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A SIMPLE POLYNOMIAL ALGORITHM FOR THE
LONGEST PATH PROBLEM ON COCOMPARABILITY GRAPHS∗

GEORGE B. MERTZIOS† AND DEREK G. CORNEIL‡

Abstract. Given a graph G, the longest path problem asks to compute a simple path of G
with the largest number of vertices. This problem is the most natural optimization version of the
well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs.
However, in contrast to the Hamiltonian path problem, there are only a few restricted graph fam-
ilies, such as trees, and some small graph classes where polynomial algorithms for the longest path
problem have been found. Recently it has been shown that this problem can be solved in polyno-
mial time on interval graphs by applying dynamic programming to a characterizing ordering of the
vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica,
61 (2011), pp. 320–341], thus answering an open question. In the present paper, we provide the
first polynomial algorithm for the longest path problem on a much greater class, namely on co-
comparability graphs. Our algorithm uses a similar, but essentially simpler, dynamic programming
approach, which is applied to a lexicographic depth first search (LDFS) characterizing ordering of
the vertices of a cocomparability graph. Therefore, our results provide evidence that this general
dynamic programming approach can be used in a more general setting, leading to efficient algorithms
for the longest path problem on greater classes of graphs. LDFS has recently been introduced in
[D. G. Corneil and R. M. Krueger, SIAM J. Discrete Math., 22 (2008), pp. 1259–1276]. Since then,
a similar phenomenon of extending an existing interval graph algorithm to cocomparability graphs
by using an LDFS preprocessing step has also been observed for the minimum path cover problem
[D. G. Corneil, B. Dalton, and M. Habib, submitted]. Therefore, more interestingly, our results
also provide evidence that cocomparability graphs present an interval graph structure when they are
considered using an LDFS ordering of their vertices, which may lead to other new and more efficient
combinatorial algorithms.

Key words. cocomparability graphs, longest path problem, lexicographic depth first search,
dynamic programming, polynomial algorithm
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1. Introduction. The Hamiltonian path problem, i.e., the problem of deciding
whether a graph G contains a simple path that visits each vertex of G exactly once, is
one of the most well-known NP-complete problems, with numerous applications. The
most natural optimization version of this problem is the longest path problem, that
is, to compute a simple path of maximum length or, equivalently, to find a maximum
induced subgraph which is Hamiltonian. Even if a graph itself is not Hamiltonian, it
makes sense in several applications to search for a longest path. However, comput-
ing a longest path seems to be more difficult than deciding whether or not a graph
admits a Hamiltonian path. Indeed, it has been proved that even if a graph is Hamil-
tonian, the problem of computing a path of length n− nε for any ε < 1 is NP-hard,
where n is the number of vertices of the input graph [19]. Moreover, there is no poly-
nomial time constant-factor approximation algorithm for the longest path problem

∗Received by the editors April 27, 2010; accepted for publication (in revised form) April 5, 2012;
published electronically July 12, 2012.

http://www.siam.org/journals/sidma/26-3/79352.html
†School of Engineering and Computing Sciences, Durham University, DH1 3LH Durham, UK

(george.mertzios@durham.ac.uk).
‡Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada

(dgc@cs.utoronto.ca). This author’s research was supported by the Natural Sciences and Engineering
Research Council of Canada.

940



THE LONGEST PATH PROBLEM ON COCOMPARABILITY GRAPHS 941

unless P=NP [19].
The Hamiltonian path problem (as well as many of its variants, e.g., the Hamil-

tonian cycle problem) is known to be NP-complete on general graphs [14]; further-
more, it remains NP-complete even when the input is restricted to some small classes
of graphs, such as split graphs [15], chordal bipartite graphs, split strongly chordal
graphs [24], directed path graphs [25], circle graphs [10], planar graphs [14], and grid
graphs [18]. On other restricted families of graphs, however, considerable success
has been achieved in finding polynomial time algorithms for the Hamiltonian path
problem. In particular, this problem can be solved polynomially on proper interval
graphs [2], interval graphs [1, 20], and cocomparability graphs [12] (see [3, 15] for
definitions of these and other graph classes mentioned in this paper).

In contrast to the Hamiltonian path problem, there are only a few known polyno-
mial algorithms for the longest path problem, and, until recently, these were restricted
to trees [4], weighted trees and block graphs [31], bipartite permutation graphs [32],
and ptolemaic graphs [30]. In [31] the question was raised whether the problem could
be solved in polynomial time for a much larger class, namely interval graphs. Very
recently such an algorithm has been discovered [16]. This algorithm applies dynamic
programming to the vertex ordering of the given interval graph that is obtained after
sorting the intervals according to their right endpoints. Another natural generaliza-
tion of the Hamiltonian path problem is the minimum path cover problem, where the
goal is to cover each vertex of the graph exactly once using the smallest number of
simple paths. Clearly a solution to either the longest path or the minimum path cover
problems immediately yields a solution to the Hamiltonian path problem. Unlike the
situation for the longest path problem, polynomial time algorithms for the Hamilto-
nian cycle [20], Hamiltonian path, and minimum path cover [1] problems on interval
graphs have been available since the 1980s and early 1990s.

Cocomparability graphs (i.e., graphs whose complements can be transitively ori-
ented) strictly contain interval and permutation graphs [3] and have also been studied
with respect to various Hamiltonian problems. In particular, it is well known that
the Hamiltonian path and Hamiltonian cycle problems [13], as well as the minimum
path cover problem (referred to as the Hamiltonian path completion problem [12]),
are polynomially solvable on cocomparability graphs. On the other hand, the com-
plexity status of the longest path problem on cocomparability graphs—and even on
the smaller class of permutation graphs—has long been open.

Until recently, the only polynomial algorithms for the Hamiltonian path, Hamil-
tonian cycle [13], and minimum path cover [12] problems on cocomparability graphs
exploited the relationship between these problems and the bump number of a poset
representing the transitive orientation of the complement graph. Furthermore, it had
long been an open question whether there are algorithms for these problems that,
as with the interval graph algorithms, are based on the structure of cocomparabil-
ity graphs. This question has recently been answered by the algorithm in [6], which
solves the minimum path cover problem on cocomparability graphs by building off the
corresponding algorithm for interval graphs [1] and using a preprocessing step based
on the recently discovered lexicographic depth first search (LDFS) [8].

In the present paper we provide the first polynomial algorithm for the longest
path problem on cocomparability graphs (and thus also on permutation graphs). Our
algorithm develops a similar, but much simpler, dynamic programming approach to
that of [16], which is applied to an LDFS characterizing ordering of the vertices of
a cocomparability graph (see [6, 8]). As a byproduct, this algorithm also solves the
longest path problem on interval graphs in a much simpler way than that of [16] (the
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algorithm of [16] consists of three phases, during which it introduces several dummy
vertices to construct a second auxiliary graph). Furthermore, these results provide
evidence that this general dynamic programming approach can be used in a more
general setting, providing efficient algorithms for the longest path problem on greater
classes of graphs. As already mentioned above, a similar phenomenon of extending
an existing interval graph algorithm to cocomparability graphs by using an LDFS
preprocessing step has also been observed for the minimum path cover problem [6].
Therefore, our results also provide evidence that cocomparability graphs present an
interval graph structure when they are considered using an LDFS ordering of their
vertices, which may lead to other new and more efficient combinatorial algorithms.

Interestingly, very recently it came to our attention that, independently of our
present work, another polynomial algorithm for the longest path problem on cocom-
parability graphs appeared in [17]. The algorithm of [17] is much more complicated
than ours; it generalizes the dynamic programming approach of [16] from an interval
representation to the Hasse diagram of the poset defined by the complement of a
cocomparability graph. Furthermore, the algorithm of [17] has running time O(n7)
on a cocomparability graph with n vertices, in contrast to our algorithm, which has
running time O(n4). This fact illustrates the power of the LDFS vertex ordering of
cocomparability graphs as a tool for designing simpler and more efficient algorithms.

Organization of the paper. In section 2 we provide the necessary preliminaries
and notation, including vertex ordering characterizations of interval graphs, cocom-
parability graphs, and LDFS orderings. In section 3 we study the effect of an LDFS
preprocessing step on the vertex ordering characterization of cocomparability graphs.
This section provides much of the structural foundation for our longest path algorithm
that is presented in section 4. Finally, we discuss the presented results and further
research in section 5.

