high Reynolds numbers, the dissipation rate tensor is nearly isotropic so that we 

can set 

The quantity nij can be decomposed into a slow pressure-strain term ll; which is inde- 

pendent of vi,, and a rapid term ll; which is linear in vi,j. The dependence of the slow 

pressure-strain correlation ll; on can be studied in isolation by considering 

the return to isotropy problem. The return to isotropy problem refers to the flow wherein 

homogeneous, anisotropic turbulence produced by mean velocity gradients is observed to 

relax towards isotropy when the mean velocity gradients are removed. This return to 

isotropy problem is an idealized case, but it is important nevertheless because it serves to 

extract and calibrate a part of the general functional dependence of ll;, for more complex 

turbulent flows. 

and 

Eq. (1) for the Reynolds stress tensor simplifies considerably for the return to isotropy of 

homogeneous turbulence since r;,, and zjA,k are identically zero, and Dij may be assumed 

to be isotropic a t  high turbulence Reynolds numbers. The simplified form of (1) is written 

as follows: 
2 
3 

- s  u;"= nIij - 4 ; j  
( 5 )  

where we have made use of the fact that the rapid part of the pressure-strain correlation 

vanishes for vanishing vi, j. 
The anisotropy tensor b;j is defined by 

where 

g2 = (7) 

The matrix associated with the anisotropy tensor is denoted by b. Using ( 5 )  and its 

contraction, the following evolution equation for b;, is obtained 
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(9) 

By defining a dimensionless tensor @ ; j  by 

I I ,  S = - € @ ; j ,  

(8) is rewritten as follows, 

(10) 
€ 

iij = -F(@ij - 2bij) 
Q 

Eq. (10) must be solved along with evolution equations for q2 and e. For the return to 

isotropy problem, the exact transport equation for q2 and the standard model equation for 

6 are as follows 

q2 = -2€ 

( 1 1 )  
€2 2 = - 2 c 4  - 
q2 

where C,, is a constant that assumes a value of approximately 1.90. 

The important variables in this homogeneous, high Reynolds number flow are bi,, q2 

and E .  Lumley2 gave the general tensorial form of the function @ i j ( b ; j ,  q2, e) which can be 

written as follows 
11 

@ i j  = a l ( I I ,  III)bij + a2(II ,  III)[bubkj - ~ & j ]  

In (12) ,  al and cy2 are general functions of the invariants I I  = b;kbk;  nd I I I  = b i k b k j b j ; .  

It should be noted that 11 and III denote the traces of b2 and bS respectively and differ 

from the principal invariants of b by constant multiplicative factors since b is traceless. 

On substituting the model of @ ; j  from (12) into ( l o ) ,  we obtain 

(13)  
€ II 

i ; j  = -x{ [ a i ( I I , I I I )  - 2]bij -k &2(11,III)[b;kbkj - 3 b ; j ]  } 
4 

A prescription of the functions al(II,III) and a2(II,III) is now required to close 

( 1 3 ) .  The approach that is most widely used in practice is the linear model proposed by 

Rotta' in which cy l ( I l , I I I )  is assumed to be a constant and cr2(II,III) is assumed to 

be zero. The commonly used second-order closure model of Launder, Reece and Rodi' is 

based on the Rotta model where 

4 
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Lumley and Newman' and Lumley' have pointed out that experimental data does not 

support the linear model of Rotta. The problem with the linear model is twofold: (a) its 

prediction that each component of the anisotropy tensor decays at the same rate, and (b) 

its prediction that this decay rate is independent of the initial state of anisotropy. These 

predictions can be seen mathematically in the closed form solution of the return to isotropy 

problem for the Rotta model, given by 

In contradiction to (15)' experiments indicate that the rate of the return to isotropy 

decreases with increasing values of the third invariant 111, and that different components 

of the anisotropy tensor relax to zero at diferent rates. These are effects that are decidedly 

nonlinear. 

