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Abstract

Online learning in dynamic environments has

recently drawn considerable attention, where

dynamic regret is usually employed to com-

pare decisions of online algorithms to dynamic

comparators. In previous works, dynamic re-

gret bounds are typically established in terms of

regularity of comparators CT or that of online

functions VT . Recently, Jadbabaie et al. [2015]

propose an algorithm that can take advantage of

both regularities and enjoy an Õ(
√
1 +DT +

min{
√

(1 +DT )CT , (1+DT )
1/3V

1/3
T T 1/3})

dynamic regret, where DT is an additional

quantity to measure the niceness of environ-

ments. The regret bound adapts to the smaller

regularity of problem environments and is

tighter than all existing dynamic regret guar-

antees. Nevertheless, their algorithm involves

non-convex programming at each iteration, and

thus requires burdensome computations. In this

paper, we design a simple algorithm based on

the online ensemble, which provably enjoys the

same (even slightly stronger) guarantee as the

state-of-the-art rate, yet is much more efficient

because our algorithm does not involve any non-

convex problem solving. Empirical studies also

verify the efficacy and efficiency.

1 INTRODUCTION

Online Convex Optimization (OCO), in which an online

learner iteratively makes the decision against the envi-

ronments, has demonstrated powerful modeling capabil-

ity in many real-life applications [Shalev-Shwartz, 2012,

Hazan, 2016]. The basic protocol of OCO is as follows:

at each iteration t ∈ {1, . . . , T}, the learner first chooses

a decision xt from some convex feasible set X ⊆ R
d.
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Afterwards, a convex function ft : X 7→ R is revealed by

the environments and the learner suffers an instantaneous

loss ft(xt). The classical measure for an online algorithm

is the regret [Zinkevich, 2003],

Regs
T =

T∑

t=1

ft(xt)−min
x∈X

T∑

t=1

ft(x),

which compares learner’s decisions against a single best

decision in hindsight. The measure is often referred to

as the static regret since the comparator is time-invariant.

For convex functions, Zinkevich [2003] shows that online

gradient descent enjoys an O(
√
T ) static regret, which

is further proved to be the minimal regret that can be

achieved in the worst case [Abernethy et al., 2008].

Notwithstanding the minimax optimality, the rate can be

further improved by exploiting the niceness of the en-

vironments, which aims to design algorithms that can

automatically adapt to easier problem environments, yet

safeguard the worst-case rate. There are many ways to

exploit the niceness of environments. Rakhlin and Sridha-

ran [2013] develop a general framework to unify previous

works by introducing the notion of predictable sequences

{Mt}Tt=1, which can be regarded as external knowledge

on the gradients of the online functions. They show that

an O(
√
DT ) static regret is attainable, where DT mea-

sures the quality of the predictable sequences defined as

DT =

T∑

t=1

‖∇ft(xt)−Mt‖2∗. (1)

The term is at most O(T ) under certain standard assump-

tions, yet it could be quite small when Mt approximates

the gradient well. Therefore, the attained regret bound is

tighter than the minimax optimal rate of O(
√
T ).

Another way to strengthen the theoretical guarantees is

to compare the learner’s decision with time-varying com-

parators. This is often desired, particularly for learning in

the non-stationary environments [Sugiyama and Kawan-

abe, 2012, Gama et al., 2014, Zhao et al., 2019], where



there is no single fixed decision that performs well over

all the iterations. Under such a circumstance, dynamic

regret is introduced to measure the performance of an

online algorithm [Zinkevich, 2003, Besbes et al., 2015,

Yang et al., 2016, Zhang et al., 2017, Baby and Wang,

2019, Zhao and Zhang, 2020], defined as

Regd
T =

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗
t ),

where x∗
t ∈ argminx∈X ft(x) is the minimizer of the

online function at each iteration. It is known that a sublin-

ear dynamic regret bound is not possible unless imposing

certain restrictions on the environments. In the literature,

two types of regularities are introduced. The first is the

path-length [Zinkevich, 2003, Yang et al., 2016, Mokhtari

et al., 2016, Zhang et al., 2018],

CT =

T∑

t=2

‖x∗
t − x∗

t−1‖, (2)

measuring the fluctuation of comparators. Another reg-

ularity is the temporal variability [Besbes et al., 2015,

Chen et al., 2019, Baby and Wang, 2019],

VT =

T∑

t=2

sup
x∈X

|ft(x)− ft−1(x)|, (3)

which captures the variation of the function values.

Thus, it is natural to ask whether the niceness of environ-

ments DT can also be exploited in the dynamic regret

analysis; and meanwhile, as CT and VT capture different

properties of the environments, is it possible to achieve

the best of the two regularities? The problem has been

studied by the remarkable work of Jadbabaie et al. [2015].

They affirmatively answer the question by designing an

algorithm with the fully adaptive dynamic regret,

Regd
T ≤ Õ

(√
1 +DT +min{RC , RV }

)
, (4)

where Õ(·) hides logarithmic terms in T , RC =√
(1 +DT )(1 + CT ) and RV = (1+DT )

1/3V
1/3
T T 1/3

are path-length and temporal variability bounds, respec-

tively. The regret bound in (4) is adaptive in the sense that

it makes use of both regularities CT , VT , and adaptivity

DT . Thus, it can adapt to the smaller regularity of prob-

lem environments and is tighter than all existing dynamic

regret guarantees.

