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Abstract. The values of a two-player zero-sum binary discounted game
are characterized by a P-matrix linear complementarity problem (LCP).
Simple formulas are given to describe the data of the LCP in terms of
the game graph, discount factor, and rewards. Hence it is shown that the
unique sink orientation (USO) associated with this LCP coincides with
the strategy valuation USO associated with the discounted game. As an
application of this fact, it is shown that Murty’s least-index method for
P-matrix LCPs corresponds to both known and new variants of strategy
improvement algorithms for discounted games.
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1 Introduction

Discounted (stochastic) games were introduced by Shapley [15]. The monograph
of Filar and Vrieze [6] discusses discounted (stochastic) games in detail. For
clarity, we only consider non-stochastic discounted games in this paper. One
motivation for studying these games is that there is a polynomial time reduction
to discounted games from parity games (via mean-payoff games) [14,21], which
are equivalent to model checking for the modal mu-calculus. A polynomial-time
algorithm for parity games is a long-standing open question.

Our contribution is a transparent reduction from binary discounted games to
the P-matrix linear complementarity problem (LCP). The simple formulas for
the LCP data allow us to show that the unique sink orientation of the cube
associated with the P-matrix LCP [16] is the same as the strategy valuation
USO for the game. As an application of this fact, it is shown that Murty’s least-
index method for P-matrix LCPs corresponds to both known and new variants of
strategy improvement algorithms for binary discounted games. For games with
outdegree greater than two, one gets generalized LCPs. Discounted games can
be reduced in polynomial time to simple stochastic games [21]. Recently (non-
binary) simple stochastic games have been reduced to P-matrix (generalized)
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LCPs [17,8]. The monograph of Cottle et. al. [4] is the authoritative source on
the linear complementarity problem.

2 Discounted Games

A (perfect-information binary) discounted game Γ=(S, λ, ρ, rλ, rρ, β, SMin, SMax)
consists of: a set of states S = { 1, 2, . . . , n }; left and right successor functions
λ, ρ : S → S, respectively; reward functions rλ, rρ : S → R for left and right
edges respectively, with rλ(s) = rρ(s) if λ(s) = ρ(s); a discount factor β ∈ [0, 1);
and a partition (SMin, SMax) of the set of states. A sequence 〈s0, s1, s2, . . .〉 ∈ Sω

is a play if for all i ∈ N, we have that λ(si) = si+1 or ρ(si) = si+1. We define
the (β-)discounted payoff D(π, β) of a play π = 〈s0, s1, s2, . . .〉 by D(π, β) =∑∞

i=0 β
ir(si, si+1), with r(si, si+1) denoting rλ(si) or rρ(si) as appropriate.

A function μ : SMin → S is a positional strategy for player Min if for every
s ∈ SMin, we have that μ(s) = λ(s) or μ(s) = ρ(s). Strategies χ : SMax →
S for player Max are defined analogously. We write ΠMin and ΠMax for the
sets of positional strategies for player Min and Max, respectively. For strategies
μ ∈ ΠMin and χ ∈ ΠMax, and a state s ∈ S, we write Play(s, μ, χ) for the play
〈s0, s1, s2, . . .〉, such that s0 = s, and for all i ∈ N, we have that si ∈ SMin implies
μ(si) = si+1, and si ∈ SMax implies χ(si) = si+1. A function σ : S → S is a
(combined) positional strategy. For a combined positional strategy σ : S → S,
we write Play(s, σ) for the play Play(S, σ�SMin, σ�SMax).

For every s ∈ S, we define the lower value Val∗(s, β) and the upper value
Val∗(s, β) by

Val∗(s, β) = max
χ∈ΠMax

min
μ∈ΠMin

D(Play(s, μ, χ), β),

Val∗(s, β) = min
μ∈ΠMin

max
χ∈ΠMax

D(Play(s, μ, χ), β).

The inequality Val∗(s, β) ≤ Val∗(s, β) always holds. We say that the value exists
in a state s ∈ S, if we have Val∗(s, β) = Val∗(s, β); we then write Val(s, β)
for Val∗(s, β) = Val∗(s, β). We say that the discounted game is positionally
determined if for all s ∈ S, the value exists in s.