In order to incorporate nonlinear effects, Lumley' developed a model within the frame- 

work of (12), and also allowed the coefficients cy1 and 0 2  to additionally depend on the 

turbulence Reynolds number Ret = q4 /9w.  This quasi-linear model of Lumley2 is as 

follows 

where 

-7.77 72 F 
a i ( I I ,  I I I , R e t )  = 2.0 + - exp(-){ 

9 & Z z  
+80.1 ln[l + 62.4(-11* + 2.3III*)]  } 

a 2 ( I I , I I I , R e t )  = 0 

F = 1 + 9 I I *  +27III*  
111 

I I I *  = - 11 I I *  = -- 
2 '  3 

Here, we refer to this model as being quasi-linear since there is no tensorial nonlinearity, 

that is, 

@ij = a l ( I I ,  111, Re,)bij (18) 

It will be shown later that while this model does correctly mimic some of the nonlinear 

effects associated with the return to isotropy (see Shih and Lumley 5, it yields an incorrect 



representation of the problem in phase space. In the next section, a quadratic model will 

be developed that appears to capture the essence of the nonlinearity in phase space. 

3. The quadratic nonlinear model 

We will now develop a quadratic model, which is a special case of (12). Since each com- 

ponent energy 21,21, (where Greek indices indicate no summation) is bounded by 

it is a simple matter to show from (6) that each principal value of b ; j  (denoted by b(*) ) 
lies in the range 

Consequently, the principal values of b;, are less than unity, and it is possible that a 

lower order Taylor expansion of @ i j ( b ; j )  around the isotropic state of b i j  = 0 can yield an 

adequate approximation. Carrying out such a Taylor expansion around b i j  = 0 , while 

constraining @ ; ,  to be of zero trace, gives 

11 111 
3 3 

0 = Clb - C2(b2 - -1) + C3(bS - -1) + . . . 

where C1, C2, C3, . . . are constants. In (21) we use coordinate-free notation, that is, we 

denote @ ; j ,  b i j  and S i j  by the associated matrices a, b and I. Using the Cayley-Hamilton 

theorem to express b3 and higher powers of b in terms of 11, 111, b and b2 reduces 

(21) to (12) where crl(II,  111) and a 2 ( I I ,  111) are polynomial functions of 11 and 111 of 

infinite degree. 

The model of @ ; ,  that we propose in this paper is a quadratic truncation of (21), and 

is given by 

11 
@ i j  = C l b i j  - C z [ b i k b k j  - 3 6 , . j ]  (22) 

where Cl and C2 are constants. Such a quadratic model is attractive because it is the 

simplest nonlinear model for @ i j  (of course a linear truncation of (21), which leads to 
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Rotta’s model, would be even more simple but, unfortunately, is in conflict with experi- 

mental data). Furthermore, since for most problems of engineering interest the magnitude 

of bij tends to be less than 1/3, there is a good chance for a quadratic model to yield an 

acceptable approximation for a variety of flows. 

At  this point, we will derive the evolution equations determining the phase space dy- 

namics for the return to isotropy problem. It is useful to introduce the transformed time 

variable T defined by 
E 

dr = - d t  
q2 

(23) 

in order to free the formulation of the problem from any explicit dependence on E and 

q2.  Using the system of equations (11) to solve for q2( t )  and ~ ( t ) ,  and integrating (23) we 

obtain the following explicit relationship between T and t :  

Using (23), the transport equation (13) for bi, can then be rewritten as 

which is clearly independent of q2 and E. 

We now show that the phase space for ( 25 ) is two-dimensional. Let the principal axes 

of bij at r = 0 be {zl, x2, z3} and the corresponding eigenvalues of bij be denoted by b l l ,  

b22, and bs3. The off-diagonal 

principal axes form it is clear 

terms, bij ( i  # j )  are zero at T = 0. On examining (25) in 

that 

(26) 
dbij 
- = 0  for i # j  
dr 

Since bij(O) is zero for i # j, we conclude from (26) that the off-diagonal terms of bij are 

identically zero for all times; and therefore, the principal axes of bi, do not change in time. 

The time invariance of the principal axes has been experimentally observed, for example 

by Gence and Mathieu3. Therefore the only time varying components of bij, referred to the 

coordinate system {q,x2,xs},  are b l l ,  bZ2, and bss. Since bi, is traceless, only two of the 

three quantities b l l ,  b22, and b3S, are independent. Thus the phase space in this problem is 
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two-dimensional. The two phase space variables may be chosen to be any two independent 

functions of the eigenvalues of bij. 