The key challenge of designing an online algorithm with

adaptive bound is how to tune the learning parameters in-

terplaying among the complexity measures (DT , CT , VT ),

when their exact quantities are unknown in advance. Jad-

babaie et al. [2015] successfully address the issue by

carefully designing a novel doubling trick scheme. Nev-

ertheless, their method requires the empirical version of

temporal variability VT for checking the doubling condi-

tion. Therefore, it will introduce a non-convex inner op-

timization problem of supx∈X |ft(x)− ft−1(x)| at each

iteration. By exploiting the special propriety of this prob-

lem, difference of convex functions programming can be

used for solving it, however, is very time-consuming.

In this paper, we discover that a simple and efficient ap-

proach provably achieves the same (even slightly stronger)

dynamic regret bound (4) as Jadbabaie et al. [2015]. Our

contribution is that the proposed algorithm avoids the

time-consuming inner optimization problem, and thus is

more computationally efficient. The crucial advantage

roots in a novel step size tuning approach via the online

ensemble rather than the doubling trick, where a master

algorithm is employed to search over base algorithms

with multiple learning parameters. Meanwhile, for ex-

ploiting the niceness of environments, we build a new

master algorithm based on optimistic Hedge [Rakhlin and

Sridharan, 2013] with properly designed optimism, which

makes compatible regret bounds for both master and base

algorithms, and finally leads to the desired result. More-

over, we provide novel analysis of the temporal variability

dynamic regret bound for running online algorithms over

the surrogate linearized loss, which could be of interest.

2 RELATED WORK

We review related work about online convex optimization

in the following two aspects.

2.1 STATIC REGRET

Significant efforts have been devoted to designing algo-

rithms for static regret minimization. For convex func-

tions, Zinkevich [2003] proves that online gradient de-

scent (OGD) ensures an O(
√
T ) static regret, and the rate

can be improved to O(log T ) for strongly convex func-

tions [Hazan et al., 2007]. Besides, Hazan et al. [2007]

prove that a logarithmic regret O(d log T ) is also achiev-

able for exp-concave functions by the online Newton step

algorithm, where d is the dimensionality. All these results

are minimax optimal [Abernethy et al., 2008].

One direction to improve the guarantee is to exploit the

niceness of environments. Hazan and Kale [2008] es-

tablish a bound relative to the variation of the gradi-

ent sequences of order O(
√∑T

t=1‖∇ft(xt)− ∇̄T )‖2∗
for convex functions, where ∇̄T = 1

T

∑T
t=1 ∇ft(xt).

When the online functions are convex and smooth, Chi-

ang et al. [2012] show that the regret bound scales

with the variation of consecutive gradients in the rate



Table 1: Comparisons of our results and existing dynamic regret bounds for convex functions.

complexity measure regret bound reference

path-length bound O(
√
T (1 + CT )) [Zinkevich, 2003, Zhang et al., 2018]

temporal variability bound O(T 2/3V
1/3
T ) [Besbes et al., 2015]

adaptive bound O(min{
√

T (1 + CT ), T
2/3V

1/3
T }) [Jadbabaie et al., 2015] & this paper

fully adaptive bound O(
√
DT +min{

√
(1 +DT )(1 + CT ), (1 +DT )

1/3T 1/3V
1/3
T }) [Jadbabaie et al., 2015] & this paper

of O(
√∑T

t=1 supx∈X ‖∇ft(x)−∇ft−1(x)‖2∗). After-

wards, Rakhlin and Sridharan [2013] propose a general

framework to unify and generalize these results by in-

troducing the notion of predictable sequences {Mt}Tt=1.

They propose the optimistic mirror descent which prov-

ably enjoys an O(
√
DT ) static regret, where DT =∑T

t=1‖∇ft(xt) − Mt‖2∗. The framework is very pow-

erful as it can recover previous regret bounds by different

configurations of predictable sequences.

2.2 DYNAMIC REGRET

Roughly, there are two types of dynamic regret bounds

in terms of different regularities, the path-length CT , and

temporal variability VT .

Path-length Bound. The path-length is introduced

by Zinkevich [2003], measuring the fluctuation of the

online minimizers, as defined in (2). When the path-

length CT is known in advance, Zinkevich [2003] shows

OGD enjoys an O(
√
T (1 + CT )) dynamic regret for con-

vex functions. This rate can be enhanced to O(CT ) for

strongly convex and smooth functions [Mokhtari et al.,

2016], and the O(CT ) rate is also attainable for convex

and smooth functions if all the minimizers lie in the inte-

rior of X [Yang et al., 2016]. Another similar regularity

called squared path-length ST =
∑T

t=1‖x∗
t−1 − x∗

t ‖2 is

introduced by Zhang et al. [2017], and authors propose an

algorithm for strongly convex and smooth functions, with

O(min{CT , ST }) dynamic regret, and the regret rate is

recently improved to O(min{CT , ST , VT }) by Zhao and

Zhang [2020]. Since this paper focuses on convex func-

tions, we do not take the squared path-length into account.

Temporal Variability Bound. The temporal variabil-

ity is introduced by Besbes et al. [2015], capturing the

variation of function values, as defined in (3). When

VT is known in advance, Besbes et al. [2015] propose

the restarted OGD and derive minimax optimal regret

bounds of O(T 2/3V
1/3
T ) and Õ(T 1/2V

1/2
T ) for convex

and strongly convex functions respectively. The algorithm

and analysis are further generalized by later studies [Chen

et al., 2019, Baby and Wang, 2019].

