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Summary. We present a simple algorithm to check for path non-existence for a
robot among static obstacles. Our algorithm is based on adaptive cell decomposition
of C-space. We use two basic queries: C-free query, which checks whether a cell in
C-space lies entirely in the free space, and C-obstacle query, which checks whether
a cell lies entirely inside the C-obstacle space. Our approach reduces the path non-
existence problem to checking whether there exists a path through cells that do
not belong to the C-obstacle space. We describe simple and efficient algorithms to
perform C-free and C-obstacle queries using separation and generalized penetration
distance computations. Our algorithm is simple to implement and we demonstrate
its performance on 3-DOF robots.

1 Introduction

Motion planning is a fundamental problem in robotics. The goal is to compute
a collision-free path between two configurations of a given robot. This prob-
lem is extensively studied in the field for more than three decades. At a broad
level, prior algorithms for motion planning can be classified into roadmap
methods, exact cell decomposition, approximate cell decomposition, potential
field methods and randomized sampling-based methods [14]. In particular,
planning algorithms such as the roadmap methods and exact cell decomposi-
tion are referred to as complete motion planning algorithms. These approaches
can compute a collision-free path if one exists; otherwise they report path non-
existence between the two configurations. However, these methods are known
to have a high theoretical complexity and their practical implementations are
limited to planar robots or convex polytopes or special shapes such as spheres
or ladders.

Practical algorithms for motion planning are based on approximate cell
decomposition, potential field computation or sampling-based algorithms. The
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approximate cell decomposition algorithms subdivide the configuration space
into cells and can be made resolution complete based on a suitable choice
of parameters. However, prior approaches can result in a very high number
of subdivisions and can be overly conservative. Moreover, cell decomposition
requires enumeration of contact surfaces and for a robot with high geometric
complexity, generating and enumerating contact surfaces can be complicated
and time consuming [8, 15].

On the contrary, randomized sampling methods such as probabilistic
roadmap planners (PRMs) are relatively simple to implement and work quite
well in practice [11]. The strength of PRMs lies in their simplicity and they
can be easily applied to general robots with high DOFs. However, PRMs have
two major issues: path non-existence (i.e. no passage) and narrow passages. If
there is no collision-free path, PRM algorithms do not terminate. Moreover, it
is hard to distinguish whether such situations arise due to path non-existence
or due to narrow passages and poor sampling.

Main Results

In this paper, we present a simple cell decomposition based algorithm that is
capable of reporting that there exists no path from initial to goal configura-
tions of a robot. Our resulting algorithm is a complete motion planning algo-
rithm for a rigid robot with translational and rotational DOFs. Furthermore,
our approach also extends to articulated robots. We subdivide the configura-
tion space into empty, full and mixed cells. Unlike prior cell decomposition
algorithms, we subdivide only the region that is critical for path existence.
Furthermore, we use efficient algorithms to classify a given cell as full by
checking whether it lies in C-obstacle space. As a result, our approach gener-
ates fewer cells and subdivisions as compared to prior approaches.

Our algorithm uses two kind of queries: C − free query and C − obstacle

query. Given a region (typically, a rectangloid) in the configuration space
(C-space), these queries check whether a region belongs completely to the
free space or the C-obstacle space. We efficiently perform these queries in
the workspace by computing the Euclidean distance and generalized penetra-

tion depth. Based on these queries, our algorithm subdivides the configuration
space into empty, full and mixed cells, where empty and full cells are clas-
sified based on C-free and C-obstacle queries, respectively. In order to check
for path non-existence, we search through a sequence of adjacent empty or
mixed cells to find the goal configuration. The non-existence of such a se-
quence is a sufficient condition for path non-existence between the start and
the goal configuration. We have implemented our algorithm and we highlight
its performance on 3-DOF robots.