A possible choice for phase space variables is 11 and I I I .  The variables 11 and 111 

are desirable to use since they are uniquely determined by the principal values of bij ,  are 

invariant to a rotation of coordinates, and vanish in isotropic turbulence. Furthermore, 

because 11 2 0 the phase space becomes semi-infinite in the variable I I .  The evolution 

equations for I I ( r )  and I I I ( r )  will now be derived. Multiplying (25 )  by bij and bikbkj, 

respectively, we obtain the following equations 

dII  - = -2{ (a1 - 2 ) I I +  a 2 I I I )  
dr 

d I I I  112 - = -3{ (al - 2 ) I I I  + a2[tr (b') - -1 } 
dr 3 

(27) 

In (28),tr (b') denotes the trace of the tensor b'. Using the Cayley-Hamilton theorem, it 

follows that 
1 111 
2 3 

b' = - I I b 2  + -b 

I By taking the trace of (29 ) ,  and substituting the result into ( 2 8 ) ,  we obtain 

d I I I  I I ~  - = -3{ (a1 - 2 ) I I I  + a 2 7  1 
dr 

Equations (27) and (30) constitute a coupled nonlinear system of ordinary differential 

equations for I I ( r )  and I I I ( r ) .  

Both the Rotta model (14) and the Lumley model (16) choose a2 = 0. When a2 = 0, 

(27) and (30) can be combined and integrated to yield the general solution 

I where c is a constant of integration determined by initial conditions. In terms of the 

variables 
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which were first introduced by Choi and Lumley ', (31) takes the linear form 

q -  € 
rlo €0 

- _ -  (33) 

Thus, these alternative variables have the advantage that in the E - q phase space both the 

linear and quasi-linear models show straight line trajectories. Some of the experimental 

data that will be shown later exhibit curved trajectories in the - q phase space which 

constitutes conclusive evidence in support of the need for nonlinear models. 

4 .  Fixed point analysis in phase space 

A fixed point analysis of the quadratic model in the phase space of the invariants of 6ij 

will now be presented. The fixed points of (27) and (30)  (where, for the quadratic model, 

cy1 = C1 and cy2 = -C2 ) are the equilibrium solutions in the limit as r -+ 00 which are 

denoted by (11,, I I I m ) .  If the turbulence is to return to isotropy 

11, = I I I ,  = 0 (34) 

Therefore, since physical and numerical experiments indicate that any initial anisotropy 

which is realizable tends to relax to zero when the mean velocity gradients are removed, 

it is essential that nonlinear models for the slow pressure-strain correlation have no stable 

fized points other than ( 0 , O ) .  

Since the linear model (for which C2 = 0) gives rise to the following system of evolution 

equations 

- -  - - 2 ( C 1 - 2 ) 1 1  

- -  - -3(c1  - 2 ) I I I  

d I I  
dr 

d I I I  
dr (35) 

it is a simple matter to show that (0,O) is the only fixed point, and that it is a stable node 

provided that C1 > 2. 

We now examine the existence and stability of the fixed points predicted by our 

quadratic model (22) .  The quadratic model leads to the following equations for I I ( r )  
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and III(r ) : 

d I I  
dr 
- = -2(C1- 2 ) I I +  2C2III 

c2 

dr 2 
- -  - - 3 ( q  - 2 ) m  + - I I ~  d I I I  

The fixed points of the system (36) are solutions of the nonlinear algebraic equations 

obtained by setting dII/dr = dIII/dr = 0, and are given by 

11, = o  , 111, = o  

11, = 6p2 , 111, = 6p3 

where p = (C1 - 2)/C2. In order to examine the stability of these fixed points we introduce 

the new variables (z1,z2) defined by 

z1 = 11-  11,, z2 = 111- 111, (39) 

If we substitute (39) into (36), and retain only the terms that are linear in z1 and z2, 

we obtain the following linear system of ordinary differential equations 

d zi - = A j j ~ j  
dr 

where A;, is the following matrix 

The eigenvalues of Aij determine the stability of the fixed points. A fixed point is stable if 

all the eigenvalues of Ai, are negative. The fixed point ( 0 , O )  has eigenvalues A(") given by 

and, hence, is a stable node provided that 

c1 > 2 ( 4 2 )  

10 



On the other hand, the k e d  point (6p2,6p3) has the eigenvalues 

Since the eigenvalues are of opposite sign no matter what value is taken for C1, the fixed 

point (6P2,6p3) is a saddle which is unstable . It is thus clear that 111, = 11, = 0 is the 

only stable equilibrium solution and the quadratic model predicts a return to isotropy for 

all initial conditions on bij .  