Adaptive Bound. The two regularities CT and VT are in

general incomparable, as they capture different aspects

of the environmental changes. Therefore, it is desired to

attain an adaptive guarantee, which is able to track the

minimum of path-length and temporal variability bounds.

Actually, Jadbabaie et al. [2015] propose a variant of

optimistic mirror descent called adaptive optimistic mir-

ror descent (AOMD), which achieves a more general re-

sult of order O(
√
DT +min{

√
(1 +DT )(1 + CT ), (1+

DT )
1/3T 1/3V

1/3
T }). The term DT is the cumulative de-

viation of gradients to the predictable sequences, as de-

fined in (1). Note that the regret bound implies the desired

O(min{
√

T (1 + CT ), T
2/3V

1/3
T }) bound since the term

DT is at most O(T ), yet could be tighter when the pre-

dictable sequences are in a high quality.

Finally, we would like to point out that Jadbabaie et al.

[2015] achieve the fully adaptive bound by carefully de-

signing a doubling trick mechanism, which demands the

instantaneous quantities Ct, Vt and Dt at every iteration.

Although Dt can be computed directly, the acquisition of

Ct, and Vt requires solving optimization problems. Par-

ticularly, in order to calculate the temporal variability Vt,

a non-convex problem of supx∈X |ft(x)− ft−1(x)| will

be involved at each iteration, which is time-consuming,

even employing the concave-convex procedure [Yuille

and Rangarajan, 2003] to solve this difference of convex

functions programming. Our paper proposes a simple

online algorithm that is able to achieve the same regret

guarantee with Jadbabaie et al. [2015], yet is much more

efficient to implement. We list the comparisons of existing

dynamic regret bounds for convex functions in Table 1.

3 THE PROPOSED ALGORITHM

In this section, we propose our algorithm, which enjoys

a fully adaptive bound without involving burdensome

computations for non-convex problem solving. To achieve

this goal, we face the following two challenges:

• how to incorporate the niceness of environments

(DT ) in the dynamic regret analysis?

• how to make the algorithm adapt to various regulari-

ties (VT , CT ) and track the best of them?

To address the first problem, similar to [Jadbabaie et al.,

2015], we start with the optimistic mirror descent (OMD)

algorithm [Rakhlin and Sridharan, 2013], which performs



an extra gradient step to update the model with the pre-

dictable sequences {Mt}Tt=1,

x̂t+1 = argmin
x∈X

ηt〈∇ft(xt), x〉+DR(x, x̂t),

xt+1 = argmin
x∈X

ηt+1〈Mt+1, x〉+DR(x, x̂t+1),
(5)

where x̂t+1 is an intermediate output and xt+1 is the final

decision at iteration t+ 1. The notation DR(·, ·) refers to

the Bregman divergence with respect to the convex func-

tion R : X 7→ R. By setting R(·) as a 1-strongly con-

vex function and setting ηt = Rmax ·min{1,
(√

Dt−2 +√
Dt−1

)−1}, Rakhlin and Sridharan [2013] show that

OMD enjoys the following static regret,

Regs
T ≤ 4Rmax(

√
DT + 1),

where R2
max = supx,y∈X DR(x, y) and Dt is the empiri-

cal version of DT as Dt =
∑t

s=1‖∇fs(xs)−Ms‖2∗
OMD algorithm can be seen as a variant of online mir-

ror descent with an additional update guessing about the

gradient of the next iteration. This framework provides a

way to incorporate the niceness of the environments. For

example, the learner can set Mt = ∇ft−1(xt−1) when

the online functions are known to vary gradually, which

recovers the update scheme of Chiang et al. [2012].

In the following, we present the dynamic regret bounds

for variants of OMD in terms of different regularities.

3.1 DYNAMIC REGRET WITH NICENESS

Path-length Bound. We first show that by running OMD

with a fixed step size, we can obtain a dynamic regret

bound relative to CT and DT .

Lemma 1. When R(·) is a 1-strongly convex function,

running OMD with any fixed step size η > 0 satisfies

Regd
T ≤ ηDT

2
+

R2
max + γCT

2η
,

provided DR(x, z)−DR(y, z) ≤ γ‖x−y‖, ∀x, y, z ∈ X .

This lemma implies that the dynamic regret of OMD is at

most O(
√

(1 + CT )(1 +DT )) by setting the step size as

η∗path =
√
(R2

max + γCT )/(1 +DT ). However, the op-

timal tuning is infeasible as quantities of CT and DT are

unknown in advance. The standard doubling trick tech-

nique is not applicable due to the non-monotone behavior

of the step size. Different from the special doubling mech-

anism used in AOMD [Jadbabaie et al., 2015], we grid

search the optimal step size, which will be described in

the next subsection.

Temporal Variability Bound. The OMD algorithm with

a fixed step size also enjoys the temporal variability bound,

which is shown as the following lemma.

Lemma 2. Under the same condition in Lemma 1,

running OMD with the fixed step size η =√
(C1 + C2⌈T/∆⌉)/(1 +DT ) satisfies

Regd
T ≤

√
(1 +DT )(C1 + C2⌈T/∆⌉) + 2∆VT ,

which holds for any parameter ∆ ∈ [T ]. The constants

are C1 = R2
max and C2 = γ

√
2Rmax.

Note that the parameter ∆ can be interpreted as the restart-

ing period, similar to the restarted OMD proposed by Bes-

bes et al. [2015]. Actually, OMD with a fixed step size

can be regarded as a kind of restarted OMD. The differ-

ence is that we here have only one parameter to specify

(η depends on ∆), while the restarted OMD of previous

studies needs to set two parameters. In the dynamic regret

analysis, we will exploit this key fact.