Organization

The rest of the paper is organized as follows. In Section 2, we briefly survey
work related work on motion planning. We give an overview of our algorithm
in Section 3 and present our cell labelling algorithm in Section 4. We describe
our implementation and highlight a few limitations of our approach in Section
5.
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2 Previous Work

Motion planning has been extensively studied in the field for more than three
decades. An excellent survey of this topic is available in [14]. In this section,
we briefly review prior algorithms for exact and approximate motion planning.

2.1 Exact Motion Planning

The complete motion planning algorithms compute a collision-free path if one
exists; otherwise they report path non-existence. These include criticality-
based algorithms such as exact free-space computation for a class of robots
[16, 12, 3, 9], roadmap methods [7], and exact cell decomposition methods
[19]. The exact cell decomposition methods require an exact description of the
configuration space consisting of C-free and C-obstacle regions. The boundary
between C-free and C-obstacle regions is described by a set of contact surfaces,
each surface being the locus of configurations of a robot at which a specific
boundary feature of the robot is in contact with a boundary feature of the
obstacles. The exact cell decomposition approaches partition the C-free space
into a collection of simpler geometric regions and compute a connectivity
graph representing the adjacency between the regions.

In theory, these methods are quite general. However, in practice, it is quite
challenging to implement them and no good implementations are known for
general robots. In particular, computing and enumerating contact surface in
the configuration space becomes hard. For a 6-DOF robot with k polyhedral
boundary features, each contact surface is a 5-dimensional manifold, whose
boundary lies in the 6-dimensional configuration space and their combinatorial
complexity can be as high as O(k2) [8]. As a result, many variants have been
proposed to deal with special cases of motion planning problems; these include
planar objects with 3-DOF, convex polytopes in 3D, polyhedral objects in 3D
with translational DOFs, and specially shaped objects such as ladders, discs,
and balls [14].

2.2 Approximate Cell Decomposition and Sampling-based

Approaches

A number of algorithms based on approximate cell decomposition have been
proposed [5, 8, 26]. These methods partition the C-space into a collection of
cells. They classify the cells into three types: empty cells that lie completely in
the free space, full cells that are completely within C-obstacle space, and mixed

cells that correspond to the rest. Unlike exact cell decomposition, the cells
used in approximate cell decomposition algorithms have a simpler, rectangloid
shape, and the empty cells provide a conservative approximation of the free
space. The planner searches through the empty cells to find a path. Moreover,
approximate cell decomposition methods are resolution complete; i.e., they
can find a path if one exists provided the resolution parameters are selected
small enough [14]. In practice, approximate cell decomposition methods have
been used for low DOF robots.
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The probabilistic roadmap method (PRM) [11] is perhaps the most widely
used path planning algorithm and used for different applications. It is rela-
tively simple to implement and has been successfully applied to high DOF
robots. Since PRM-based algorithms sample the free space randomly, they
may fail to find paths, especially those passing through narrow passages. A
number of extensions have been proposed to improve the sampling in terms of
handling narrow passages [2, 10, 17] or use visibility-based techniques [21]. In
order to choose the best planner among these variants depending on problem
features, a C-space subdivision method called ‘meta planner’ has been intro-
duced [1]. An approach for creating tree-like nodes in probabilistic roadmaps
has been introduced and this approach can be parallelized and applied to high
DOF robots [18]. All these methods are probabilistically complete.

Recently, a deterministic sampling approach called Star-shaped roadmaps
has been proposed [23]. The free space is partitioned into star-shaped regions
and connectors between star-shaped regions are computed for inter-region
connectivity. This algorithm is complete as long as there are no tangential
contacts in the boundary of the free space. Since Star-shaped roadmaps com-
pute global connectivity of free space, the number of regions can increase
exponentially as a function of DOFs. Moreover, this approach also suffers
from the complexity of contact surface enumeration.

2.3 Path Non-Existence

Exact planning approaches such as exact cell decomposition and roadmap
computation can check for path non-existence. However, these methods are
not practical due to their theoretical complexity and implementation difficulty.
In general, a popular planning method such as PRM cannot deterministically
guarantee the path non-existence as it is only probabilistically complete. An
effort has been made to address the issue of path non-existence in PRM [4].
The authors have proposed a disconnection prover, probabilistically showing
that the motion planning problem has no solution. However, this approach
is restricted to a special problem of finding a path through a planar section.
The deterministic sampling approach such as the star-shaped roadmaps [23]
is a complete approach but it may be overly conservative and generate a high
number of samples.