2. Preliminaries and notation. In this article we follow standard notation
and terminology; see, for instance, [15]. We consider finite, undirected, and simple
graphs with no loops. Given a graph G = (V,E), we denote by n the cardinality of
V . An edge between vertices u and v is denoted by uv, and in this case vertices u and
v are said to be adjacent. G denotes the complement of G, i.e., G = (V,E), where
uv ∈ E if and only if uv /∈ E. Let S ⊆ V be a set of vertices of G. Then, the subgraph
of G induced by S is denoted by G[S], i.e., G[S] = (S, F ), where for any two vertices
u, v ∈ S, uv ∈ F if and only if uv ∈ E. The set N(v) = {u ∈ V | uv ∈ E} is called
the neighborhood of the vertex v ∈ V in G.

A simple path P of a graph G is a sequence of distinct vertices v1, v2, . . . , vk such
that vivi+1 ∈ E, for each i ∈ {1, 2, . . . , k − 1}, and is denoted by P = (v1, v2, . . . , vk);
throughout the paper all paths considered are simple. Furthermore, v1 (resp., vk) is
called the first (resp., last) vertex of P . We denote by V (P ) the set of vertices of
the path P and define the length |P | of P to be the number of vertices in P , i.e.,
|P | = |V (P )|. Additionally, if P = (v1, v2, . . . , vi−1, vi, . . . , vj , vj+1, . . . , vk) is a path
of a graph and P0 = (vi, . . . , vj) is a subpath of P , we sometimes equivalently use the
notation P = (v1, v2, . . . , vi−1, P0, vj+1, . . . , vk).

Recall that interval graphs are the intersection graphs of closed intervals on the
real line. Furthermore, a comparability graph is a graph whose edges can be tran-
sitively oriented (i.e., if x → y and y → z, then x → z); a cocomparability graph
G is a graph whose complement G is a comparability graph. Permutation graphs
are exactly the intersection of comparability and cocomparability graphs. Moreover,
cocomparability graphs strictly contain interval graphs and permutation graphs, as
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well as other families of graphs such as trapezoid graphs and cographs [3].

2.1. Vertex ordering characterizations. We now state vertex ordering char-
acterizations of interval graphs, of cocomparability graphs, and of any ordering of the
vertex set V that can result from an LDFS search of an arbitrary graph G = (V,E).
The following ordering characterizes interval graphs and has appeared in a number of
papers, including [26].

Lemma 1 (see [26]). G = (V,E) is an interval graph if and only if there is an
ordering (called an I-ordering) of V such that for all x < y < z, if xz ∈ E, then also
xy ∈ E.

Note that the characterization of Lemma 1 can also result after sorting the inter-
vals of an interval representation of G according to their left endpoints. Furthermore,
note that some papers on interval graphs (see, for instance, [1, 11, 16]) used the equiv-
alent “reverse” vertex ordering, which results after sorting the intervals of an interval
representation according to their right endpoints.

A similar characterization of unit interval graphs (also known as proper interval
graphs) requires that if xz ∈ E, then both xy, yz ∈ E. It was observed in [21] that
the following generalization of the interval order characterization captures cocompa-
rability graphs.

Definition 1 (see [21]). Let G = (V,E) be a graph. An ordering of the vertices
V is an umbrella-free ordering (or a CO-ordering) if for all x < y < z, xz ∈ E
implies that xy ∈ E or yz ∈ E (or both).

Lemma 2 (see [21]). G = (V,E) is a cocomparability graph if and only if there
exists an umbrella-free ordering of V .

Observation 1. An I-ordering of an interval graph G is also an umbrella-free
ordering.

Note that, although there exists a linear time algorithm to find an umbrella-free
ordering of a given cocomparability graph [23], the fastest known algorithm to verify
this property requires the same time as for Boolean matrix multiplication (see [29] for
a discussion of this issue). Furthermore, if P is a poset with cocomparability graph G,
then any linear extension of P is an umbrella-free ordering of the vertices of G. In the
following, we present the notion of the recently introduced LDFS ordering (see [8]).

Definition 2. Let G = (V,E) be a graph and σ be any ordering of V . Let (a, b, c)
be a triple of vertices of G such that a <σ b <σ c, ac ∈ E, and ab /∈ E. If there exists
a vertex d ∈ V such that a <σ d <σ b, db ∈ E, and dc /∈ E, then (a, b, c) is a good
triple; otherwise it is a bad triple. Furthermore, if the triple (a, b, c) is good, then
vertex d is called a d-vertex of this triple.

Definition 3. Let G = (V,E) be a graph. An ordering σ of V is an LDFS
ordering if and only if σ has no bad triple.

An example of a good triple (a, b, c) and a d-vertex of it is depicted in Figure 1.
In this example, the edges ac and db are indicated with solid lines, while the nonedges
ab and dc are indicated with dashed lines. Furthermore, the d-vertex is drawn gray
for better visibility.

2.2. Algorithms. In the following we present the generic LDFS algorithm (Al-
gorithm 1) that starts at a distinguished vertex u. This algorithm has recently been
introduced in [8]. It looks superficially similar to the well-known and well-studied
lexicographic breadth first search (LBFS) [27] (for a survey, see [5]); nevertheless, it
appears that vertex orderings computed by the LDFS and by the LBFS have inher-
ent structural differences. Briefly, the generic LDFS algorithm proceeds as follows.
Initially, the label ε is assigned to all vertices. Then, iteratively, an unvisited vertex v
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a d b c

Fig. 1. A good triple (a, b, c) and a d-vertex of this triple in the vertex ordering σ = (a, d, b, c).

with lexicographically maximum label is chosen and removed from the graph. If v is
chosen as the ith vertex, then all of its neighbors that are still unnumbered have their
label updated by having the digit i prepended to their label. The digits in the label
of any vertex are always in decreasing order, which ensures that all neighbors of the
last chosen vertex have a lexicographically greater label than their nonneighbors. By
extension, this argument ensures that all vertices are visited in a depth-first search
order. When applied to a graph with n vertices and m edges, Algorithm 1 can be
implemented to run in O(min{n2, n+m logn}) time [22]; however, the current fastest
implementation runs in O(min{n2, n+m log logn}) [28].

Algorithm 1. LDFS(G, u) [8].

Input: A connected graph G = (V,E) with n vertices and a distinguished vertex u
of G

Output: An LDFS ordering σu of the vertices of G

1: Assign the label ε to all vertices
2: label(u)← {0}
3: for i = 1 to n do
4: Pick an unnumbered vertex v with the lexicographically largest label
5: σu(i)← v {assign to v the number i}
6: for each unnumbered vertex w ∈ N(v) do
7: prepend i to label(w)

8: return the ordering σu = (σu(1), σu(2), . . . , σu(n))

The execution of the LDFS algorithm is captured in the example shown in Fig-
ure 2. In this example, suppose that the LDFS algorithm starts at vertex e. Suppose
that LDFS chooses vertex d next. Now, ordinary DFS could choose either a or c
next, but LDFS has to choose c, since it has a greater label (c is a neighbor of the
previously visited vertex e). The vertex following c in the LDFS ordering σe must
be a rather than b, since a has a greater label than b (a is a neighbor of vertex d,
which has been visited more recently than b’s neighbor e). The LDFS then backtracks
to b, completing the LDFS ordering as σe = (e, d, c, a, b).

It is important here to connect the vertex ordering σu that is returned by the
LDFS algorithm (i.e., Algorithm 1) with the notion of an LDFS ordering, as defined
in Definition 3. The following theorem shows that a vertex ordering σ of an arbitrary
graph G can be returned by an application of the LDFS algorithm to G (starting at
some vertex u of G) if and only if σ is an LDFS ordering.

Theorem 1 (see [8]). For an arbitrary graph G = (V,E), an ordering σ of V
can be returned by an application of Algorithm 1 to G if and only if σ is an LDFS
ordering.

In the generic LDFS, there could be some choices to be made at line 4 of Algo-
rithm 1; in particular, at some iteration there may be a set S of vertices that have the



THE LONGEST PATH PROBLEM ON COCOMPARABILITY GRAPHS 945

a

b
c

d

e

Fig. 2. Illustrating LDFS.

same label and the algorithm must choose one vertex from S. Generic LDFS (i.e., Al-
gorithm 1) allows an arbitrary choice here. We present in the following a special kind
of LDFS algorithm, called LDFS+ (cf. Algorithm 2), which makes a specific choice of
vertex in such a case of equal labels, as follows. Along with the graph G = (V,E), an
ordering π of V is also given as input. The algorithm LDFS+ (see Algorithm 2 for a
formal description) operates exactly as a generic LDFS that starts at the rightmost
vertex of V in the ordering π, with the only difference that, in the case where at some
iteration at least two unvisited vertices have the same label, it chooses the rightmost
vertex among them in the ordering π.