We identify functions v : S → R and n-vectors v ∈ R
n. For s ∈ S, depending

on which interpretation is more natural in context, we write either v(s) or vs.
We do the same for n-vectors of variables, for which Latin letters v, w, and z are
typically used. We say that v : S → R is a solution of the optimality equations
Opt(Γ ) if for all s ∈ S, we have

v(s) =

{
min{ rλ(s) + β · v(λ(s)), rρ(s) + β · v(ρ(s)) } if s ∈ SMin,

max{ rλ(s) + β · v(λ(s)), rρ(s) + β · v(ρ(s)) } if s ∈ SMax.
(1)

Theorem 1 ([15]). Every discounted game is positionally determined. More-
over, the optimality equations Opt(Γ ) have a unique solution v : S → R, and for
every s ∈ S, we have Val(s, β) = v.
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It follows from the existence of a solution to the optimality equations that there
exist optimal pure positional strategies [21]. Hence, without loss of generality,
we consider only pure positional strategies.

3 A P-Matrix LCP for Discounted Games

3.1 An LCP for Discounted Games

Consider the following set of constraints over variables v(s), w(s), z(s), for all
s ∈ S:

v(s) + w(s) = rλ(s) + βv(λ(s)), if s ∈ SMin, (2)
v(s)− w(s) = rλ(s) + βv(λ(s)), if s ∈ SMax, (3)
v(s) + z(s) = rρ(s) + βv(ρ(s)), if s ∈ SMin, (4)
v(s)− z(s) = rρ(s) + βv(ρ(s)), if s ∈ SMax, (5)
w(s), z(s) ≥ 0 (6)
w(s) · z(s) = 0. (7)

Non-negative variables w(s) and z(s) should be thought of as slack variables
which turn inequalities such as v(s) ≤ rλ(s) + βv(λ(s)) if s ∈ SMin, or v(s) ≥
rρ(s) + βv(ρ(s)) if s ∈ SMax, into equations. Note that variables w are slacks
for left successors, and variables z are slacks for right successors. The natural
inequalities for left and right successors, turned into equations (2)–(5) using non-
negative slack variables (6), together with the complementarity condition (7), for
all s ∈ S, yield the following characterization.

Proposition 1. There is a unique solution v, w, z : S → R of constraints (2)–
(7), and v is the unique solution of Opt(Γ ).

A linear complementarity problem [4] LCP(M, q) is the following set of con-
straints:

w = Mz + q, (8)
w, z ≥ 0, (9)

ws · zs = 0, for every s ∈ S, (10)

where M is an n × n real matrix, q ∈ R
n, and w and z are n-vectors of real

variables. In order to turn constraints (2)–(7) into a linear complementarity prob-
lem LCP(M, q), we rewrite equations (2)–(5) in matrix notation and eliminate
variables v(s), for all s ∈ S.

For a predicate p, we define [p] = 1 if p holds, and [p] = 0 if p does not hold. For
σ : S → S, define the n×n matrix Tσ by (Tσ)st = [σ(s) = t], for all s, t ∈ S. For
every n×n matrix A, we define the matrix Â by setting (Â)st = (−1)[s∈SMin]Ast,
for every s, t ∈ S. Observe that Â is obtained from A by multiplying all entries
in every row s, such that s ∈ SMin, by −1.
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Equations (2)–(3) and (4)–(5) can be written as

Îv = w + Îrλ + βT̂λv,

Îv = z + Îrρ + βT̂ρv,

respectively, where v, w, and z are n-vectors of real variables, and rλ, rρ ∈ R
n

are the vectors of rewards. By eliminating v we get

w + Îrλ = (Î − βT̂λ)(Î − βT̂ρ)−1(z + Îrρ),

and hence we obtain an LCP(M, q) equivalent to constraints (2)–(7), where

M = (Î − βT̂λ)(Î − βT̂ρ)−1, (11)

q = MÎrρ − Îrλ. (12)

Proposition 2. There is a unique solution w, z ∈ R
n of the LCP(M, q), and

(Î − βT̂λ)−1(w + Îrλ) = (Î − βT̂ρ)−1(z + Îrρ) is the unique solution of Opt(Γ ).