3 Overview

In this section, we give an overview of our algorithm. As compared to prior
cell decomposition approaches, our algorithm has two distinct features. During
cell decomposition, we use a reliable algorithm to label each cell as empty, full

or mixed. Moreover, prior cell decomposition algorithms enumerate the con-
tact surfaces, whereas our cell labelling algorithm only relies on two specific
distance metric computations: separation distance and generalized penetra-
tion depth computation. Moreover, our algorithm builds a connectivity graph

with the empty and mixed cells. We check for path non-existence between
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Fig. 1. Path non-existence between qinit and qgoal. (b): A connectivity graph G is
built. The path L, which connects the cells including qinit and qgoal, is computed
from G. Any mixed cell along L is further subdivided. (c): In the new connectivity
graph, the cell containing qinit and the cell containing qgoal are disconnected and
therefore, there is no collision-free path between qinit and qgoal.

the initial and goal configurations by performing a search in the connectivity

graph.

Algorithm 1 Path non-existence Algorithm
Input: Robot A, obstacle B, initial and goal configurations qinit and qgoal.
Output: Report whether there exists no path from qinit to qgoal.

1: Q := Bounding box of configuration space
2: repeat

3: for each cell C in Q do

4: Label C with full, empty or mixed
5: end for

6: G := Connectivity graph of all full cells
7: Ge := The connectivity subgraph of G for all empty cells
8: Cinit := The cell containing qinit

9: Cgoal := The cell containing qgoal

10: if FindPath(Ge, Cinit, Cgoal) then

11: Report the found path
12: return ‘Exists a path from qinit and qgoal’.
13: else if L := FindPath(G, Cinit, Cgoal) then

14: return ‘Exists no path from qinit and qgoal’.
15: else

16: Q := φ

17: for each mixed cell C along L do

18: Q += Subdivided cells from C

19: end for

20: end if

21: until true
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3.1 Notation

We use the symbol A to denote a robot and B to represent the collection
of all fixed obstacles. Let C denote the configuration space of the robot.
F and O = C\F represent free space and configuration obstacle space (or
C-obstacle), respectively. A cell C in n-dimensional C-space is defined as a
Cartesian product of real intervals:

C = [x′

1
, x′′

1
] × [x′

2
, x′′

2
] · · · × [x′

n, x′′

n].

We denote A(q) as a placement of a robot A at configuration q. Let qinit and
qgoal represent the initial and goal configurations of the robot, respectively.
A line segment in C-space connecting configurations qa and qb is represented
as πqa,qb

.
Let l(t), t ∈ [0, 1] be an arbitrary curve in the C-space. If the configuration

of A is set as l(t), when t changes from 0 to 1, any point p on A traces a
distinct curve in the workspace. We call such an event as moving a robot along
l. Let µ(p, l) be defined as the length of a curve traced by the point p when
A moves along l.

3.2 Cell Decomposition and Labelling

Our approach to check for path non-existence is based on cell decomposition.
The configuration space C is spatially subdivided into cells at successive levels
of the subdivision. The cells are classified as empty or full depending on
whether they lie entirely inside the free space F , or entirely inside the C-
obstacle O. If they are neither empty nor full, they are labelled as mixed.
Fig.’s 1 and 2 illustrate that cells are labelled with different types. We present
our cell labelling algorithm in Section 4.

3.3 Connectivity Graphs

For each level of subdivision, the connectivity graph G is built to represent the
adjacency relationship among empty and mixed cells. Formally, the connectiv-
ity graph [26, 27, 14] associated with a decomposition D of C is an undirected
graph, where:

• The vertices in G are the empty and mixed cells in D.
• Two vertices in G are connected by an edge if and only if the corresponding

cells are adjacent.