Algorithm 2. LDFS+ (G, π).

Input: A connected graph G = (V,E) with n vertices and an ordering π of V
Output: An LDFS ordering σ of the vertices of G

1: Assign the label ε to all vertices
2: for i = 1 to n do
3: Pick the rightmost vertex v in π among the unnumbered vertices with the

lexicographically largest label
4: σ(i)← v {assign to v the number i}
5: for each unnumbered vertex w ∈ N(v) do
6: prepend i to label(w)

7: return the ordering σ = (σ(1), σ(2), . . . , σ(n))

In the following, we present the rightmost-neighbor (RMN) algorithm. This al-
gorithm, although without the name RMN, was introduced in [1] in order to find a
minimum path cover in a given interval graph.1 The RMN algorithm is a very simple
“greedy” algorithm that starts at the rightmost vertex of a given ordering σ of V and
traces each path by repeatedly proceeding to the rightmost unvisited neighbor of the
current vertex. If the current vertex has no unvisited neighbors, then the rightmost
unvisited vertex is chosen as the first vertex in the next path.

Note that in Algorithm 2 we denote the input vertex ordering by π and the
output ordering by σ, while in Algorithm 3, σ denotes the input vertex ordering. The
reason for this notation is that we will often consider an arbitrary umbrella-free vertex
ordering π of a cocomparability graph G, apply Algorithm 2 (i.e., LDFS+) to π to

1Actually, the algorithm of [1] uses the “reverse” vertex ordering of an I-ordering (as defined in
Lemma 1), which results after sorting the intervals of an interval representation according to their
right endpoints, and thus they presented an equivalent leftmost-neighbor (LMN) algorithm for the
case of interval graphs. A similar observation applies to the algorithms in [11, 16].
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Algorithm 3. RMN(σ).

Input: A graph G = (V,E) with n vertices and an ordering σ of V
Output: An ordering σ̂ of the vertices of G

1: Label all vertices as “unvisited”; i← 1
2: while there are unvisited vertices do
3: Pick the rightmost unvisited vertex x in σ
4: σ̂(i)← x {add vertex x to the ordering σ̂}
5: Mark x as “visited”; i← i+ 1
6: while x has at least one unvisited neighbor do
7: Pick the x’s rightmost unvisited neighbor y in σ
8: σ̂(i)← y {add vertex y to the ordering σ̂}
9: Mark y as “visited”; i← i+ 1

10: x← y

11: return σ̂ = (σ̂(1), σ̂(2), . . . , σ̂(n))

compute the ordering σ, and then apply Algorithm 3 (i.e., RMN) to σ to compute the
ordering σ̂. Then, as proved in [6], the LDFS vertex ordering σ remains umbrella-free.
Moreover, the final ordering σ̂ defines a minimum path cover of G [6].

3. Normal paths in cocomparability graphs. In this section we investigate
the structure of the vertex ordering σ that is obtained after applying an LDFS+

preprocessing step to an arbitrary umbrella-free ordering π of a cocomparability graph
G. On such an LDFS umbrella-free ordering σ, we define a special type of path called
normal path (cf. Definition 6), which is a crucial notion for our algorithm for the
longest path problem on cocomparability graphs (cf. Algorithm 4). In the following
definition we introduce the notion of a maximal path in a graph, which extends that
of a longest path.

Definition 4. A path P of a graph G is maximal if there exists no path P ′ of
G such that V (P ) ⊂ V (P ′).

The main result of this section is that for any maximal path P of a cocomparability
graph G (and thus also for any longest path), there exists a normal path P ′ on the
same vertices (cf. Theorem 2). Due to this result, it is sufficient for our algorithm that
computes a longest path of a cocomparability graph (cf. Algorithm 4) to search only
among the normal paths of the given cocomparability graph, in order to compute a
longest path. The next lemma will be used in what follows.

Lemma 3. Let G = (V,E) be a cocomparability graph and σ be an LDFS umbrella-
free ordering of V . Let P = (v1, v2, . . . , vk) be a path of G and v� /∈ V (P ) be a vertex
of G such that vk <σ v� <σ v1 and v�vk /∈ E. Then, there exist two consecutive
vertices vi−1 and vi in P , 2 ≤ i ≤ k, such that vi−1v� ∈ E and vi <σ v�.

Proof. Since vk <σ v� <σ v1 and v� /∈ V (P ), there exists at least one edge e = xy
of P , which straddles v� in σ. Thus, at least one of x and y is adjacent to v�, since
σ is umbrella-free. Recall that v�vk /∈ E; let vi−1, 2 ≤ i ≤ k, be the last vertex of P
such that vi−1v� ∈ E. If v� <σ vi, then similarly there exists at least one vertex vj ,
i ≤ j ≤ k, such that vjv� ∈ E, which is a contradiction by the assumption on vi−1.
Thus, vi <σ v�. This completes the proof of the lemma.

Definition 5. Let G = (V,E) be a cocomparability graph, σ be an LDFS
umbrella-free ordering of V , and σ′ be an induced subordering of σ. An LDFS closure
σ′′ of σ′ (within σ) is an induced subordering of σ with the smallest number of vertices
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such that σ′′ is an LDFS ordering that includes σ′.
Observe that any induced subordering σ′ of an umbrella-free ordering σ also

remains an umbrella-free ordering (cf. Definition 1). An example of a cocomparability
graph G = (V,E), as well as an LDFS umbrella-free ordering σ = (u1, u2, . . . , u9) of
V , is illustrated in Figure 3. In this example, σ′ = (u1, u3, u4, u5, u7, u8) is an induced
subordering of σ (and thus also umbrella-free). Furthermore, the ordering σ′′ =
(u1, u2, u3, u4, u5, u6, u7, u8) is an LDFS closure of σ′ (within σ), where the vertices
u2 and u6 are the d-vertices of the triples (u1, u3, u4) and (u5, u7, u8), respectively.

u1

u2 u3

u4 u5

u6 u7

u8

u9

G :

(a)

u1 u2 u3 u4 u5 u6 u7 u8 u9σ :

(b)

Fig. 3. (a) A cocomparability graph G = (V, E) and (b) an LDFS umbrella-free order-
ing σ = (u1, u2, . . . , u9) of V .

Observation 2. Let σ be an LDFS umbrella-free ordering, σ′ be an arbitrary
induced subordering of σ, and σ′′ be any LDFS closure of σ′ (within σ). Then, every
vertex v of σ′′ \ σ′ is a d-vertex of some good triple (a, b, c) in σ′′.

The next lemma follows easily by Observation 2.
Lemma 4. Let σ be an LDFS umbrella-free ordering, σ′ be an arbitrary induced

subordering of σ, and σ′′ be any LDFS closure of σ′ (within σ). Let v be a vertex
of σ′′ \ σ′. Then, there exists at least one vertex v′ in σ′ such that v <σ v′ and
vv′ /∈ E.

Proof. First, note by Observation 2 that v is a d-vertex of some good triple in
σ′′; let this triple be (a, b, c). Then, v <σ c and vc /∈ E by the definition of a good
triple. Now let v′ be the rightmost vertex in σ′′ such that v <σ v′ and vv′ /∈ E.
Suppose that v′ ∈ σ′′ \ σ′. Then, v′ is a d-vertex of some good triple (v1, v2, v3) in
σ′′ by Observation 2. Thus v′ <σ v3 and v′v3 /∈ E. Furthermore, vv3 ∈ E by the
assumption on v and v′. Then, the vertices v, v′, v3 build an umbrella in σ′′, which is
a contradiction. Therefore v′ /∈ σ′′ \ σ′, i.e., v′ ∈ σ′. This completes the proof of the
lemma.

Corollary 1. Let σ be an LDFS umbrella-free ordering, σ′ be an arbitrary
induced subordering of σ, and σ′′ be any LDFS closure of σ′ (within σ). Then, the
rightmost vertex of σ′ is also the rightmost vertex of σ′′.

