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Abstract This paper contains a simple and different pointview from the literature,
in the best of my knowledge, to generalize well known results by Kadec (in R) and
Duffin and Eachus (inC), concerning Riesz bases. Main goal of the present work is to
overcome, at least partially, the limitations exhibited in the paper of Duffin and Eachus
and in the book of Young for the Riesz bases. A consequence of the main theorem and
its corollary is that the constant log 2

π
can be replaced by 1/4 (for complex λn).
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1 Introduction

It is known that exponential Riesz bases {eiλn t } (with λn ∈ R) are stable in the sense
that a small perturbation of a Riesz basis produces a Riesz basis; it is proved by
Paley and Wiener ([5,9]). The proof of the Paley–Wiener theorem does not provide
an explicit stability bound. The celebrated theorem by M. I. Kadec shows that 1/4 is
the stability bound for the exponential basis on L2[−π, π ].

The proof of theorem, as reported in theYoung’s textbook [9], applies for sequences
of real numbers. Even earlier, however, Duffin and Eachus [2] shows that the Paley–
Wiener criterion is satisfied whenever the sequences are complex and log 2

π
is a stability
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bound. For Young (page 38): “Whether the constant log 2
π

can be replaced by 1/4 (for
complex λn) remains an unsolved problem.” With Theorem C and Theorem D on [2]
they consider sets which are on the borderline of being near a given orthonormal set,
while the last part of their paper gives a simple formula for constructing sets near a
given orthonormal set. Afterward, Duffin and Eachus apply this result (Theorem D)
to the sequence of functions {eiλn x }, where {λn}, n = 0,±1,±2, . . . is a sequence
of complex constants satisfying |λn − n| ≤ L for some constant L. The Duffin and
Eachus’s approach is deeper and more general than one of Young; in fact their work
speaks of orthonormal sets and not of basis. In their paper can be read the following:
“The above results on the non-harmonic Fourier series are an extension of previous
knowledge in two respects. In the first place, Paley and Wiener were forced to assume
that {λn} was a real sequence. Secondly, they obtained the value 1/π2 where we have
ln 2/π . The best value for L is not known; however a theorem of Levinson gives an
upper limit of 1/4”.

Theorem 1 seeks to overcome the limitations exhibited in the paper of Duffin and
Eachus and in the book of Young for the Riesz basis, introducing a limitation on the
imaginary part of λn . A consequence of Theorem1 and its corollary, is that the constant
log 2
π

can be replaced by 1/4 (for complex λn).
Lastly, an example that shows 1/4 cannot be replaced by a larger constant for

complex case, are given in the appendix. For the latest results on generalizations and
extensions of Kadec’s theorem see: [1,3,6].

2 A class of sequences that improves the estimation of Duffin and Eachus

Theorem 1 If {λ̄n} = {λn + iμn} is a sequence of complex numbers for which

|λn − n| � L <
1

4
, n = 0,±1,±2, . . . (1)

and

|μn| � τ(L) <
1

π
ln

(
2

2 − cosπL + sin πL

)
, n = 0,±1,±2, . . . (2)

then {ei λ̄n t } satisfies the Paley–Wiener criterion and so forms a Riesz basis for
L2[−π, π ].
Proof It is to be shown that

∥∥∥∑+∞
n cn

(
eint − ei λ̄n t

)∥∥∥ < 1 whenever
∑

n |cn|2 � 1.