According to Lemma 2, by setting ∆∗ = (C2)
2/3(1 +

DT )
1/3(1 + T )1/3VT

−2/3) and running OMD with

η∗var =
√

(C1 + C2⌈T/∆∗⌉)/(1 +DT ), we can obtain

an O((1 + DT )
1/3T 1/3V

1/3
T ) dynamic regret bound1.

However, the obstacle is that the optimal ∆∗ requires

the knowledge of VT , which is also unknown in advance.

3.2 ADAPTIVE BOUND

Until now, we have separately incorporated the niceness

of environments (DT ) with various regularities (CT and

VT ) in the dynamic regret analysis. There are still two

steps to obtain an adaptive bound: (i) tuning the learning

parameters η∗path and η∗var; (ii) designing a mechanism to

track the minimum of the regularities CT and VT .

Inspired by the recent works [van Erven and Koolen, 2016,

Zhang et al., 2018, Zhao et al., 2020], we adopt the online

ensemble to tune the unknown step size and track the best

regularity simultaneously. Our approach is essentially an

ensemble method [Zhou, 2012]. Concretely, we initiate

multiple base algorithms, each running an OMD with

a specific learning parameter, and then employ a master

algorithm to aggregate their predictions. We show that the

aforementioned goals can be handled in this framework

with a carefully designed master algorithm to search over

the OMDs with multiple step sizes.

Tuning Parameters. We first deal with the step size

issue on the path-length bound. The optimal step size

parameter is η∗path =
√
(R2

max + γCT )/(1 +DT ), since

the quantities of terms CT and DT are upper bounded,

we can specify a pool Ppath containing the optimal one

and search over the pool to identify it.

1The parameter ∆ is constrained in [T ]. We show in the

proof of Theorem 2 that by setting ∆̃ = max{1,min{T,∆∗}},
dynamic regret in the similar order is achievable.



Concretely, as a consequence of the boundedness of X
in terms of Bergman divergence, we have ‖x − y‖ ≤√
2Rmax, for all x, y ∈ X , which leads to the fact

CT ≤
√
2RmaxT . Meanwhile, assuming the gradient

and predictable sequence are bounded by G, then the

term DT is bounded by 4G2T . Thus, we have2

ηL =
Rmax√

1 + 4G2T
≤ η∗path ≤ Rmax

√
(1 + γT ) = ηH .

Then, we can specify a parameter pool in the range of

[ηL, ηH ], and run several OMDs with the parameters in

the pool. Specifically, the parameter pool is constructed

with a logarithmic grid as

Ppath =
{
ηi =

2i−1Rmax√
1 + 4G2T

| i ∈ [Npath]
}
,

where Npath = ⌈ 1
2 log((1 + γT )(1 + 4G2T ))⌉ + 1. By

the construction of Ppath, we can see that there exists a

parameter η′ ∈ Ppath satisfying η∗path/2 ≤ η′ ≤ η∗path.

Hence, once the output of the algorithm with the parame-

ter η′ is selected as the final decision, the regret bound of

O(
√
(1 +DT )(1 + CT )) is achievable.

In the previous study [Zhang et al., 2018], Hedge al-

gorithm [Littlestone and Warmuth, 1994] is a com-

mon choice for the master algorithm. Denoting xi
t

by prediction of the base algorithm running with step

size ηi, the Hedge algorithm combines the bases by

their weights wi
t and output the final decision xt+1 =∑

i∈[Npath]
wi

t+1x
i
t+1. The weight wi

t+1 is updated ac-

cording to the previous performance of base algorithms

wi
t+1 =

exp(−ǫF i
t )∑

i∈[Npath]
exp(−ǫF i

t )
,

where F i
t =

∑t
s=1 ft(x

i
t) is the cumulative loss of the

i-th base algorithm at iteration t and ǫ > 0 is the step size

of the Hedge algorithm.

The Hedge algorithm ensures to track any base algorithm

with regret at most O(
√
T lnN). Thus, by taking Hedge

as the master and OMDs with parameter pool Ppath as

base algorithms, we can obtain the path-length bound,

Regd
T ≤ O

(√
T +

√
(1 + CT )(1 +DT )

)
.

Following a similar argument, we can derive the dynamic

regret bound in terms of temporal variability without

knowing the quantities of VT . Since the parameter ∆
is constrained in [T ], we have

C1 + C2√
1 + 4G2T

≤ η∗var ≤
√

(C1 + C2T ).

2Without loss of generality, we assume Rmax > 1.

Thus, we can specify the parameter pool

Pvar =
{
ηi =

2i−1(C1 + C2)√
1 + 4G2T

| i ∈ [Nvar]
}
,

to search the optimal parameter η∗var, where Nvar =

⌈ 1
2 log

(
(C1+C2T )(1+4G2T )

C1+C2

)
⌉+1. We should notice that

since Lemma 2 holds only for ∆ ∈ [T ], what we search

is actually ∆̃ = max{1,min{T,∆∗}}, which can also

yield the following dynamic regret bound

Regd
T ≤ O

(√
T +max{(1 +DT )

1/3T 1/3V
1/3
T , VT }

)
.

Although an additional term VT is introduced due to

the constraint of the feasible interval length pool, it can

be eliminated when aggregating the temporal variability

bound with the path-length bound.