Proof. Let v′ and v′′ be the rightmost vertices of σ′ and of σ′′, respectively. If
v′ �= v′′, then v′′ is a vertex of σ′′ \ σ′ and v′ <σ v′′, since σ′ is a subset of σ′′.
Then, there exists by Lemma 4 at least one vertex v′′′ in σ′ such that v′′ <σ v′′′, i.e.,
v′ <σ v′′ <σ v′′′, which is a contradiction to our assumption on v′.

In the following we introduce the notions of a typical and a normal path in a
cocomparability graph G = (V,E) (with respect to an LDFS umbrella-free ordering σ
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of V ), which will be used in the remainder of the paper. Note that the next definition
of a typical (resp., normal) path P in G depends only on the induced subgraph
G[V (P )] of G on the vertices of P and not on the rest of G.

Definition 6. Let G = (V,E) be a cocomparability graph and σ be an LDFS
umbrella-free ordering of V . Then, we have the following:

(a) a path P = (v1, v2, . . . , vk) of G is called typical if v1 is the rightmost vertex
of V (P ) in σ and v2 is the rightmost vertex of N(v1) ∩ V (P ) in σ;

(b) a typical path P = (v1, v2, . . . , vk) of G is called normal if vi is the rightmost
vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in σ for every i = 2, . . . , k.

For example, in the cocomparability graph G of Figure 3, the path P =
(u8, u5, u6, u3, u4) is a normal path. The next observation follows from Definition 6.

Observation 3. Let G = (V,E) be a cocomparability graph and σ be an LDFS
umbrella-free ordering of V . Let P be a normal path of G (with respect to the ordering
σ) and σ|V (P ) be the restriction of σ on the vertices of P . Then, the ordering of the
vertices of V (P ) in P coincides with the ordering RMN(σ|V (P )).

A similar notion of a normal (i.e., RMN) path for the special case of interval
graphs has appeared in [11] (referred to as a straight path), as well as in [16]. We now
state the following two auxiliary lemmas.

Lemma 5 (see [6]). Let G = (V,E) be a cocomparability graph and π be an
umbrella-free ordering of V . Let π′ = RMN(π) and π′′ = LDFS+(π). Furthermore,
let x, y ∈ V such that xy /∈ E. If y <π x, then x <π′ y and x <π′′ y.

Lemma 6. Let G = (V,E) be a cocomparability graph, let π be an umbrella-
free ordering of V , and let π′ = RMN(π). Let x, y ∈ V such that y <π x and
y <π′ x. Then, y is not the first vertex of π′ and for the previous vertex z of y in π′,
y <π x <π z, zy ∈ E, and zx /∈ E.

Proof. First, note that the first vertex of the ordering π′ = RMN(π) is the
rightmost vertex of π. Thus y is not the first vertex of π′, since y <π x. Let z be the
previous vertex of y in π′. Then, x is unvisited, when z is being visited by π′, since
z <π′ y <π′ x. Since y is preferred to x (as the next vertex of z in the RMN ordering
π′), even though y <π x, we must have zy ∈ E and zx /∈ E. Thus, by Lemma 5, it
follows that x <π z, i.e., y <π x <π z.

Notation 1. In the remainder of this section, we consider a cocomparability
graph G = (V,E) and an LDFS umbrella-free ordering σ of G. Furthermore, we
consider a maximal path P of G, the restriction σ′ = σ|V (P ) of σ on the vertices
of P , and an arbitrary LDFS closure σ′′ of σ′ (within σ). Finally, we consider the

orderings σ̂ = LDFS+(σ′) and ̂σ̂ = RMN(σ̂).

The next structural lemma will be used in what follows, in order to prove in
Theorem 2 that for every maximal path P there exists a normal path P ′ of G such
that V (P ′) = V (P ).

Lemma 7. Let x, y, z be three vertices of σ′ such that x <σ̂ y <σ̂ z and
z <σ′ y <σ′ x, where xy, xz ∈ E and yz /∈ E. Then, x is not the next vertex of z

in ̂σ̂.

Proof. The proof will be done by contradiction. We will exploit the fact that P
is a maximal path (cf. Notation 1) and that, given a Hamiltonian cocomparability
graph H and an LDFS umbrella-free ordering π of H , the ordering RMN(π) gives a
Hamiltonian path of H [6]. Suppose that there exists a triple (x, y, z) of vertices in

σ′ that satisfy the conditions of the lemma such that x is the next vertex of z in ̂σ̂.
Among all choices of triples, let (x, y, z) be the one where z is the rightmost possible
in σ̂ and y is the rightmost possible in σ̂ among those with equal z. Note that always
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z <
̂σ̂
y by Lemma 5, since ̂σ̂ = RMN(σ̂), and since yz /∈ E and y <σ̂ z by assumption.

Since z <σ′ y <σ′ x, xz ∈ E, and yz /∈ E, and since σ′′ is an LDFS-closure of
σ′ (within σ), there exists by Observation 2 a vertex d in σ′′ such that z <σ′′ d <σ′′

y <σ′′ x, dy ∈ E, and dx /∈ E. Thus, since dx /∈ E and σ is an umbrella-free ordering,
it follows that zd ∈ E. In the following we will distinguish the cases where d ∈ σ′ and
d ∈ σ′′ \ σ′.

Case 1. Suppose first that d ∈ σ′, i.e., d ∈ V (P ), and thus d ∈ σ̂. Then, since
σ̂ = LDFS+(σ′), and since dx /∈ E and d <σ′ x, it follows by Lemma 5 that x <σ̂ d.

Case 1a. Suppose that d <σ̂ z, i.e., x <σ̂ d <σ̂ z. If d were unvisited when z

is being visited in ̂σ̂, then d would be the next vertex of z in ̂σ̂ instead of x, since

zd ∈ E, which is a contradiction. Thus, d has been visited before z in ̂σ̂, i.e., d <
̂σ̂
z.

Therefore, Lemma 6 implies that d is not the first vertex in ̂σ̂, while d <σ̂ z <σ̂ a,

ad ∈ E, and az /∈ E for the previous vertex a of d in ̂σ̂. Then, in particular, a <σ′ z
by Lemma 5, since z <σ̂ a, az /∈ E, and σ̂ = LDFS+(σ′). Summarizing, d <σ̂ z <σ̂ a
and a <σ′ z <σ′ d, where dz, da ∈ E and za /∈ E, while d is the next vertex of a in
̂σ̂. This comes in contradiction to the choice of the triple (x, y, z) for which z is the
rightmost possible in σ̂.

Case 1b. Suppose that z <σ̂ d, i.e., y <σ̂ z <σ̂ d. Recall that yd ∈ E and
yz /∈ E. Thus, since σ̂ is an LDFS ordering, there exists a vertex d′ in σ̂ such that
y <σ̂ d′ <σ̂ z <σ̂ d, d′z ∈ E, and d′d /∈ E. Note that x <σ̂ y <σ̂ d′. Similarly to the

previous paragraph, if d′ were unvisited when z is being visited in ̂σ̂, then d′ would
be the next vertex of z in ̂σ̂ instead of x, since d′z ∈ E, which is a contradiction.

Thus, d′ has been visited before z in ̂σ̂, i.e., d′ <
̂σ̂
z. Therefore, Lemma 6 implies

that d′ is not the first vertex in ̂σ̂, while d′ <σ̂ z <σ̂ a′, a′d′ ∈ E, and a′z /∈ E for

the previous vertex a′ of d′ in ̂σ̂. Then, in particular, a′ <σ′ z by Lemma 5, since
z <σ̂ a′, a′z /∈ E, and σ̂ = LDFS+(σ′). Similarly, d <σ′ d′, since d′ <σ̂ d and d′d /∈ E.
Therefore, since z <σ′ d, it follows that z <σ′ d <σ′ d′. Summarizing, d′ <σ̂ z <σ̂ a′

and a′ <σ′ z <σ′ d′, where d′z, d′a′ ∈ E and za′ /∈ E, while d′ is the next vertex of

a′ in ̂σ̂. This comes in contradiction to the choice of the triple (x, y, z) such that z is
the rightmost possible in σ̂.