Invertibility of (Î − βT̂λ) and (Î − βT̂ρ) is guaranteed by Theorem 4.

3.2 The P-Matrix Property

For an n×n matrix A and α ⊆ S, such that α 	= ∅, the principal submatrix Aαα

of A is the matrix obtained from A by removing all rows and columns in S \α. A
principal minor of A is the determinant of a principal submatrix of A. An n×n
matrix is a P-matrix [4] if all of its principal minors are positive. The importance
of P-matrices for LCPs is captured by the following theorem.

Theorem 2 (Theorem 3.3.7, [4]). A matrix M ∈ R
n×n is a P-matrix if and

only if the LCP(M, q) has a unique solution for every q ∈ R
n.

There are many algortithms for LCPs that work for P-matrices, but not in gen-
eral. As stated by the following theorem, the matrices that arise from discounted
games are P-matrices.

Theorem 3. The matrix M = (Î − βT̂λ)(Î − βT̂ρ)−1 is a P-matrix.

Proof. By Proposition 2, every LCP (M, q) arising from a discounted game has
a unique solution. Given M , every q ∈ R

n can arise from a game (to see this,
set rλ = 0 in (12) and note that M is invertible), hence M is a P-matrix by
Theorem 2. ��
We give an alternative proof of Theorem 3 that does not rely on the fixed point
theorem underlying Theorem 1 and Proposition 2. For this we recall the following
two theorems from linear algebra. An n× n matrix A is strictly row-diagonally
dominant if for every i, 1 ≤ i ≤ n, we have |Aii| >

∑
j �=i |Aij |.

Theorem 4 (Levy-Desplanques [9]). Every strictly row-diagonally dominant
square matrix is invertible.
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A convex combination of n× n matrices B and C is a matrix QB + (I −Q)C,
where Q is a diagonal matrix with diagonal entries q1, q2, . . . , qn ∈ [0, 1].

Theorem 5 (Johnson-Tsatsomeros [10]). Let A = BC−1, where B and C
are square real matrices. Then A is a P-matrix iff every convex combination of
B and C is invertible.

Proof (alternative proof of Theorem 3). For every β ∈ [0, 1), both (Î −βT̂λ) and
(Î −βT̂ρ) are strictly row-diagonally dominant, and so is every convex combina-
tion of them. By Theorem 4, every such convex combination is invertible, and
hence by Theorem 5, the matrix M = (Î − βT̂λ)(Î − βT̂ρ)−1 is a P-matrix. ��
It is well-known that one-player discounted games, where S = SMin or S = SMax,
can be solved in polynomial time via a simple linear program [5]. We briefly note
that in this case the matrix M is hidden-K, giving another proof that the LCP
(M, q) is solvable via a linear program [13]. A matrix X is a Z-matrix if all
off-diagonal entries are non-positive. A P-matrix M is hidden-K if and only if
there exist Z-matrices X and Y such that MX = Y and Xe > 0, where e is the
all-one vector (see pg.212 of [4]). Without loss of generality, suppose S = SMax,
so Î = I, T̂λ = Tλ, and T̂ρ = Tρ. Then, by (11), we have M(I−βTρ) = (I−βTλ),
which gives the hidden-K property.

3.3 Understanding q and M

For every σ : S → S with σ(s) ∈ {λ(s), ρ(s)}, let vσ ∈ R
n be the vector

of discounted payoffs of σ-plays
〈D(Play(s, σ), β)

〉
s∈S

. We define rσ ∈ R
n as

follows. For s ∈ S,

rσ(s) =

{
rλ(s) if σ(s) = λ(s),
rρ(s) if σ(s) = ρ(s).

Proposition 3. For σ : S → S, we have vσ = (Î − βT̂σ)−1Îrσ.

Proof. The discounted payoff of the play Play(s, σ) is the unique solution of the
system of equations v = rσ +βTσv, which is equivalent to Îv = Îrσ +βT̂σv, and
hence vσ = (Î − βT̂σ)−1Îrσ. ��
Proposition 4. If q ∈ R

n is as defined in (12), then q = Î
(
vρ− (rλ + βTλv

ρ)
)
.