Intuitively, G captures the connectivity of both the identified free space, which
is covered by the empty cells, and the ‘uncertain’ region, which is represented
by the mixed cells.

In order to check for path non-existence, our algorithm first locates the
cells Cinit and Cgoal, which contain qinit and qgoal, respectively. Next, the
algorithm searches G to find a path L, a sequence of adjacent empty and
mixed cells connecting Cinit and Cgoal (Fig. 1). If no such path is found, it
is a sufficient criterion to guarantee that there is no collision-free path that
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Fig. 2. Planning a collision-free path from qinit to qgoal. The shaded regions denote
C-obstacle space. In (b), after the first level of subdivision, a connectivity graph G,
which captures the connectivity of the boundary of the free space, is constructed.
(b), (c): The path L is computed from the connectivity graph and is used to guide
which ‘uncertain’ regions have higher priorities in terms of further subdivision. (d):
A collision-free path Le is computed by searching the subgraph Ge for all empty cells.

connects qinit and qgoal. Therefore, our algorithm can safely report that qinit

and qgoal are disconnected.
There are various known heuristics that can prioritize the search on the

connectivity graph G. We use the shortest path algorithm to search for a path
connecting Cinit and Cgoal on G. We also assign each edge a different weight,
where the edge associated with two empty cells has the smallest weight (0 in
our implementation) and the one with two mixed cells has the largest weight.

Our algorithm terminates if a collision-free path is computed (see Fig. 2)
or we can prove path non-existence. For this purpose, a subgraph Ge of G

is constructed. Ge represents the adjacency relation among all empty cells.
Intuitively, Ge represents the connectivity of a part of free space that has
been identified till the current level of subdivision. If there is a path in Ge

connecting Cinit and Cgoal, a collision-free path can be easily extracted and
optimized [26].

3.4 Guided Subdivision

When a path L is reported after searching the connectivity graph G, it is
not clear whether qinit and qgoal are disconnected. If so, we need to further
explore the ‘uncertain’ regions - the union of mixed cells, to acquire more
information about their connectivity. A simple approach is to apply another
level of subdivision to all the mixed cells. However, with each level of the
subdivision, the number of cells increases quickly. Considering the fact that
not all ‘uncertain’ regions contribute to separating qinit from qgoal, we employ
the first-cut algorithm [26] to first subdivide some of the ‘uncertain’ regions.
More specifically, all the mixed cells on L are assigned higher priority for the
next level of subdivision. Our algorithm is recursively applied until it finds a
collision-free path or concludes path non-existence.
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4 Cell Labelling

In this section, we present our algorithm to classify the cells in C using our free

cell query and C-obstacle cell query algorithms. Formally speaking, the free
cell query checks whether a given cell C is empty or the following predicate
Pf is true:

Pf (A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) = ∅,

where A is a robot, B represents obstacles and the interior is the interior of
a set. Similarly, the C-obstacle cell query checks whether a given cell C is full

or the following predicate Po is true:

Po(A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) 6= ∅.

The collision detection algorithms can check whether a specific configuration
lies in F or O. However, we need to check whether a spatial cell lies in F
or O. This query is relatively non-trivial as compared to checking a specific
configuration.

In order to perform cell queries, we place the robot at qc - the center of
the cell and compute the ‘extent’ of the motion that the robot can undergo
as it moves away from qc while being confined within the cell C. To answer
the predicate Pf , we need to compute another metric: the Euclidean distance
between the robot A(qc) and the obstacle B. This metric describes the ‘clear-
ance’ between the robot and the obstacle. If this ‘clearance’ is greater than
the amount of a motion that the robot can make, the robot will not collide
with the obstacle, and the cell C will be declared as a free cell.

In order to perform the C-obstacle cell query, we measure the amount of
inter-penetration between the robot and the obstacle, and compare it with
the extent of the robot’s bounding motion. In the following subsection, we
present a definition and a formulation for the inter-penetration between the
robot and the obstacle.

4.1 Motion Bound Calculation

In this section, we present bounds on the motion of the robot along a line
segment and a cell in C-space.