Aggregating Base Algorithms. We can run N =
Npath + Nvar OMDs with the pool P = Ppath

⋃Pvar

and use Hedge to combine them. The scheme ensures the

following dynamic regret guarantee.

Theorem 1. When the predictable sequences satisfy

‖Mt‖∗ ≤ G for all t ∈ [T ], and R(·) is 1-strongly con-

vex, running Hedge as the master with N OMDs as base

algorithms with the pool P satisfies

Regd
T ≤ O(

√
T +min{RC , RV }), (6)

where RC = (1 + DT )(1 + CT ) and RV = (1 +

DT )
1/3T 1/3V

1/3
T , provided DR(x, z) − DR(y, z) ≤

γ‖x− y‖, ∀x, y, z ∈ X .

Remark 1. Since DT is at most O(T ), the dynamic re-

gret is bounded by O(min{
√
T (1 + CT ), T

2/3V
1/3
T }),

which successfully tracks the minimum of various regu-

larities including path-length and temporal variability.

3.3 FULLY ADAPTIVE BOUND

Note that Theorem 1 is not fully adaptive in the sense

that it suffers an extra term of O(
√
T ) aside from

O(min{RC , RV }). The former term will override the

DT term in the latter one, which makes the bound cannot

fully exploit the niceness of environments, for instances,

when the predictable sequence is in a high quality. This

inadequacy comes from the master algorithm. To see this,

we can decompose the dynamic regret Regd
T as,

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
i
t)

︸ ︷︷ ︸
O(

√
T )

+
T∑

t=1

ft(x
i
t)−

T∑

t=1

ft(x
∗
t )

︸ ︷︷ ︸
O(min{RC ,RV })

,

which holds for any base algorithm indexed by i ∈ [N ].
The first term is the regret of the master algorithm, while



Algorithm 1 Master Algorithm

Input: step size ǫ, parameter pools P
1: Initiate N base algorithms S = {Si | i ∈ [N ]} by

running Algorithm 2 with each step sizeηi ∈ P
2: Initialize: Li

0 = 0 for all i ∈ [N ], and receive M1

3: for t = 1 to T do

4: Receive xi
t from base and update weights by (9)

5: Play xt =
∑

i∈[N ] w
i
tx

i
t

6: Observe the function ft(·), query the gradient

∇ft(xt) and receive Mt+1

7: Update Li
t = Li

t−1 + 〈∇ft(xt), x
i
t − xt〉

8: Send ∇ft(xt) and Mt+1 to base algorithms

9: end for

the second is the dynamic regret of the base algorithm.

The O(
√
T ) term comes only from the master algorithm

regret. Thus, to derive a fully adaptive bound, we require

to substitute Hedge by one that can exploit the niceness.

To incorporate DT in the master regret, our initial idea is

to use optimistic Hedge [Rakhlin and Sridharan, 2013] to

aggregate predictions from the N base algorithms xt+1 =∑N
i=1 w

i
t+1x

i
t+1 with the weight update procedure

wi
t+1 ∝ exp

(
− ǫ(F i

t +mi
t+1)

)
, (7)

where the optimism mi
t+1 can be seen as a guess about

the loss suffered by the i-th base algorithm at iteration

t+ 1, and enjoys the following regret guarantee [Chiang

et al., 2012, Rakhlin and Sridharan, 2013].

Lemma 3. By updating the weights as (7) and setting

ǫ =
√
(lnN + 2)/D∞

T , for any base algorithm indexed

by i ∈ [N ], the optimistic Hedge enjoys

T∑

t=1

〈wt, ft〉 −
T∑

t=1

ft(x
i
t) ≤ 2

√
(2 + lnN)D∞

T ,

where D∞
T =

∑T
t=1‖ft −mt‖2∞. With a slight abuse of

notation, we denote by ft ∈ R
N the loss vector suffered

by the N base algorithms, which takes ft(x
i
t) as its i-th

entry. Similarly, wt ∈ R
N is used for the weight vector

and mt ∈ R
N is for the optimism vector.

The step size ǫ can be tunned by doubling trick since

the value of D∞
T is monotone in the learning process.

Combining Lemma 3 with aforementioned analysis and

the fact that ft(xt) ≤ 〈wt, ft〉 by Jensen’s inequality,

we can derive a dynamic regret bound in the rate of

O(
√
D∞

T +
√
(1 + CT )(1 +DT )). However, the bound

is incompatible, as D∞
T is defined in terms of optimism

mt rather than the accessible predictable sequences Mt.

To associate D∞
T =

∑T
t=1 ‖ft − mt‖2∞ with DT =∑T

t=1 ‖∇ft(xt)−Mt‖2∗, we specify mt with Mt as

mi
t = 〈Mt, x

i
t − xt〉. (8)

Algorithm 2 OMD (Base Algorithm)

Input: step size ηi ∈ P
1: Let xi

1 be any point in X
2: for t = 1 to T do

3: Submit xi
t to the master, then receive the gradient

∇ft(xt) and current predictable sequence Mt+1

4: Prepare the prediction for the next iteration as,

x̂i
t+1 = argmin

x∈X
ηi〈∇ft(xt), x〉+DR(x, x̂i

t),

xi
t+1 = argmin

x∈X
ηi〈Mt+1, x〉+DR(x, x̂i

t+1)

5: end for

The rationale behind is that mi
t is the guess about ft(x

i
t),

which can be substituted by the linearized surrogate loss

ℓt(x
i
t) = 〈∇ft(xt), x

i
t − xt〉.3 Thus, following similar

spirit, it is natural to approximate mt as (8), since Mt is

a guess about ∇ft(xt). By reducing the common term

〈Mt+1, xt+1〉, the weight update procedure with the lin-

earized surrogate loss ℓt(x) and mt becomes,

wi
t+1 ∝ exp

(
−ǫ(Li

t + 〈Mt+1, x
i
t+1〉)

)
, (9)

where Li
t =

∑t
s=1 ℓt(x

i
t) is the cumulative surrogate loss

for i-th base algorithm. Note that the predictions for base

algorithm xi
t+1 is achievable at the beginning of iteration

t+ 1, since its update only requires the information over

past t iterations and Mt+1.