Case 2. Suppose now that d ∈ σ′′\σ′, i.e., d /∈ V (P ), and thus d /∈ σ̂. Consider the
set of vertices w of σ̂ such that y <σ̂ w <σ̂ z. We partition this set into the (possibly
empty) sets A = {w | y <σ̂ w <σ̂ z, wz /∈ E} and B = {w | y <σ̂ w <σ̂ z, wz ∈ E}.
First observe that xw ∈ E for every w ∈ A, since xz ∈ E and zw /∈ E, and since σ̂
is an umbrella-free ordering. We will now prove that yw ∈ E for every vertex w ∈ A.
Suppose otherwise that yw, zw /∈ E for a vertex w, for which y <σ̂ w <σ̂ z. Then,
z <σ′ w <σ′ y by Lemma 5, since y <σ̂ w <σ̂ z, yw, zw /∈ E, and σ̂ = LDFS+(σ′).
Recall that y <σ′ x by assumption in the statement of the lemma. Thus, x <σ̂ w <σ̂ z
and z <σ′ w <σ′ x, where xw, xz ∈ E and wz /∈ E, while x is the next vertex of z

in ̂σ̂. Therefore, since y <σ̂ w, this comes in contradiction to the choice of the triple
(x, y, z) such that y is the rightmost possible (with respect to z) in σ̂. Therefore,
yw ∈ E for every vertex w ∈ A.

If a vertex w ∈ B were unvisited when z is being visited in ̂σ̂, then w would be

the next vertex of z in ̂σ̂ instead of x, which is a contradiction to the assumption.

Thus, w has been visited before z in ̂σ̂, i.e., w <
̂σ̂
z for every w ∈ B. On the other

hand, Lemma 5 implies that z <
̂σ̂
w for every w ∈ A, i.e., w is being visited after z

in ̂σ̂, since ̂σ̂ = RMN(σ̂), w <σ̂ z, and wz /∈ E for every w ∈ A. Let v be a vertex

that is visited after z in ̂σ̂, i.e., z <
̂σ̂
v. Then, v <σ̂ z. Indeed, suppose otherwise that
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z <σ̂ v for such a vertex v. If zv ∈ E, then v is the next vertex of z in ̂σ̂ instead of
x, since in this case x <σ̂ z <σ̂ v, which is a contradiction. If zv /∈ E, then v <

̂σ̂
z by

Lemma 5, since ̂σ̂ = RMN(σ̂), which again is a contradiction. Thus, v <σ̂ z for every

vertex v that is visited after z in ̂σ̂. In the following we distinguish the cases A �= ∅
and A = ∅. The case where A = ∅ can be handled similarly to the case where A �= ∅,
as we will see in what follows.

Case 2a. A �= ∅. Recall that z <
̂σ̂
w for every w ∈ A, i.e., every w ∈ A is

visited after z in ̂σ̂, as we proved above. Thus, since x is the next vertex of z in ̂σ̂ by

assumption, all vertices w ∈ A are unvisited when x is being visited by ̂σ̂. Now recall

by the previous paragraph that v <σ̂ z for every vertex v that is visited after z in ̂σ̂

and that all vertices of B have been visited before z in ̂σ̂. Therefore, the next vertex

of x in ̂σ̂ is some w1 ∈ A, since xw ∈ E and y <σ̂ w for every w ∈ A. Furthermore

recall that yw ∈ E for every y ∈ A. Therefore, ̂σ̂ visits after w1 only vertices w ∈ A,
until it reaches vertex y. Denote by P ′ the path on the vertices of V (P ) produced by
̂σ̂. Suppose that not all vertices of A have been visited before y in P ′, i.e., in ̂σ̂. Then

the next vertex of y in ̂σ̂ again is some w2 ∈ A. That is, P ′ = (P0, z, x, P1, y, w2, P2)
for some subpaths P0, P1, and P2 of P ′, where V (P1) ⊆ A and w2 ∈ A. Thus, since
xw ∈ E for every w ∈ A, there exists the path P ′′ = (P0, z, d, y, P1, x, w2, P2), where
V (P ′′) = V (P ) ∪ {d}, which is a contradiction, since P is a maximal path.

Thus we may assume in what follows that all vertices of A have been visited

before y in P ′, i.e., in ̂σ̂. Then, V (P1) = A. If y is the last vertex in ̂σ̂, then
P ′ = (P0, z, x, P1, y) for some subpaths P0 and P1 of P ′, where V (P1) = A. In this
case, there exists the path P ′′ = (P0, z, d, y, P1, x), where V (P ′′) = V (P )∪{d}, which
is a contradiction, since P is a maximal path. Suppose that y is not the last vertex

in ̂σ̂, and denote by q /∈ A the next vertex of y in ̂σ̂. Then, P ′ = (P0, z, x, P1, y, q, P2)
for some subpaths P0, P1, and P2 of P ′, where V (P1) = A, and we let P1 =
(w1, w2, . . . , w�). If w�q ∈ E, there exists the path P ′′ = (P0, z, d, y, x, P1, q, P2),
which contradicts the maximality of P . If xq ∈ E, then there exists the path
P ′′ = (P0, z, d, y, P1, x, q, P2), which again contradicts the maximality of P .

To complete the proof of Case 2a, we now assume that w�q, xq /∈ E. First we
prove that q <σ̂ x. Otherwise, suppose that y <σ̂ q. Then q <σ̂ z, since v <σ̂ z for

every vertex v that is visited after z in ̂σ̂, as we proved above, and thus y <σ̂ q <σ̂ z.

Furthermore, q /∈ B, since all vertices of B have been visited before z in ̂σ̂, as we
proved above. Therefore y ∈ A, which is a contradiction, since we assumed that

all vertices of A have been visited before y in ̂σ̂. Now suppose x <σ̂ q <σ̂ y, i.e.,
x <σ̂ q <σ̂ y <σ̂ w�. Then the vertices x, q, w� build an umbrella in σ̂, which again is
a contradiction, since σ̂ is umbrella-free. Thus, q <σ̂ x.

Let s be a vertex such that x <σ̂ s <σ̂ y and s is visited after y in ̂σ̂. Then, s �= q,

since q <σ̂ x <σ̂ s. If ys ∈ E, then s is the next vertex of y in ̂σ̂ instead of q, since
̂σ̂ = RMN(σ̂), which is a contradiction. Thus ys /∈ E for every vertex s such that

x <σ̂ s <σ̂ y and s is visited after y in ̂σ̂.

We now construct a new ordering ρ of V (P )∪ {v}, where v is a new vertex. This
new ordering ρ is based on the LDFS umbrella-free ordering σ̂, and the structure of
ρ will allow us to show that G has a path on the vertices of V (P ) ∪ {d}, thereby
contradicting the maximality of path P . The ordering ρ is constructed by adding
the new vertex v immediately to the right of vertex y in σ̂. The adjacencies between
the vertices of V (P ) in σ̂ remain the same in ρ, while the adjacencies between the
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new vertex v and the vertices of V (P ) in ρ are defined as follows. First, v is made
adjacent in ρ to y and to all neighbors of y. Second, v is made adjacent also to z and
to every vertex w ∈ B. Note that v is adjacent in ρ to all vertices w of σ̂, for which
v <ρ w ≤ρ z. Therefore, if wy /∈ E and wv ∈ E in ρ for some vertex w ∈ V (P ) \ {y},
then y <σ̂ w ≤σ̂ z (in particular, w ∈ B). Let H be the graph induced by the ordering
ρ.

We will prove that ρ remains an LDFS umbrella-free ordering of the vertices of
V (P ) ∪ {v}. Since G[V (P )] (i.e., the subgraph of G induced by σ̂) is an induced
subgraph of H , if there is an umbrella or a bad triple in ρ, then the new vertex v
must belong to this umbrella or bad triple, since σ̂ = ρ|V (P ) is an LDFS umbrella-free
ordering of V (P ). Suppose that v belongs to an umbrella in ρ with vertices a, b, v,
where v <ρ a <ρ b, or a <ρ v <ρ b, or a <ρ b <ρ v.