Bounding motion for a line segment

In order to formulate the bounding motion for a C-space cell, we first deal
with a case when a robot moves along a line segment in C-space. Schwarzer et

al. [20] define the bounding motion λ when a robot moves along a line segment
πqa,qb

as:

λ(A, πqa,qb
) = Upper Bound(µ(p, πqa,qb

) | p ∈ A).
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For 2D planar robots with translational and rotational DOFs, the bounding
motion λ can be computed as a weighted sum of the difference between qa

and qb for translational components x, y and the rotational component φ:

λ(A, πqa,qb
) = |qb.x − qa.x| + |qb.y − qa.y| + Rφ × |qb.φ − qa.φ|,

where the weight Rφ is defined as the maximum Euclidean distance between
every point p on A and the rotation center.

It is not difficult to prove we can achieve a tighter bound:

λ(A, πqa,qb
) =

p

|qb.x − qa.x|2 + |qb.y − qa.y|2 + Rφ × |qb.φ − qa.φ|. (1)

For 3D rigid objects, this equation can be easily extended.

Bounding Motion for a Cell

Now, we define the bounding motion λ of a robot when it is restricted within
a cell C instead of a line segment:

λ(A, C) = max{λ(A, πqa,qb
) | qb ∈ ∂C}, (2)

where qa is the center of C, and qb is any point on ∂C, the boundary of C.
Among all line segments πqa,qb

, the diagonal line segments have the max-
imum difference on each configuration component. According to Eq. (1), the
maximum of the bounding motion λ(A, πqa,qb

) is achieved by any diagonal
line segment of the cell. Therefore, the bounding motion for the cell C is
equivalent to the bounding motion over any diagonal line segment πqa,qc

:

λ(A, C) = λ(A, πqa,qc
), (3)

where qa is the center of the cell and qc is any corner vertex of the cell.

4.2 C-obstacle Cell Query

In order to perform the C-obstacle cell query, we can measure the amount of
inter-penetration between the robot and the obstacle, and compare it with
the amount of the robot’s bounding motion. If the robot only has translation
DOFs, we can use translational PD, PDt, which is defined as the minimum
translational distance to separate the robot from the obstacle:

PDt(A,B) = min({‖ d ‖ |interior(A + d) ∩ B = ∅}).

However, PDt considers only the translation motion to separate the robot
from the obstacle. In fact, we can easily show an example that the robot can
become disjoint from the obstacle with ‘lesser’ amount of motion, when we
also take into account the rotational motion of the robot. Fig. 3 illustrates
such an example. Therefore, PDt is applicable for C-obstacle cell query, when
the robot has only translational DOFs.
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Fig. 3. An example shows that, to separate A from B, the amount of the ‘motion’
when both translation and rotation transformation are allowed (a) is much smaller
than the amount of the ‘motion’ when only translation is allowed (b).
Generalized Penetration Depth

In order to deal with a robot with translational and rotational DOFs, we adopt
the notion of generalized penetration depth PDg proposed by [24], which
takes both translational and rotational motion into account. The generalized
PD can be defined using the notion of the separating path. A separating path
l in C-space is defined as such a curve when a robot moves along l, the robot
can be completely separated from the obstacle.

Given a set L of all possible candidates of separating paths, PDg between
a robot A and an obstacle B is defined as:

PDg(A,B) = min({max({µ(p, l)|p ∈ A})|l ∈ L}). (4)

A useful property related to PDg is as follows:

Lemma 1. For two convex polytopes A and B, we have

PDg(A,B) = PDt(A,B).

The proof of this lemma can be found in [24]. Furthermore, like PDt, PDg

satisfies the property: PDg(A,B) = 0 if and only if A and B are disjoint.
The exact computation of PDg between non-convex objects is difficult

[24]. In our C-obstacle query algorithm, we compute a lower bound on PDg,
which guarantees the correctness of the query. Using Lemma 1, we efficiently
compute a lower bound on PDg by (1) decomposing non-convex models into
convex pieces and (2) for each convex pair, compute the PDt as its PDg,
(3)take the maximum value of PDgs between all pairwise combinations of
convex pieces. Many algorithms are known to compute the PDt between two
convex polytopes [6, 22, 13]. The resulting PDg algorithm is described in
Algorithm 2.