Let ℓt be the loss vector taking ℓt(x
i
t) as its i-th entry. By

introducing the surrogate loss, we have

‖ℓt −mt‖∞ = max
i∈[N ]

{〈∇ft(xt)−Mt, x
i
t − xt〉}

≤
√
2Rmax‖∇ft(xt)−Mt‖∗ (10)

where the last inequality holds due to the Cauchy-

Schwartz inequality and the boundedness of X . Thus,

the term D∞
T is bounded by 2R2

maxDT .

By taking the optimistic Hedge with surrogate loss func-

tion as the master algorithm, the fully adaptive bound is

obtained immediately. However, a direct combination

would be time-consuming, particularly when the gradi-

ent acquisition requires heavy computations since we run

N = O(log T ) base algorithms and have to query the gra-

dients for each one. This can be relieved by additionally

incorporating the surrogate loss function to the base algo-

rithm, where models are updated with ∇ℓt(x
i
t) instead of

∇ft(x
i
t). Since ∇ℓt(x

i
t) = ∇ft(x

i
t) for all i ∈ [N ], the

times of querying gradients are reduced from N to 1 at

3The regret w.r.t ft(x) is upper bounded by that w.r.t. ℓt(x)
Thus, the online algorithm can learn with ℓt(x) instead of ft(x).



every iteration. We summarize the master algorithm in Al-

gorithm 1 and the base algorithms, OMD in Algorithm 2.

Theorem 2. Under the same condition of Theorem 1,

running the master algorithm (Algorithm 1) with N base

OMDs (Algorithm 2) satisfies

Regd
T ≤ O(

√
DT +min{RC , RV }),

where RC =
√
(1 +DT )(1 + CT ) and RV = (1 +

DT )
1/3T 1/3V

1/3
T .

Theorem 2 is the main result of this paper, whose proof

is provided in Appendix A. We leave proofs of the rest

lemmas and theorems in the supplementary material.

Remark 2. The result in Theorem 2 is the same as the

fully adaptive bound in Jadbabaie et al. [2015]. Com-

paring with the bound in Theorem 1, the fully adaptive

one improves the term O(
√
T ) introduced by the master

algorithm to O(
√
DT ). The improvement enables the al-

gorithm to exploit niceness of environments, particularly

when high-quality predictable sequences are provided.

3.4 COMPARISON WITH PRECEDING WORK

Both our algorithm and AOMD [Jadbabaie et al., 2015]

are built upon the optimistic mirror descent algorithm.

The main difference is that AOMD tunes the optimal step

size by the doubling trick, which involves a non-convex

program at every iteration and requires burdensome cal-

culations; while our approach avoids the heavy compu-

tations by searching over multiple OMDs. Due to the

construction of the parameter pool, we only introduce

O(log T ) additional OMDs. Besides, by introducing sur-

rogate loss to base algorithms, the acquisition of gradients

is reduced from O(log T ) to 1 at each iteration, which fur-

ther accelerates the algorithm as the gradient evaluation

is arguably the most time-consuming step in OMD.

Meanwhile, since our algorithm does not require the exact

value of regularities CT , it actually ensures a general

dynamic regret bound, which supports the comparison

against any sequence. By specifying the comparators for

the worst case ones {x∗
t }Tt=1 as the best fixed decision in

hindsight, our result can adjust automatically from the

fully adaptive dynamic bound to the static regret bound

of O(
√
DT ), which facilitates another type of adaptivity.

4 EXPERIMENTS

In this section, we examine the efficacy and efficiency

of our proposal on the matrix regression problem with

the nuclear norm [Bach, 2008]. Empirical studies on

classification tasks are also investigated, and we present

results in the supplementary material due to page limits.

For the matrix regression problem, at iteration t, a sample

(Zt, yt) arrives with predictable sequence Mt, where Zt ∈
R

p×q is a feature matrix and yt ∈ R is the label. Then

the learner makes the prediction Xt ∈ R
p×q and suffers

ft(Xt) =
1

a

[
1

2
(yt − Tr(〈Zt, Xt〉))2 + b‖Xt‖nu

]
,

where a, b > 0 are constants and ‖ · ‖nu is the nuclear

norm, defined as the sum of singular values of the matrix.

Contenders. To verify the efficiency of our algorithm,

we compare our method with AOMD and the vanilla

OMD with the static regret guarantee. We set R(x) =
1
2‖x‖2F for both algorithms, where ‖·‖F is the Frobenius

norm. For AOMD, we use the concave-convex procedure

to handle the non-convex program, which is solved by a

sequence of quadratically constrained quadratic program.