5.  Constraints on the model constants 

The quadratic model has two constants C1 and C2 which, for the purpose of stability, 

need only satisfy the constraint Cl > 2 .  We will now explore whether there are additional 

physical constraints on the range of allowable values of C1 and C2. Choi and Lumley4 and 

Le Penven, Gence and Comte-Bellot* have analyzed available sets of experimental data 

(approximately ten in number) on the relaxation of anisotropic turbulence. They conclude 

from the data that a characteristic nondimensional time rate for the relaxation (defined 

by -A%) decreases with increasing values of III. An examination of (36) shows that in 

order for the model to reproduce this trend we must choose 

c2 > 0 (44) 

Lumley2 uses the concept of realizability, which requires that model predictions satisfy 

all moment inequalities; for example, the model is required to yield non-negative compo- 

nent energies. Lumley's method leads to various equations relating the model constants. 

Pope' suggests that a related but weaker mathematical statement, which constitutes a 

sufficient condition to guarantee non-negative component energies, should be used. The 

application of both approaches in the context of the quadratic model for @ij will now be 

discussed. 

The transport equations for bij  and in the present problem are 

€ 
i i j  = - - ( @ i j  - 2bij )  

q2 
(45) 
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2 
3 (46) tli2Lj= - € @ p i j  - -€&j 

The three eigenvalues of are the three components in the principal axes of ui"i ; 
these components are u:, u; and $. Consider one of the eigenvalues, for example q. 
Realizability requires that 

- -  

z20 (47) 

Using the Lumley2 approach to satisfy realizability leads to the requirement that 

- - 
u:= 0 when u: = 0 (48) 

whereas the Popeg approach leads to the requirement that 

Both approaches guarantee that the realizability condition (47) is satisfied. However (49) 

can prevent 3 from ever becoming zero (which is the physically realizable limit of two- 

dimensional turbulence), and hence is more conservative than (48) in this regard. But 

since (49) does guarantee positive component energies, we will be content for the moment 

to consider it since it places less restrictions on C1 and C2. 

Since (49) is to be satisfied, using (46) we require that 

2 
3 - &- -e 2 0 when = 0. 

This implies that 

Substituting the quadratic model for @ p i ,  from (22) into (51) leads to the inequality 

- 
clbll - C2(b;, - - 11 < -- 2 when 

3)- 3 
u: = 0 

Since bll = -1/3 when ;IT= 0, (52) becomes 

1 
3 

c, - 2 2 C,(II - -) (53) 

From the constraint (42), it is clear that the left-hand-side of (53) is positive. Since from 

(44) C2 > 0, the maximum value of the right-hand-side of (53) occurs when 11 is at its 
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maximum value. Therefore a sufficient condition for satisfying (53) is obtained when 11 is 

equal to its maximum value IImaz. It can be easily shown that 

(54) 
2 
3 

IIma, = - 

By substituting the maximum value of 11, which is given by (54), into (53), we obtain the 

following constraint 

c2 5 3(c i  - 2) (55) 

For a given value of C1, (55) determines the maximum allowable value of C2. 

6. Model performance 

The coupled system of nonlinear ordinary differential equations (27) and (30) were nu- 

merically integrated by a Runge-Kutta method to obtain I I ( T )  and I I I ( 7 ) .  The initial 

conditions corresponding to those of the previously conducted experiments were used. The 

phase plots in ,$ - space and the transient plots of I I ( 7 )  were the yardsticks by which 

the model results and experimental data were compared. 

A numerical optimization showed that for a given value of C1 it was best to choose the 

maximum value of C2 allowed by (55) ,  that is, to set 

c, = 3(C1- 2). (56) 

Due to (56), C2 is uniquely determined by C1 making the model one with a single free 

constant C1. It is interesting to note that (56) is similar to the constraint that is obtained 

by using Lumley’s method of enforcing realizability. Thus it appears that Lumley’s method 

works better for this problem. The following choice of the one independent model constant 

c1 = 3.4 (57) 

seems to best reflect the experimental data. 