Write

eint − ei λ̄n t = eint
(
1 − eiδn t e−μn t

)

= eint
[
1 − e−μn t + e−μn t

(
1 − eiδn t

)]
(3)

where δn = λn − n. This time again, the trick is to expand the function 1 − eiδt

(−π ≤ t ≤ π ) in a Fourier series relative to the complete orthonormal system{
1, cos nt, sin

(
n − 1

2

)
t
}∞
n=1 and then exploit the fact that |λn − n| is not too large.
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Then the expansion of 1 − eiδt is the same as the previous theorem. Let {cn} be an
arbitrary finite sequence of scalars such that

∑ |cn|2 ≤ 1. By interchanging the order
of summation, using triangle inequality and the notation introduced in the Kadec’s
theorem on [9], it shows

∥∥∥∥∥
+∞∑
n

cne
int

[
1 − e−μn t + e−μn t

(
1 − eiδn t

)]∥∥∥∥∥ (4)

≤ sup
n

∣∣1 − e−μn t
∣∣
∥∥∥∥∥

+∞∑
n

cne
int

∥∥∥∥∥ + sup
n

(
e−μn t

)
(A + B + C) (5)

From the assumptions of the theorem it is easily seen that supn
(
e−μn t

) ≤ eτπ and

supn

∣∣∣1 − e−μn t
∣∣∣ ≤ eτπ − 1 where τ = τ(L). Now by some estimates on fraction

expansions proved in [3], it has that

∥∥∥∥∥
+∞∑
n

cn
(
eint − ei λ̄n t

)∥∥∥∥∥ ≤ e|M| − 1 + e|M| (1 − cosπL + sin πL) =: λ (6)

It is observed that with arbitrary L < 1/4 and

τ(L) <
1

π
ln

(
2

2 − cosπL + sin πL

)
(7)

is obtained λ < 1. ��
The following result shows that, in the hypotheses of the Theorem 1, it has {ei λ̄n t }

satisfies the Paley–Wiener criterion for |λ̄n − n| < 1/4 even when {λ̄n} is a complex
sequence.

Corollary 1 For each L < 1
4 , one has

(i) |μn| ≤ ln 2

π
; (i i) |λ̄n − n| ≤ 1

4
(8)

Proof The proof of first relation (i) is trivial and is left to the reader. Noting that

|λ̄n − n| ≤ |λn − n| + |μn| ≤ L + 1

π
ln

(
2

2 − cosπL + sin πL

)
(9)

relation (ii) is verified if x̄ − ln
(
1 + sin x̄−cos x̄

2

) ≤ π
4 with x̄ = πL . Let us consider

the function f (x̄), defined as follow:

f (x̄) = x̄ − ln

(
1 + sin x̄ − cos x̄

2

)
(10)
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It comes to prove that the function f (x̄) − x̄ := g(x̄) is convex. Rewrite the

function g(x̄) using the relationship (sin x̄ − cos x̄)/2 =
√
2
2 sin

(
x̄ − π

4

)
and so

g(x) = − ln
(
1 +

√
2
2 sin x

)
for x = x̄ − π/4. Bearing in mind that a func-

tion is convex if and only if it is midpoint convex, it must be demonstrated that
2g

( x+y
2

) ≤ g(x) + g(y), and hence

− 2 ln

(
1 +

√
2

2
sin

x + y

2

)
≤ − ln

(
1 +

√
2

2
sin x

)
− ln

(
1 +

√
2

2
sin y

)

(11)

where y = ȳ − π/4. From properties of logarithms and by applying Prosthaphaeresis
formulas, Werner formulas, and half-angle formulae, it has

√
2 sin

(
− x + y

2

)
≤ cos2

x − y

4
(12)

Rewriting − x+y
2 = π

4 − x̄−ȳ
2 − ȳ ≤ π

4 − t with t = x̄−ȳ
2 ∈ [0, π/4], it becomes√

2 sin
(

π
4 − t

) ≤ cos2 t
2 , that is verified over [0, π/4]. Then f (x) is convex.Denoting

with P1(0, ln 2), P2(π/4, π/4) two points belonging to graphic of f (x) and from an
obvious properties of convex functions: f (x) ≤ π−ln 16

π
x + ln 2 (the straight line for

P1, P2), by the right side term that is less than π
4 if x ≤ π

4 , it is concluded the claim.