Setting. All contenders are compared in dynamic envi-

ronments, where the potential optimal decision changes

abruptly. Specifically, we consider a 3-stage scenario

containing 2000 iterations in each iteration. Denoting

by Xk
∗ the potentially best decision for k-th stage, the

label is assigned as yt = Tr(〈Zt, X
k
∗ 〉) + ν, where the

data point Zt is randomly sampled from [−1, 1]20×20 and

ν ∼ N (0, 10) is the random Gaussian noise.

Meanwhile, to see the effectiveness of our algorithm in

exploiting the niceness of environments. We simulate pre-

dictable sequences as Mt = λ ·∇ft(xt), where λ ∈ [0, 1]
is a parameter adjusting the quality of the predictable se-

quence between the ideal case where Mt = ∇ft(xt) (i.e.,

DT = 0) and the basic case where Mt = 0. A larger λ
implies a higher quality of the predictable sequences.

Results. We focus on the efficacy first. Figure 1(a)

shows the mean and standard deviation of instantaneous

loss over a moving time window of 100 iterations when

λ = 0.4. We can see that both AOMD and our approach

perform better than the vanilla OMD, which validates the

advantage of adaptive algorithms. It is also interesting to

notice that AOMD converges better in the stationary pe-

riod than ours. The reason might be that AOMD runs with

the fixed step size until the doubling condition is satisfied,

while our method maintains multiple step sizes, where the

price has to pay for hedging the non-stationarity. Besides,

Figure 1(b) presents comparisons on the running time in

a logarithmic scale, where our method (24 seconds) is

slightly slower than vanilla OMD but significantly faster

than AOMD (around 6 hours), which validates the ef-

ficiency of our method. Last, Figure 1(c) reports that

the performance of our method improves with better pre-

dictable sequences, which shows that it can efficiently

and adaptively exploit the niceness of environments.
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Figure 1: The dynamic regret divided by iteration of three methods with the quality of hint varying from poor to ideal

5 CONCLUSION

In this paper, we design a simple algorithm enjoying the

fully adaptive bound in Jadbabaie et al. [2015], which

achieves the minimizer of previous results in terms of dif-

ferent regularities CT , VT and can benefit from the nice-

ness of environments measured by DT . By employing the

online ensemble and designing a new master algorithm,

our algorithm avoids solving the non-convex program and

is more computationally efficient. Experiments validate

the effectiveness and efficacy of our proposed algorithm.
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A PROOF OF THEOREM 2

Proof. In this section, we first present the proof of the

path-length bound, followed by that of the temporal vari-

ability bound. The combination of these two types of

results implies the fully adaptive bound in Theorem 2.

Path-length Bound. First, we can see that the dynamic

regret w.r.t the original loss ft(x) can be bounded by that

of the surrogate loss ℓt(x) = 〈∇ft(xt), x− xt〉 as

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗
t ) ≤

T∑

t=1

ℓt(xt)−
T∑

t=1

ℓt(x
∗
t ),

where the inequality holds due to the Jensen’s inequality

ft(xt) − ft(x
∗
t ) ≤ 〈∇ft(xt), xt − x∗

t 〉 and the fact that

ℓt(xt) = 0. Then, for any base algorithm indexed by

i ∈ [N ], we can decompose the dynamic regret as

T∑

t=1

ℓt(xt)−
T∑

t=1

ℓt(x
i
t)

︸ ︷︷ ︸
Reg-Mas(i)

+

T∑

t=1

ℓt(x
i
t)−

T∑

t=1

ℓt(x
∗
t )

︸ ︷︷ ︸
Reg-Base(i)

.

where the first term is regret of the master algorithm while

the second dynamic regret of the base algorithm.

As for the master regret, our algorithm runs a new variant

of optimistic Hedge, where the loss suffered by each base

algorithm is ℓt(x
i
t) = 〈∇ft(xt), x

i
t − xt〉 and predictable

sequences mi
t = 〈Mt, x

i
t − xt〉 are offered. Thus, due to

Lemma 3 and the argument in (10), for any base algorithm

indexed by i and each iteration t, we have

ℓt(xt)− ℓt(x
i
t) =

∑

i∈[N ]

wi
tℓt(x

i
t)− ℓt(x

i
t)

≤ 2Rmax

√
(4 + 2 lnN)

∑T

t=1
‖∇ft(xt)−Mt‖2∗

Summing over T iterations, we obtain

Reg-Mas(i) ≤ 2Rmax

√
(4 + 2 lnN)DT .

Then, we proceed to analyze the base regret for path-

length bound. The optimal step size for the path-length

bound is η∗path =
√
(R2

max + γCT )/(1 +DT ). Due

to the construction of Pη, there must exist a base al-

gorithm indexed by p ∈ [N ], whose step size satisfies

η∗path/2 ≤ ηp ≤ η∗path. Therefore, for the p-th base algo-

rithm, by applying Lemma 5 in the supplementary mate-

rial, a counterpart of Lemma 1 incorporating the surrogate

loss function, we know that the base regret is bounded by

Reg-Base(p) ≤ ηpDT

2
+

R2
max + γCT

2ηp

≤
η∗pathDT

2
+

R2
max + γCT

η∗path

=
3

2

√
(1 +DT )(γCT +R2

max)
︸ ︷︷ ︸

Path-Base

.