4.3 C-obstacle Query Criterion

We now state a sufficient condition for C-obstacle cell query; i.e., checking
whether A and B overlap at every configuration q within a cell C.

Theorem 1: For a cell C with a center at qa, the predicate Po(A,B, C)
is true if:
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Algorithm 2 Lower bound of PDg computation
Input: The robot A, the obstacle B and the configuration q

Output: The lower bound of PDg between A(q) and B.

1: {During preprocessing}
2: Decompose A and B into m and n convex pieces; i.e., A = ∪Ai and B = ∪Bj .
3: {During run-time query}
4: for each pair of (Ai(q),Bj) do

5: k = (i − 1)n + j

6: if Ai(q) collides with Bj then

7: PD
g

k = PDt((Ai(q),Bj)
8: else

9: PD
g

k = 0
10: end if

11: end for

12: return max(PD
g

k) for all k.

PDg(A(qa),B) > λ(A, C). (5)

Proof. Our goal is to show that Eq. (5) implies that there is no free config-
uration along any line segment πqa,qb

, where qb is any configuration on the
boundary of the cell C. According to the definition of PDg, the maximum
trajectory length for every point on a robot A moving along a possible sep-
arating path should be greater than or equal to PDg(A(qa),B). Moreover,
according to Eq. (2), the trajectory length of the robot when it moves along
πqa,qb

is less than or equal to λ(A, C). Since PDg(A(qa),B) > λ(A, C), the
minimum motion required to separate the robot A from obstacle B is larger
than the maximum motion the robot A could make. Therefore, there is no
free configuration along any line segment πqa,qb

.
Since there is no free configuration along every line segment between qa to

qb, this concludes that every configuration in the cell C lies inside C-obstacle
space, and therefore, the predicate Po(A,B, C) holds. ⊓⊔

We use Theorem 1 to conservatively decide whether a given cell C lies
inside C-obstacle space. The C-obstacle query algorithm includes two parts:

1. Compute a lower bound on PDg for the robot A(qa) and the obstacle B,
which is computed by Algorithm 2.

2. Compute an upper bound on motion, λ(A, C), which can be easily com-
puted by Eq.’s (3) and (1).

Our C-obstacle cell query algorithm is general for both 2D and 3D rigid ob-
jects. We have implemented the query for both types of objects. The main
computational component is to compute PDt between convex objects, which
can be performed efficiently.
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4.4 C-free Query Criterion

Similarly to C-obstacle cell query, in order to check whether a cell is free, we
compare the Euclidean distance between the robot A(qc) and the obstacle B
with the bounding motion of the cell λ(A, C). If the distance is greater than
the bounding motion, then the cell is classified as a free cell.

4.5 Extension to Articulated Robots

Our method to check for path non-existence, based on C-free and C-obstacle
queries, can be extended for articulated robots. The main issues for articulated
robots are modifications in the following algorithms: generalized penetration
depth, Euclidean distance, and bounding motion computations.

The definition of generalized penetration depth PDg in Eq. (4) is also
applicable to articulated robots. In this case, the separating path in C-space
is defined as a curve such that when the articulated robot A moves along it,
A will be completely separated from the obstacle. In order to compute a lower
bound of PDg between A and the obstacles, we regard each link of A as a rigid
robot with translational and rotational DOFs. The maximum of lower bounds
PDg between each link of A and the obstacles yields a lower bound on PDg

between A and the obstacles. In order to compute the Euclidean distance and
bounding motion for the articulated robots, we use the algorithms introduced
by [20].

5 Experimental results

In this section, we describe the implementation of our algorithm and high-
light its performance on several motion planning scenarios. All timings are
measured on a 2.8 GHz Pentium IV PC with 2G RAM. Our implementation
is not optimized.