Suppose first that v <ρ a <ρ b. Then, since va /∈ E, it follows by the construction
of ρ that z <ρ a, i.e., z <ρ a <ρ b, and thus also ya /∈ E and yb ∈ E. That is, the
vertices y, a, b build an umbrella in σ̂, which is a contradiction. Suppose now that
a <ρ v <ρ b. Then, a �= y, since v is adjacent to y in ρ. Thus, since va /∈ E, it follows
by the construction of ρ that also ay /∈ E. Furthermore, since vb /∈ E, it follows by the
construction of ρ that z <ρ b, and thus also yb /∈ E. That is, the vertices a, y, b build
an umbrella in σ̂, which is a contradiction. Suppose finally that a <ρ b <ρ v. Then,
b �= y, since v is adjacent to y in ρ. Furthermore, a �= y, since y lies immediately to
the left of v in ρ. Thus, since av ∈ E and bv /∈ E, it follows by the construction of ρ
that also ay ∈ E and by /∈ E, i.e., the vertices a, b, y build an umbrella in σ̂, which is
a contradiction. Thus, ρ is umbrella-free.

Suppose now that v belongs to a bad triple in ρ with vertices a, b, v, where v <ρ

a <ρ b, or a <ρ v <ρ b, or a <ρ b <ρ v. First let v <ρ a <ρ b, where vb ∈ E and
va /∈ E. Since va /∈ E, it follows by the construction of ρ that z <σ̂ a <σ̂ b, and thus
also y <σ̂ a <σ̂ b, yb ∈ E, and ya /∈ E. Since σ̂ is an LDFS ordering, there exists a
vertex v′ between y and a in σ̂ such that v′a ∈ E and v′b /∈ E. Note that v′ �= v,
since vb ∈ E and v′b /∈ E. Thus, the vertices v, a, b do not build a bad triple in ρ,
which is a contradiction. Now let a <ρ v <ρ b, where ab ∈ E and av /∈ E. Note
that a �= y, since av /∈ E, and thus also a <σ̂ y <σ̂ b and ay /∈ E. Since σ̂ is an
LDFS ordering, there exists a vertex v′ between a and y in σ̂ such that v′b /∈ E and
v′y ∈ E, and thus also v′v ∈ E. Thus, the vertices a, v, b do not build a bad triple in
ρ, which is a contradiction. Finally let a <ρ b <ρ v, where av ∈ E and ab /∈ E. By
the construction of ρ, note that b �= y, since av ∈ E and ab /∈ E. Thus a <σ̂ b <σ̂ y.
Furthermore, ay ∈ E by the construction of ρ, since av ∈ E. Since σ̂ is an LDFS
ordering, there exists a vertex v′ between a and b in σ̂ such that v′b ∈ E and v′y /∈ E,
and thus also v′v /∈ E. Thus, the vertices a, b, v do not build a bad triple in ρ, which
is a contradiction. Summarizing, ρ is an LDFS umbrella-free ordering.

Since σ̂ is an LDFS umbrella-free ordering of the vertices of a path P , the or-

dering ̂σ̂ = RMN(σ̂) gives a Hamiltonian path P ′ of the subgraph of G induced by
V (P ) [6]. Recall that P ′ = (P0, z, x, P1, y, q, P2) for some subpaths P0, P1, and P2 of
P ′, where V (P1) = A. Thus, the graph H induced by the ordering ρ of the vertices
of V (P ) ∪ {v} is again Hamiltonian, since we can just insert into P ′ the new vertex
v of ρ between z and x. Therefore, since ρ is an LDFS umbrella-free ordering, the
ordering ρ̂ = RMN(ρ) gives a Hamiltonian path of H [6], i.e., of the graph induced

by ρ. We will compare now the orderings ̂σ̂ and ρ̂.

First, we will prove that both orderings ̂σ̂ and ρ̂ coincide until vertex z is visited.

Indeed, since ̂σ̂ and ρ̂ differ only at the vertex v, the only difference of these orderings
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before z is visited could be that v is visited before z in ρ̂. Suppose that v is visited
before z in ρ̂. Note that the first vertex of the ordering ρ̂ = RMN(ρ) is the rightmost
vertex of ρ. Therefore, v is not the first vertex of ρ̂, since v <ρ z. Let a be the previous
vertex of v in ρ̂. Then, a is adjacent to v in ρ, since ρ̂ is a path. If a is adjacent
to z in ρ, then z is the next vertex of a in ρ̂ instead of v, since v <ρ z, which is a
contradiction. Thus, a is not adjacent to z in both ρ and σ̂. Note that both orderings
̂σ̂ and ρ̂ coincide at least until the visit of a, which is visited before z in both ̂σ̂ and
ρ̂, and thus a �= y. If a <ρ y or z <ρ a, it follows by the construction of ρ that a
is adjacent also to y in σ̂. Thus, since v is the next vertex of a in ρ̂ = RMN(ρ), it

follows that y is the next vertex of a in ̂σ̂ = RMN(σ̂), i.e., that y is visited before z in
̂σ̂, which is a contradiction. Suppose that v <ρ a <ρ z. Then, since az /∈ E, it follows
that a ∈ A, and thus ay ∈ E in the ordering σ̂, as we proved above. Therefore, since

v is the next vertex of a in ρ̂, it follows that y is the next vertex of a in ̂σ̂, i.e., that y

is visited before z in ̂σ̂, which is a contradiction. Therefore, v is not visited before z

in ρ̂, and thus both orderings ̂σ̂ and ρ̂ coincide until vertex z is visited.
Now, v is the rightmost unvisited neighbor of z in ρ at the time that vertex

z is being visited by ρ̂, since by our initial assumption x is the next vertex of z

in ̂σ̂. Furthermore, similarly to ̂σ̂, the ordering ρ̂ visits the vertices of P1 after v,
where V (P1) = A. In what follows, after visiting all vertices of P1, ρ̂ visits y as the
rightmost unvisited neighbor of the last vertex of P1. Recall that ys /∈ E for every

unvisited vertex s, such that x <σ̂ s <σ̂ y, and that the next vertex of y in ̂σ̂ is
q <σ̂ x. Therefore, x is the rightmost unvisited neighbor of y in ρ at the time that
y is being visited by ρ̂, and thus ρ̂ visits x after y. Summarizing, the Hamiltonian
path Pρ of the graph H (i.e., the graph induced by ρ) that is computed by ρ̂ is Pρ =
(P0, z, v, P1, y, x,Q) for some subpath Q of Pρ, where P

′ = (P0, z, x, P1, y, q, P2). Note
that V (Q) = V (P2) ∪ {q}, since V (Pρ) = V (P ′) ∪ {v} = V (P ) ∪ {v}. Furthermore,
note that Q is also a path of G[V (P )], since v /∈ V (Q). Then, there exists the path
P ′′ = (P0, z, d, y, P1, x,Q) of G, where V (P ′′) = V (P )∪{d}, which is a contradiction,
since P is a maximal path.

Case 2b. A = ∅. Then y is the next vertex of x in ̂σ̂, since xy ∈ E and all vertices

to the right of y in σ̂ have already been visited before x in ̂σ̂. That is, the path P ′ of
the vertices of V (P ) constructed by ̂σ̂ is P ′ = (P0, z, x, y, P3) for some subpaths P0

and P3 of P ′. Consider the ordering ρ, which is obtained by adding a new vertex v
to σ̂, as described in Case 2a. Then, similarly to Case 2a, the graph H induced by
ρ is Hamiltonian and the ordering ρ̂ = RMN(ρ) gives a Hamiltonian path Pρ of H ,
where Pρ = (P0, z, v, y,Q). Note that V (Q) = V (P3) ∪ {x} and that Q is also a path
of G[V (P )], since v /∈ V (Q). Thus, there exists the path P ′′ = (P0, z, d, y,Q) of G,
where V (P ′′) = V (P )∪{d}, which is a contradiction, since P is a maximal path. This
completes the proof of the lemma.

The next lemma now follows by Lemma 7.
Lemma 8. Let x be the rightmost vertex in σ′ and y be the rightmost neighbor of

x in σ′. Then, x is the last vertex of ̂σ̂ and y is the previous vertex of x in ̂σ̂.