3 Conclusions

Theorem 1 and Corollary 1 responding to the outstanding questions of Duffin, Eachus
and Young, essentially because this paper shows that the constant log 2

π
can be replaced

by1/4, also for the complex case.Moreover, fromCorollary 1, it has {ei λ̄n t } satisfies the
Paley–Wiener criterion for |λ̄n−n| < 1/4 evenwhen {λ̄n} is a complex sequence. Two
lemmas present in appendix (an extension to complex case of result present on [9])
prove that Kadec’s 1/4-theorem is “best possible”: the system {ei λ̄n t } constitutes a
basis for L2[−π, π ] whenever every λ̄n is complex and |λn − n| � L , |μn| � τ(L)

but not constitute a basis when L = 1/4. Equally interesting is the fact that τ(L) is
not specified in the proofs of Lemmas 1 and 2 and, into this proofs, it is not necessary
that it assumes the logarithmic expression (2).

In Duffin and Eachus [2] one reads: “It is a curious parallelism that log 2/π and
1/4 are in the same ratio as the limits of Takenaka and Schoenberg in a somewhat
similar unsolved problem”. See: [7,8]. In [8] is reported a particular case of one of
Takenaka’s theorems [7]: “If every derivative of an integral function f (z) has a zero
inside or on the unit circle and if lim supr→∞

logM(r)
r < log 2 then f (z) is a costant”.

[M(r) is the maximum modulus in |z| ≤ r of function]. The author write that this
condition is probably not “best possible”: sin π

4 z − cos π
4 z shows that log 2 cannot

be replaced by any number larger than π/4, and this may well be the true value.
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A possible development of the work would be compare proof of Kadec’s-1/4 theorem
(complex case) with question in [8].
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Appendix: L = 1/4 as best possible choice

The two lemmas below follows by Young’s book just adapting to complex case in this
paper. For the theory of entire function and the proof of Lemma 1, see respectively on
the chapter 2 and on pages and 103–105 of Young’s book.

Lemma 1 If λn = n + ε + iτ(ε) (n = 1, 2, 3 . . .), where ε > −1, and

H(z) =
∏
n

(
1 − z2

λ2n

)
(13)

then

H ′(λn) = (−1)nΓ 2(1 + ε + iτ(ε))
Γ (n)

Γ (n + 1 + 2ε + 2iτ(ε))
(14)

Now, using the thesis of this lemma, is shown the next result.

Lemma 2 If

λn =

⎧⎪⎨
⎪⎩
n + ε + iτ(ε), n > 0

0, n = 0

n − ε − iτ(ε), n < 0

(15)

then, for ε ≥ 1/4, the system {eiλn t } is not a Riesz basis for L2[−π, π ].
Proof Suppose it were. Then the system of reproducing functions {Kn(z)}, Kn(z) =
sin π(z −λn)/π(z −λn), would be a Riesz basis for Paley–Wiener space P , since the
Fourier transform is an isometry. Put

Fn(z) = F(z)

F ′(λn)(z − λn)
(16)

where F(z) = ∏
n

(
1 − z2/λ2n

)
. Then Fn(λk) = δnk , and Fn belongs to P.Accordingly,

{Fn(z)} is biorthogonal to {Kn(z)} in P and so must also be a Riesz basis for P. In
particular, the series ∑

n

cn
F(z)

F ′(λn)(z − λn)
(17)
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must converge in the topology of P, and hence pointwise, whenever {cn(z)} ∈ L2. By
the converse to Hölder’s inequality, this can happen only if

∑
n �=0

∣∣∣∣ 1

λn F ′(λn)

∣∣∣∣
2

< ∞. (18)

But by Lemma (1),

F ′(λn) = (−1)nΓ 2(1 + ε + iτ(ε))
Γ (n)

Γ (n + 1 + 2ε + 2iτ(ε))
(19)

and Stirling’s formula,
Γ (n)

Γ (n + a)
∼ e−a ln n, (20)

shows that ∑
n �=0

∣∣∣∣ 1

λn F ′(λn)

∣∣∣∣
2

= ∞ (21)

for ε ≥ 1/4 and the contradiction proves the lemma.
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