Results on the performance of the linear Rotta model, quasi-linear Lumley model, and 

the present quadratic model are compared with four sets of experimental data in Figs. 1-8. 
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Figs. 1-2 consider the plane distortion experiment of Choi and Lumley'. The experimental 

data in Fig. 1 shows strong non-linearity in the t - q phase plane (as demonstrated by a 

curved trajectory), which is reproduced by the quadratic model. However, the trajectories 

in [ - q phase space of the Rotta and Lumley models are always straight lines, and are 

therefore in serious disagreement with this experimental data. Fig. 2 shows the temporal 

decay of II. It is seen that the present quadratic model is superior to both the Rotta model 

and the Lumley model with regard to capturing the temporal behavior of II. Figs. 3-4 

pertain to the axisymmetric expansion experiment of Choi and Lumley'. The experimental 

phase space trajectory seems to be fairly linear as shown in Fig. 3, and the present quadratic 

model also shows almost linear behavior. Apparently, the quadratic model not only shows 

nonlinear phase trajectories in E - r ]  phase space when called for, but also gives rise to 

approximately linear trajectories in the appropriate region of phase space where nonlinear 

effects are small. It is seen in Fig. 4 that the results of both the Rotta model and the 

quadratic model on the temporal behavior of 11 are in reasonable agreement with the 

experimental data; however, the Lumley model predicts a decay rate of 11 which is much 

more rapid than the experimentally observed result. 

Le Penven, et a1.8 used two different plane contractions to generate anisotropic turbu- 

lence with positive 111 in one case and negative 111 in the other case. Their experimental 

data on the relaxation of turbulence with positive 111 is shown in Figs. 5-6. Their data of 

Fig. 5 indicates a moderately curved trajectory in phase space, and the quadratic model 

yields a prediction that is in qualitatively good agreement with the data. Fig. 6 shows that 

the quadratic model does a better job than the Lumley model in predicting the temporal 

decay of 11, and that the Rotta model is slightly better than the quadratic model with re- 

gard to predicting the temporal behavior of II. In Figs. 7-8, we consider the experimental 

data of Le Penven, et a1.8 pertaining to the case with negative III. The phase portrait 

of Fig. 7 shows that their experimental data exhibits mild curvature in the - q phase 

space, which is reproduced by the quadratic model. Fig. 8, which depicts the temporal 

evolution of 11, shows that the Rotta model grossly underpredicts the rate of decay of II. 
The Lumley model is seen to be somewhat better than the proposed quadratic model in 
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capturing the rapid decay of 11 in this experiment. Nevertheless, it is clear from the results 

presented in this section that the quadratic model does the best overall job in predicting 

the experimental trends. 

7. Conclusion 

A quadratic generalization of the linear Rotta model has been developed for the slow 

pressure-strain correlation of turbulence. This simple nonlinear model, which has only one 

independent constant, was shown to constitute an improvement on both the Rotta model 

and the quasi-linear Lumley model in predicting the trends observed in return to isotropy 

experiments. Furthermore, the quadratic model was shown to satisfy realizability and to 

have no stable non-trivial equilibrium solutions for the anisotropy tensor in relaxational 

flows- a crucial constraint which guarantees that the model predicts a return to isotropy, 

independent of the initial conditions. The most notable feature of this new quadratic model 

is its ability to capture the essence of the return to isotropy problem with a nonlinear 

structure that is substantially simpler than previously proposed nonlinear generalizations 

of the Rotta model. 

Future research can be directed on two fronts: the development of a low turbulence 

Reynolds number correction of the model and the addition of successively higher order (for 

example, cubic) nonlinear terms. Insofar as the former research direction is concerned, the 

direct numerical simulations of Lee and Reynolds" have indicated that history dependent 

effects of the Reynolds stress and dissipation rate anisotropy tensors are important in low 

Reynolds number turbulent flows. These are complicating features that are not likely to be 

described by simple nonlinear models with an algebraic structure. In regard to the addition 

of higher degree nonlinearities, we feel that it is best to first provide a systematic test of 

a quadratic model since second-order closures that are quadratic in the anisotropy tensor 

can satisfy constraints such as material frame-indifference in the limit of two dimensional 

turbulence"*12 and realizability. The satisfaction of these constraints, which are violated 

by simple second-order closures such as the Launder, Reece and Rodi model6, allow for the 

description of more complex turbulent flows within the framework of a workable theory. A 
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systematic program for the development of improved second-order closure models that are 

quadratically nonlinear is currently underway and will be the subject of a future paper. 
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