Proof. First note that if σ′ has at least two vertices, x is not the first vertex of ̂σ̂,

since ̂σ̂ = RMN(σ̂) and x is the leftmost vertex of σ̂. Suppose that x is not the last

vertex of ̂σ̂; i.e., x is an intermediate vertex. Let a and b be the previous and the next

vertices of x in ̂σ̂, respectively. Then, a <
̂σ̂
b. If ab ∈ E, then b is the next vertex of a

in ̂σ̂ instead of x, since x <σ̂ a, which is a contradiction. Therefore ab /∈ E, and thus
b <σ̂ a by Lemma 5, since a <

̂σ̂
b. Furthermore, a <σ′ b by Lemma 5, since b <σ̂ a
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and ab /∈ E, and thus a <σ′ b <σ′ x, since x is the rightmost vertex in σ′. That is,
x <σ̂ b <σ̂ a and a <σ′ b <σ′ x, where xb, xa ∈ E and ba /∈ E, while x is the next

vertex of a in ̂σ̂, which is a contradiction by Lemma 7. Therefore, x is the last vertex

of ̂σ̂.
Note now that y is the second leftmost vertex in σ̂, since x is the rightmost vertex

of σ′ and σ̂ = LDFS+(σ′). Suppose that y is not the previous vertex of x in ̂σ̂, and

let a �= y be the previous vertex of x in ̂σ̂. Then, x <σ̂ y <σ̂ a and xy, xa ∈ E.

Furthermore, y has been visited before a in ̂σ̂, i.e., y <
̂σ̂
a, since x is the last vertex

of ̂σ̂. Suppose that ya /∈ E. Then, since y <σ̂ a, it follows by Lemma 5 that a <
̂σ̂
y,

which is a contradiction, since y <
̂σ̂

a. Therefore ya ∈ E. Thus, since y <σ̂ a

and y <
̂σ̂
a, Lemma 6 implies that y is not the first vertex of ̂σ̂ and that y <σ̂ a <σ̂ z,

yz ∈ E, and az /∈ E for the previous vertex z of y in ̂σ̂. Furthermore, z <σ′ a by
Lemma 5, since a <σ̂ z and az /∈ E. On the other hand, a <σ′ y, since xa ∈ E and
y is the rightmost neighbor of x in σ′. That is, y <σ̂ a <σ̂ z and z <σ′ a <σ′ y,

where ya, yz ∈ E and az /∈ E, while y is the next vertex of z in ̂σ̂, which is a

contradiction by Lemma 7. Therefore, y is the previous vertex of x in ̂σ̂.
The next corollary follows easily by Definition 6(a) and Lemma 8.
Corollary 2. Let G = (V,E) be a cocomparability graph, σ be an LDFS

umbrella-free ordering of G, and P be a maximal path of G. Then there exists a
typical path P ′ of G such that V (P ′) = V (P ).

Proof. Consider the restriction σ′ = σ|V (P ) of σ on the vertices of P ; note that σ′

is an induced subordering of σ. Furthermore, consider the orderings σ̂ = LDFS+(σ′)
and ̂σ̂ = RMN(σ̂) (cf. Notation 1). Note that, since σ′ is an ordering of the vertices of

V (P ), the ordering ̂σ̂ defines a minimum path cover of G[V (P )] [6]. Therefore, since

G[V (P )] has P as a Hamiltonian path, it follows that the ordering ̂σ̂ defines a single
path Q on the vertices of V (P ) (note that this path Q may be P itself or a different
path on the same vertices). Now let x be the rightmost vertex in σ′ and y be the

rightmost neighbor of x in σ′. Then, since ̂σ̂ defines the path Q, Lemma 8 implies
that x is the last vertex of Q and y is the previous vertex of x in Q. Therefore, the
reverse path P ′ of Q is a typical path of G with V (P ′) = V (P ).

We are now ready to present the main theorem of this section.
Theorem 2. Let G = (V,E) be a cocomparability graph, σ be an LDFS umbrella-

free ordering of G, and P be a maximal path of G. Then there exists a normal path
P ′ of G such that V (P ′) = V (P ).

Proof. Let the maximal path P be denoted by (v1, v2, . . . , vk). If k ≤ 2, the lemma
clearly holds. Suppose in what follows that k ≥ 3 and that there exists no normal
path P ′ of G such that V (P ′) = V (P ). We may assume without loss of generality
that G has the smallest number of vertices among all cocomparability graphs that
have such a maximal path P . Furthermore, we may assume by Corollary 2 that P is
typical, i.e., that v1 is the rightmost vertex of V (P ) in σ and that v2 is the rightmost
vertex of N(v1) ∩ {v2, v3, . . . , vk} in σ.

Let i ∈ {2, 3, . . . , k− 1} be the greatest index such that vj is the rightmost vertex
of N(vj−1) ∩ {vj, vj+1, . . . , vk} in σ for every j = 2, . . . , i. Such an index i exists by
the assumption that there exists no normal path P ′ of G, for which V (P ′) = V (P ).
Let P1 = (v1, v2, . . . , vi) and P2 = (vi+1, vi+2, . . . , vk) be the subpaths of P until the
vertex vi and after the vertex vi, respectively. Then, in particular, P1 is normal by
the assumption on i; i.e., P1 has the first i vertices of an RMN when applied on the
restriction σ|V (P ) of the ordering σ on the vertices of P . We will construct a path
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P ∗ = (v∗1 , v
∗
2 , . . . , v

∗
k) such that V (P ∗) = V (P ), v∗1 is the rightmost vertex of V (P ∗)

in σ, and v∗� is the rightmost vertex of N(v∗�−1) ∩ {v∗� , v∗�+1, . . . , v
∗
k} in σ for every

� = 2, . . . , i+ 1, thus arriving at a contradiction by the assumption on the index i.
Consider a vertex v� ∈ {vi+1, vi+2, . . . , vk} such that vi <σ v�. Then, vi <σ v� <σ

v1, since P is typical. We will prove that viv� ∈ E. Suppose otherwise that viv� /∈ E.
Then, since v� /∈ V (P1), it follows by Lemma 3 that there exist two consecutive vertices
vj−1 and vj in P1, where 2 ≤ j ≤ i, such that vj−1v� ∈ E and vj <π v�. Thus, vj is
not the rightmost vertex of N(vj−1)∩{vj , vj+1, . . . , vk} in σ, which is a contradiction.
Therefore, viv� ∈ E for every v� ∈ {vi+1, vi+2, . . . , vk} such that vi <σ v�.

In what follows let vj be the rightmost vertex of N(vi)∩{vi+1, vi+2, . . . , vk} in σ,
where j > i+1 by the assumption on the index i. Now we distinguish the cases where
vi <σ vj and vj <σ vi.

Case 1. vi <σ vj . Suppose that there exists a vertex v� ∈ {vi+1, vi+2, . . . , vk} such
that vj <σ v�. Then, as we proved above, viv� ∈ E, which is a contradiction, since vj
is the rightmost vertex of N(vi) ∩ {vi+1, vi+2, . . . , vk} in σ and vj <σ v�. Thus, vj is
the rightmost vertex of {vi+1, vi+2, . . . , vk} in σ. Let σ′ be the induced subordering
of σ on the vertices of V (P2) = {vi+1, vi+2, . . . , vk} and σ′′ be an LDFS closure of σ′

(within σ). Then, by definition, V (P1)∩ V (σ′) = ∅. Furthermore, vj is the rightmost
vertex in σ′, and thus vj remains the rightmost vertex in σ′′ by Corollary 1.

First we will prove that V (P1) ∩ V (σ′′) = ∅. Suppose otherwise that
V (P1) ∩ V (σ′′) �= ∅, and let v be the rightmost vertex of V (P1) ∩ V (σ′′) in σ. Then
v ∈ V (σ′′ \ σ′), since V (P1) ∩ V (σ′) = ∅. Thus, there exists by Lemma 4 at least
one vertex v′ in σ′ such that v <σ v′ and vv′ /∈ E. Then, v′ ∈ V (P2) ⊂ V (P ) by
definition of the ordering σ′; i.e., v′ is a vertex of σ|V (P ). Furthermore, since v <σ v′

and vv′ /∈ E, Lemma 5 implies that v′ is visited before v in P1 (that is, by apply-
ing RMN on σ|V (P )), i.e., v

′ ∈ V (P1), which is a contradiction, since v′ ∈ V (P2).
Thus, V (P1) ∩ V (σ′′) = ∅.