Proof. By Proposition 3, we have

q = MÎrρ− Îrλ = (Î−βT̂λ)(Î−βT̂ρ)−1Îrρ− Îrλ = (Î−βT̂λ)vρ− Îrλ . ��
For σ : S → S, define the n × n matrix Dσ in the following way. For s ∈ S, let
Play(s, σ) = 〈s0, s1, . . . , sk−1, 〈t0, t1, . . . , t
−1〉ω〉. Then for t ∈ S, we define

(Dσ)st =

⎧
⎪⎨

⎪⎩

βi if t = si for some i, 0 ≤ i < k,
βk+i

1−β� if t = ti for some i, 0 ≤ i < �,

0 otherwise.
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Proposition 5. For σ : S → S, we have vσ = Dσrσ.

Proof. Let s ∈ S and Play(s, σ) = 〈s0, s1, . . . , sk−1, 〈t0, t1, . . . , t
−1〉ω〉. Then we
have

D(Play(s, σ), β) =
k−1∑

i=0

βirσ(si) + βk
∞∑

j=0


−1∑

i=0

βj
+irσ(ti)

=
∑

k−1

βirσ(si) +

−1∑

i=0

(
βk+i

∞∑

j=0

βj

)
rσ(ti)

=
∑

k−1

βirσ(si) +

−1∑

i=0

βk+i

1− β

· rσ(ti)

= (Dσrσ)s. ��

By Proposition 5, the discounted payoff of the play Play(s, σ) is equal to
(Dσrσ)s =

∑
t∈S(Dσ)st · rσ(t). Therefore, we can think of (Dσ)st as the co-

efficient of the contribution of the reward rσ(t) on the edge that leaves state
t ∈ S, towards the total discounted payoff of the play, which is starting from
state s, and that is following strategy σ onwards.

Lemma 1. Let M be the n×n matrix as defined in (11). Then for every s, t ∈ S,
we have Mst = (−1)[s∈SMin]+[t∈SMin]

(
(Dρ)st − β(Dρ)λ(s)t

)
.

Proof. The following follows from Propositions 3 and 5, and from Î−1 = Î:

M = (Î − βT̂λ)(Î − βT̂ρ)−1Î Î−1

= (Î − βT̂λ)DρÎ .

Therefore, for all s, t ∈ S, we have

Mst = (−1)[s∈SMin] · (−1)[t∈SMin](Dρ)st − (−1)[s∈SMin]β · (−1)[t∈SMin](Dρ)λ(s)t

= (−1)[s∈SMin]+[t∈SMin]
(
(Dρ)st − β(Dρ)λ(s)t

)
. ��

4 Algorithms

4.1 Unique Sink Orientations of Cubes

A unique sink orientation (USO) of an n-dimensional hypercube is an orientation
of its edges such that every face has a unique sink. The USO problem is to find
the unique sink of the n-cube, using calls to an oracle that gives the orientation
of edges adjacent to a vertex. For more details about USOs see [19].

For an LCP (M, q), the vector q is nondegenerate if it is not a linear combina-
tion of any n− 1 columns of (I,−M). Every P-matrix LCP (M, q) of dimension
n with nondegenerate q corresponds to a USO ψ(M, q) of the n-cube [16].
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A principal pivot transform (PPT) of the LCP (M, q) is a related LCP with
the role of wi and zi exchanged for all i ∈ α for some α ⊆ {1, . . . , n}. We denote
by Mi the i-th column of M and by ei = Ii the i-th unit vector. For each
α ⊆ {1, . . . , n}, define the n× n matrix Bα as,

(Bα)i =

{
−Mi, if i ∈ α ,
ei, if i /∈ α .

The α-PPT of (M, q), written (Mα, qα), is found as follows. Start with the matrix
A = [I,−M, q], which comes from the equation Iw−Mz = q, see (8). Obtain A′

from A by exchanging Ii with −Mi for all i ∈ α. Then (Bα)−1A′ = [I,−Mα, qα].
The vertices of ψ(M, q) correspond to the subsets α ⊆ {1, . . . , n}. At vertex

α, the n adjacent edges are oriented according to the sign of qα =
(
(Bα)−1q

)
.