We illustrate the running process of our algorithm for the ‘two-gear’ exam-
ple in Fig. 4. In order to find whether the gear-shaped robot can pass through
the passage among star-shaped obstacles, the algorithm builds the connectiv-
ity graph G for empty and mixed cells as well as a subgraph of G for empty

cells. The cell decomposition, induced by guiding path from the connectiv-
ity graph, is iterated by 40 times until the initial and goal configurations are
found to be separated by full cells. The entire process in our algorithm takes
3.356s.

We have applied our algorithm on more complex examples of: ‘five-gear’,
‘five-gear with narrow passage’, ‘2D puzzle’ and ‘2D puzzle with narrow pas-
sage’. Tab. 1 highlights the performance of our algorithm on these examples.
According to Tab. 1, our approach can report the path non-existence of these
examples within 10s. In particular, for the ‘five-gear’ example, the total tim-
ing is 6.317s, while the C-obstacle and C-free queries takes about 1.162s and
1.376s, respectively.

Tab. 2 lists various statistic information of our algorithm on different ex-
amples. For the ‘five-gear’ example, the c-space subdivisions based on the
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two-gear five-gear five-gear,narrow puzzle narrow puzzle

Total timing(s) 3.356 6.317 85.163 1.555 16.051

C-free Query(s) 0.858 1.376 6.532 0.675 4.556

C-obstacle Query(s) 0.827 1.162 4.675 0.466 2.609

G searching(s) 0.389 1.409 30.687 0.140 3.184

Ge searching(s) 0.077 0.332 7.169 0.044 0.824

Subdivision,Overhead(s) 1.205 2.038 36.100 0.530 4.878

Table 1. Timing of our method: Our approach can report the path non-existence
of the examples in less than 10s.

guiding path are iterated for 67 time. The final cell-decomposition includes
168008 cells, including 15324 empty cells, 74713 full cells and 77971 mixed

cells.

two-gear five-gear narrow five-gear puzzle narrow puzzle

# of iterations 41 67 237 30 93

# of C-free queries 32329 44649 192009 14038 92409

# of C-obstacle queries 30069 41177 176685 16297 85014

# of cells 28288 39068 168008 14260 80858

# of free cells 2260 3472 15324 2259 7395

# of c-obstacle cells 12255 16172 74713 4633 34046

# of mixed cells 13773 19424 77971 7368 39417

Table 2. Statistical information of our algorithm.

Since our algorithm is built on cell decomposition, the algorithm is ap-
plicable to finding a collision-free paths even when a narrow passage exists.
Finding a collision-free path through a narrow passage has been considered as
a difficult task for probabilistic methods, such as PRM. Fig. 7 shows such an
example, and Tab. 1 highlights the performance of our algorithm. Also, for this
example, our method can achieve about 1.3 time speedup over a deterministic
sampling approach, the star-shaped roadmap [25].

5.1 Comparison

We compare our algorithm for path non-existence with star-shaped roadmap
algorithm, especially because our approach shares similarities with the star-
shaped roadmap algorithm. Their method partitions the free space into star-
shaped regions such that a single point called the guard can see every point in
the star-shaped region. In our approach, the empty cells are a special case of
star-shaped regions where the centroid of our cell can be always considered as
a guard. Moreover, our method can label empty cells much more simply than
the star-shaped roadmap, as the star-shaped roadmap is based on expensive,
contact surfaces enumeration.
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Fig. 4. The snapshots of the process of our algorithm. (a) The goal of this example
is to move a gear-shaped robot from A to A′ through the two gear-shaped obstacles B1

and B2. It is uncertain whether there is a path for this problem, even though the robot
at Am is collision-free. (b) shows the graph Ge built from empty cells, and the region
of full cells (shaded volumes). Since there exists no path in this graph, we use the
guiding path L to indicate the next level of subdivision. (c, d) After the subdivision
is recursively applied, the algorithm finally finds that indeed no path exists. This is
because the initial and goal configurations are separated by full cells (shaded volumes).
(d) also highlights that, to find path non-existence for this example, it is unnecessary
to subdivide the entire configuration space.