Choosing the p-th base algorithm as the intermediate term

in the decomposition, we obtain the path-length bound as,

Regd
T ≤ 2Rmax

√
(4 + 2 lnN)DT + Path-Base



Temporal Variability Bound. We first note that the argu-

ment in the proof of path-length bound does not directly

apply for proving the temporal variability bound, due to

the introduction of the surrogate loss. Specifically, previ-

ous arguments can only yield a temporal variability bound

in terms of V ℓ
T =

∑T
t=2 supx∈X |ℓt(x)−ℓt−1(x)|, which

is hard to be converted to the desired VT w.r.t. the original

function ft. To address the difficulty, we decompose the

dynamic regret as follows.

Regd
T =

⌈T/∆⌉∑

i=1

∑

t∈Ii

ft(xt)−
⌈T/∆⌉∑

i=1

∑

t∈Ii

ft(x
∗
Ii
)

︸ ︷︷ ︸
term A

+

⌈T/∆⌉∑

i=1

∑

t∈Ii

ft(x
∗
Ii
)−

⌈T/∆⌉∑

i=1

∑

t∈Ii

ft(x
∗
t )

︸ ︷︷ ︸
term B

,

(11)

where Ii = [si, ei] is the i-th interval with the length

∆, and si = (i − 1) · ∆ + 1, ei = i · ∆. Notation

x∗
Ii

= argminx∈X
∑

t∈Ii
ft(x) refers to the best fixed

decision in interval Ii.
The term A is the regret of learner’s decisions compar-

ing to the best decisions over consecutive intervals w.r.t.

the original loss, which can be bounded by that of the

surrogate loss by the Jensen’s inequality as

term A ≤
⌈T/∆⌉∑

i=1

∑

t∈Ii

ℓt(xt)−
⌈T/∆⌉∑

i=1

∑

t∈Ii

ℓt(x
∗
Ii
).

As shown by Lemma 6 in the supplementary material, the

above inequality can be further bounded by

term A ≤ 2Rmax

√
(4 + 2 lnN)DT

+ 2
√
(1 +DT )(C1 + C2⌈T/∆⌉),

(12)

for any parameter ∆ ∈ [T ]. As for term B, following the

same argument in Besbes et al. [2015], we ensure that

term B ≤ 2∆VT . (13)

Note that here we can achieve a temporal variabil-

ity term VT w.r.t. the original function ft. Com-

bining (12), (13) and setting ∆ = ∆̃ where

∆̃ = max{1,min{T, (C2)
2/3(1 + DT )

1/3(1 +

T )1/3VT
−2/3)}, we can obtain that

Regd
T ≤ 2Rmax

√
(4 + 2 lnN)DT

+ 2

√
(1 +DT )(C1 + C2⌈T/∆̃⌉) + 2∆̃VT︸ ︷︷ ︸

Var-Base

.

Since what we are searching is actually ∆̃ rather than ∆∗,

we discuss the result in the following three cases.

• Case 1 (∆∗ ∈ [1, T ]): by setting ∆̃ = ∆∗, we have

Var-Base ≤
√
C1(1 +DT )

+ 4C
2/3
2 (1 +DT )

1/3(1 + T )1/3V
1/3
T .

• Case 2 (∆∗ < 1): by setting ∆̃ = 1 and the fact

C2

√
(1 +DT )(1 + T ) < VT , we have

Var-Base ≤
√
C1(1 +DT )+2(1+C2/

√
C2)VT .

• Case 3 (∆∗ ≥ T + 1): by setting ∆̃ = T and the

fact that : C2

√
1 +DT ≥ (1 + T )VT , we have

Var-Base ≤ (
√

C1 + 2C2 + 2
√

2C2)
√
1 +DT .

Although the temporal variability bound behaves differ-

ently in various cases, we can aggregate it with the path-

length bound to yield the desired regret bound.

Combining Base Algorithms. Our algorithm enjoys

both path-length and temporal variability bound, namely,

Regd
T ≤ 2Rmax

√
(4 + 2 lnN)DT

+min{Path-Base, Var-Base}.
(14)

We show that (14) actually implies the following claim

Regd
T ≤ O

(√
DT lnN +min{

√
(1 +DT )(1 + CT ),

(1 +DT )
1

3 (1 + T )
1

3V
1

3

T }
)
, (15)

which is proved by considering the following three cases.

• Case 1 (∆∗ ∈ [1, T ]): Var-Base = O((1 +

DT )
1

3 (1+T )
1

3V
1

3

T ), (14) and (15) are in same order.

• Case 2 (∆∗ < 1): Var-Base = O(VT ), since

VT > C2

√
(1 +DT )(1 + T ). Combining with the

fact CT ≤
√
2RmaxT , we have Path-Base ≤ C̃VT

where C̃ is a constant. Therefore, (14) is at most

O
(√

DT lnN +min{
√
(1 +DT )(1 + CT ), VT }

)

= O
(√

DT lnN +
√

(1 +DT )(1 + CT )
)
,

which implies (15) as VT &
√
(1 +DT )(1 + T ).

• Case 3: (∆∗ ≥ T + 1): C2

√
1 +DT ≥ (1 + T )VT .

In this case, (15) becomes

Regd
T ≤ O

(√
DT lnN + (1 +DT )

1

3 (1 + T )
1

3V
1

3

T

)

= O(
√
DT lnN).

Since Var-Base = O(
√
1 +DT ), (14) becomes

Regd
T ≤ O(

√
DT lnN), which implies (15).

Notice that we treat the double logarithmic factors in T as

constants, following previous studies [Luo and Schapire,

2015, Adamskiy et al., 2016].

We complete the proof of the fully adaptive bound in

Theorem 2 by combining all above three cases.
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