For exactly one α, we have qα ≥ 0, so that z = 0 is a trivial solution of the LCP
(Mα, qα); this is the sink of ψ(M, q).

For a binary discounted game Γ , each subset α ⊆ {1, . . . , n} corresponds to
a choice of right-successor function, ρα, with

ρα(s) =

{
λ(s) if s ∈ α,
ρ(s) if s /∈ α,

for all s ∈ S. The sink of ψ(M, q) is an α such that ρα is an optimal (combined)
strategy.

4.2 Strategy Improvement and the Strategy Valuation USO

In this section we outline strategy improvement algorithms for solving discounted
games. Such algorithms also exist for other classes of zero-sum games, such as
parity games, mean-payoff games, and simple stochastic games [1,20]. For the all-
switching variant of strategy improvement, no super-linear examples are known
for any of these classes of games.

Underlying strategy improvement algorithms are corresponding USOs. For
binary games, as considered here, these are USOs of cubes, for games with out-
degree larger than two, USOs of grids; see [7].

Definition 1. For a pair of strategies, a state s ∈ S is switchable if the op-
timality equation s, given by (1), does not hold. That is, for a right successor
function ρ, used to denote a strategy pair, and a left successor function λ, used to
denote the alternative choices to ρ, a state s ∈ SMax is switchable under strategy
pair ρ if

rλ(s) + β · vρ(λ(s)) > rρ(s) + β · vρ(ρ(s)), (13)

and state s ∈ SMin is switchable under ρ if

rλ(s) + β · vρ(λ(s)) < rρ(s) + β · vρ(ρ(s)). (14)
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The rewards of the game are nondegenerate if there is no strategy pair σ such
that for some state s ∈ S we have rλ(s) + β · vσ(λ(s)) = rρ(s) + β · vσ(ρ(s)).
For the purpose of defining the strategy valuation USO τ(Γ ), we only consider
nondegenerate rewards. We associate a vertex of τ(Γ ) with the strategy pair σ.

Definition 2. For a game Γ , the strategy valuation USO τ(Γ ) is defined as
follows. At vertex σ an edge is outgoing if and only if the corresponding state is
switchable.

Proposition 6. For a game Γ and the corresponding (M, q) defined by (11)-
(12), we have τ(Γ ) = ψ(M, q) .

Proof. For s ∈ S, we have qs = (−1)[s∈SMin]
(
(rρ + βvρ(ρ(s))− (rλ + βvρ(λ(s))

)
,

by Proposition 6. Thus, if s ∈ SMax, then qs < 0 if and only if (13) is satisfied,
and if s ∈ SMin, then qs < 0 if and only if (14) is satisfied. ��
For a fixed strategy χ of Max, a best response of Min, BR(χ), is a strategy that
for all s ∈ SMin does not satisfy (14). For a state s ∈ S, there are two opposite
facets, i.e., (n− 1)-dimensional faces, of τ(Γ ) such that in one all strategies are
consistent with λ(s), and in the other all are consistent with ρ(s). Thus, the
strategy χ of Max defines a subcube of τ(Γ ) as the intersection of the facets
that are consistent with χ. BR(χ) is the sink in this subcube.

Algorithm 1. [Strategy Improvement for Max]

Input: Discounted game Γ

repeat:

1. ρ′ ← (
BR(ρ�SMax), ρ�SMax

)
.

2. Obtain ρ′′ from ρ′ by switching at a nonempty subset of switchable
s ∈ SMax under ρ′.

3. ρ← ρ′′

until ρ′′ = ρ′.

The proof of correctness of strategy improvement for simple stochastic games
in Section 3.3 of [2] can be easily adapted to discounted games using the fact
that, for every strategy σ, the matrix Dσ = (I − βTσ)−1 is nonnegative and has
positive diagonal.