Fig. 5. ‘Five-gear’ example. (Left) The goal of this example is to move a gear-
shaped robot from A to A′ through the five gears B1, ... and B5. (Right) There
does not exist a collision-free path for this example. This is because the initial and
goal configurations are separated by full cells, which correspond to shaded volumes.
The right figure also highlights that to find path non-existence for this example, it is
unnecessary to subdivide the entire configuration space.

Finally, their method needs to explicitly capture the intra-connectivity
between two adjacent regions, which can be computed using a similar way
to the guard computation, but in one dimension less. In our method, the
intra-connectivity between two adjacent empty cells is implicit and an edge
connecting the centroids of two adjacent cells can represent such a connectiv-
ity. All these simplicities make our approach extend for a high-DOF problem.
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Fig. 6. ‘2D puzzle’ example. (a) Our algorithm can report the path non-existence
for the problem of A reaching A′ in 1.855s. (b) is a modified version of (a) with the
obstacle B1 enlarged. Our algorithm can find a collision-free path through a narrow
passage among the obstacles. The intermediate configurations of the robot along the
collision free path, such as Am, are also displayed.

Fig. 7. Finding a narrow passage for the modified ‘five-gear’ example from Fig. 5.
(Left) this planning problem is almost the same as Fig. 5 except that the obstacle B5

is slightly modified as well as translated. (Right) our method can find a path under
the existence of narrow passages, which are challenging for probabilistic methods,
such as PRM. The collision-free path, passing through the narrow passage in free
space, is derived from empty cells.

5.2 Analysis

The computational complexity of our C-obstacle query is asymptotically tightly

bound by the general penetration depth PDg computation. The computa-
tional complexity of the lower bound PDg used by our algorithm is deter-
mined by the number of convex pieces decomposed from the robot A and
the obstacle B, and the geometric complexity of these convex pieces, which
is determined by the total number of features of the resulting convex pieces.
Let m, n as the number of the convex pieces of A and B, respectively. Let the
geometric complexity of the convex pieces of A and B be a and b, respectively.
Then, the average numbers of features in each piece of A and B are a

m
and

b
n
, respectively. Using computational complexity of translational PD, we can

derive that the computational complexity of PDg for 2D rigid objects A and
B is O(an + bm), and for 3D rigid objects is O(ab).
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Our algorithm for checking path non-existence performs an adaptive sub-
division of the configuration space. At each step, the number of subdivisions
depends on the number of the mixed cells indicated by the guiding path L.

5.3 Limitations

Our approach has a few limitations. Our C-free and C-obstacle queries are
conservative, which stems from the conservativeness of PDg and bounding
motion computations. Secondly, our algorithm assumes that are no tangential
contacts in the boundary of the free space, otherwise, our path non-existence
algorithm may not terminate. As a result, our algorithm can not deal with
compliant motion planning, where a robot cannot pass through obstacles when
the robot is not allowed to touch them. The complexity of our adaptive sub-
division algorithm varies as a function of the dimension of the configuration
space. Our current implementation is limited to 3-DOF robots.

6 Conclusion and Future work

In this paper, we present an simple approach to check for path non-existence
for low DOF robots. Our approach uses two basic queries to efficiently check
whether a cell in c-space lies entirely inside free space (C-free cell query) or in-
side C-obstacle space (C-obstacle cell query). We describe simple and efficient
algorithms to perform C-free and C-Obstacle queries using separation and
generalized penetration distance computations. Our approach is much easier
and simpler than prior methods based on cell decomposition. This simplicity
enables us to extend our approach to high-DOF motion planning problems.

There are several directions to pursue for future work. We will like to
extend our approach for a higher DOF robots. We are also interested in com-
bining our algorithm with probabilistic sampling algorithms design a hybrid
planner, which is not only able to find a collision-free path, but can also handle
narrow passages and check for path non-existence.
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