Algorithm 1 has the following interpretation in terms of τ(Γ ). In Step 1., find
the best response of Min as the sink in the subcube of τ(Γ ) consistent with χ.
In Step 2., from this sink, jump to the antipodal vertex in the subcube spanned
by the chosen set of outgoing edges (switchable states). The algorithm can be
seen as repeating Step 2. in the strategy-improvement USO τMax(Γ ), which is an
inherited USO where the vertices correspond to the strategies of Max only. To
obtain τMax(Γ ) from τ(Γ ), we “drop” the dimensions corresponding to Min: at
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vertex γ in τMax(Γ ), the orientation is consistent with that at (BR(γ), γ) in τ(Γ ),
which is the sink in the subcube of τ(Γ ) consistent with γ. For more details on
inherited USOs, see Section 3 of [19]. It is a long-standing open question whether
the all-switching variant of strategy improvement is polynomial.

With degnerate rewards, there is at least one edge that does not have a well-
defined orientation. Strategy improvement still works, by considering any such
edge as incoming to the current vertex.

4.3 Murty’s Least-Index Method

In this section we outline Murty’s least-index method for P-matrix LCPs. We
show that, applied to the LCP (M, q) derived from a discounted game Γ ac-
cording to (11) and (12), the least-index method can be considered as a strategy
improvement algorithm.

Algorithm 2. [Murty’s least-index method]

Input: LCP (M, q). Initialization: Set α := ∅, q̄ := q.

while q̄ 	≥ 0 do:

s← min{1,...,n}{i | q̄i < 0};
α← α⊕ {s};
q̄ ← (Bα)−1q.

For a proof of the correctness of this Murty’s least-index method, see [16].
Given Lemma 6, we see that, applied to the LCP derived from Γ , in each iteration
Algorithm 2 makes a single switch in a switchable state with the lowest index.

Proposition 7. Suppose Murty’s least-index method is applied to the LCP aris-
ing from a discounted game Γ . If SMax = {1, . . . , k} (SMin = {1, . . . , k}) for
some k ∈ {1, . . . , n}, then the algorithm corresponds to a single-switch variant
of strategy improvement for Min (Max).

Proof. Suppose SMax = {1, . . . , k}. Then before any states of Min are switched,
we have q1, . . . , qk ≥ 0, i.e., Max is playing a best response. Then, if possible, a
single switch for Min with lowest index is made. ��

Murty’s least-index method gives a new algorithm for binary discounted games,
and hence also for binary mean-payoff and parity games. For a given game,
the method depends on an initial strategy pair, and an ordering of the states.
As described by Proposition 7, for certain orderings of the states the method
corresponds to a single-switch variant of strategy improvement in which the
subroutine of computing best responses is also done via single-switch strategy
improvement; for general orderings however it is a different algorithm.
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5 Further Research

There are several algorithms for P-matrix LCPs that should be investigated in
the context of discounted and simple stochastic games. For example, there is the
Cottle-Dantzig prinicpal pivoting method [3] and Lemke’s algorithm [12], which
are pivoting methods. There are also interior point methods known for P-matrix
LCPs [11].

The reduction from mean-payoff games to discounted games requires “large”
discount factors. Can we design efficient algorithms for smaller discount factors?
For small enough discount factor, the matrix M is close to the identity matrix
and hence hidden-K, so the LCP can be solved as a linear program.

Whether all-switching strategy improvement is a polynomial-time algorithm
is a long-standing open question. An exponential lower bound has been given
for USOs in [18], but so far games that give rise to these example have not been
constructed. What about upper bounds for strategy improvement for one-player
discounted games? Are the inherited (strategy improvement) USOs, which we
know to be acyclic, linearly inducible? Do they at least satisfy the Holt-Klee
condition, which is known to hold for P-matrix LCPs, but is not necessarily
preserved by inheritance [7]?

Acknowledgements. We thank Hugo Gimbert for stimulating us to formulate
and study an LCP for solving discounted games.

References

1. Condon, A.: The complexity of stochastic games. Information and Computation 96,
203–224 (1992)

2. Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory, pp. 51–73. American Mathematical Society (1993)

3. Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical pro-
gramming. Linear Algebra and Its Applications 1, 103–125 (1968)

4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem.
Academic Press (1992)

5. Derman, C.: Finite State Markov Decision Processes. Academic Press (1972)
6. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg

(1997)
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