Now we will prove that the subpath P2 = (vi+1, vi+2, . . . , vk) of P is maximal in
G|σ′′ . Indeed, suppose otherwise that P2 is not maximal in G|σ′′ ; i.e., there exists a
path P ′

2 of G|σ′′ such that V (P2) ⊂ V (P ′
2). Thus, since G|σ′′ has strictly fewer vertices

than G, there exists (by the assumption on G) a normal path P ′′
2 of G|σ′′ such that

V (P ′′
2 ) = V (P ′

2). Therefore, in particular, P ′′
2 has strictly more vertices than P2 and

vj is the first vertex of P ′′
2 . Thus, since vivj ∈ E, the path (v1, v2, . . . , vi, P

′′
2 ) of G

has strictly more vertices than P , which is a contradiction to the assumption that P
is maximal. Therefore, the subpath P2 of P is maximal in G|σ′′ , and thus there exists
a normal path Q of G|σ′′ such that V (Q) = V (P2). Then, in particular, vj is the first
vertex of Q, and thus

(3.1) P ∗ = (v∗1 , v
∗
2 , . . . , v

∗
k) = (v1, v2, . . . , vi, Q)

as requested.
Case 2. vj <σ vi. Consider an arbitrary vertex v� ∈ {vi+1, vi+2, . . . , vk}, and

suppose that vi <σ v�. Then, v� �= vj , since vj <σ vi. Furthermore, as we proved
above, viv� ∈ E, which is a contradiction, since vj is the rightmost vertex of N(vi) ∩
{vi+1, vi+2, . . . , vk} in σ and vj <σ vi <σ v�. Therefore, v� <σ vi for every v� ∈
{vi+1, vi+2, . . . , vk}; i.e., vi is the rightmost vertex of V (P2)∪{vi} = {vi, vi+1, . . . , vk}
in σ. Consider the induced subordering σ′ of σ on the vertices V (P2) ∪ {vi} and an
LDFS closure σ′′ of σ′ (within σ). Then, similarly to Case 1, the subpath (vi, P2) =
(vi, vi+1, . . . , vk) of P is a maximal path of G|σ′′ , and thus there exists a normal path
Q of G|σ′′ such that V (Q) = {vi, vi+1, . . . , vk}. Then, in particular, vi is the first
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vertex of Q, and thus

(3.2) P ∗ = (v∗1 , v
∗
2 , . . . , v

∗
k) = (v1, v2, . . . , vi−1, Q)

as requested. This completes the proof of the lemma.

4. The longest path problem on cocomparability graphs. In this section
we present the first polynomial algorithm that computes a longest path of a cocom-
parability graph G. This dynamic programming algorithm is based on Theorem 2;
in particular, this algorithm computes a longest normal path of G. For the rest of
this section we consider an LDFS umbrella-free ordering σ of a given cocomparability
graph G = (V,E), which can be obtained by executing an LDFS+ on an arbitrary
umbrella-free ordering π of G [6]. We consider that the vertices of V , where |V | = n,
are numbered in σ increasingly from left to right, i.e., σ = (u1, u2, . . . , un). Further-
more, for simplicity of presentation, we add to σ a dummy isolated vertex un+1 to
the right of all other vertices of V ; i.e., we consider without loss of generality that
σ = (u1, u2, . . . , un, un+1). It is easy to see that σ remains an LDFS umbrella-free
ordering after the addition of the dummy vertex un+1.

Definition 7. Let G = (V,E) be a cocomparability graph with |V | = n, and let
σ = (u1, u2, . . . , un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where
un+1 is a dummy isolated vertex. For every pair of indices i, j ∈ {1, 2, . . . , n}, the
following hold:

• if i > j, then G(i, j) = ∅;
• if i ≤ j, then G(i, j) is the subgraph G[S] of G induced by the vertex set
S = {ui, ui+1, . . . , uj} \N(uj+1).

It is easy to see by Definition 7 that for every pair of indices i, j ∈ {1, 2, . . . , n},
the vertices ui and uj may or may not belong to G(i, j), since they may or may not
be adjacent to uj+1 in G. Furthermore, note that G(1, n) = G and that G(i, n) =
G[{ui, ui+1, . . . , un}] for every i ∈ {1, 2, . . . , n}, since un+1 is an isolated vertex.

As an example of Definition 7, the subgraph G(3, 8) of the cocomparability graph
G of Figure 3 is illustrated in Figure 4. In this figure the dummy isolated vertex
u10 is also depicted, while the vertices V (G(3, 8)) = {u3, u4, u5, u6, u8} of G(3, 8), as
well as the edges of G(3, 8), are drawn darker than the others for better visibility.
Furthermore, note that the path P = (u8, u5, u6, u3, u4) is a normal path of G(3, 8).

u1 u2 u7 u9σ : u10u8u3 u4 u5 u6

Fig. 4. The subgraph G(3, 8) of the cocomparability graph G of Figure 3.

Observation 4. For every pair of indices i, j ∈ {1, 2, . . . , n}, G(i + 1, j) =
G(i, j) \ {ui}.

Observation 5. Let P = (P1, ui) be a normal path of G(i, j) for some pair of
indices i, j ∈ {1, 2, . . . , n}. Then P1 is a normal path of both G(i+ 1, j) and G(i, j).

Observation 6. Let P1 = (P0, ux) be a normal path of G(i+1, j) for some pair of
indices i, j ∈ {1, 2, . . . , n}, and let ui ∈ V (G(i, j)) and uxui ∈ E. Then P = (P1, ui)
is a normal path of G(i, j).



956 GEORGE B. MERTZIOS AND DEREK G. CORNEIL

Lemma 9. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. Suppose that ui <σ ux and uxui ∈ E. Then ukui ∈ E for every
uk ∈ V (G(i + 1, x− 1)).

Proof. Let uk ∈ V (G(i + 1, x − 1)). Then ui <σ uk <σ ux and uk /∈ N(ux)
by Definition 7. Therefore, since σ is an umbrella-free ordering and uxui ∈ E by
assumption, it follows that ukui ∈ E.

Lemma 10. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. Then V (G(i + 1, x− 1)) ⊆ V (G(i, j)) for every ux ∈ V (G(i + 1, j)).

Proof. Consider a vertex uy ∈ V (G(i+ 1, x− 1)). Then, since also ux ∈ V (G(i+
1, j)), it follows by Definition 7 that uyux /∈ E and uxuj+1 /∈ E. Suppose that
uyuj+1 ∈ E. Then, since uy <σ ux <σ uj+1, the vertices uy, ux, uj+1 build an
umbrella in σ, which is a contradiction. Therefore uyuj+1 /∈ E, and thus uy ∈
V (G(i, j)) by Definition 7.

In the following we state two lemmas that are crucial for the proof of the main
theorem (Theorem 3) of this section.

Lemma 11. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. Let ui ∈ V (G(i, j)), ux ∈ V (G(i + 1, j)), uy ∈ V (G(i + 1, x− 1)), and
ux ∈ N(ui). Furthermore, let P1 be a normal path of G(i + 1, j) with ux as its last
vertex and P2 be a normal path of G(i + 1, x − 1) with uy as its last vertex. Then
P = (P1, ui, P2) is a normal path of G(i, j) with uy as its last vertex.

Proof. We will first prove that V (P1) ⊆ V (G(i+1, j))\V (G(i+1, x−1)). Suppose
otherwise that V (P1) ∩ V (G(i + 1, x − 1)) �= ∅, and let uk be the first vertex of P1

such that uk ∈ V (G(i + 1, x − 1)). Then uk is not the rightmost vertex of P1 in
σ, since uk <σ ux. Therefore, since P1 is a normal path by assumption, uk is not
the first vertex of P1, and thus there exists a previous vertex u� of uk in P1, i.e.,
u�uk ∈ E. Suppose first that u�ux ∈ E. Then, since uk <σ ux and ux is unvisited
by P1 when u� is visited, it follows that uk is not the rightmost unvisited vertex of
N(u�) ∩ V (P1) in σ when P1 visits u�. This is a contradiction by Definition 6, since
uk is the next vertex of u� in P1 and P1 is a normal path by assumption. Suppose
now that u�ux /∈ E. Let u� <σ ux. Then u� ∈ V (G(i + 1, x − 1)) by Definition 7.
This is a contradiction to the assumption that uk is the first vertex of P1 such that
uk ∈ V (G(i + 1, x − 1)). Let ux <σ u�, i.e., uk <σ ux <σ u�. Note that uk /∈ N(ux)
by Definition 7, since uk ∈ V (G(i + 1, x − 1)). Thus the vertices uk, ux, u� build an
umbrella in σ, since u�uk ∈ E, ukux /∈ E, and u�ux /∈ E, which is a contradiction.
Therefore V (P1)∩V (G(i+1, x−1)) = ∅, i.e., V (P1) ⊆ V (G(i+1, j))\V (G(i+1, x−1)).

Since V (P1) ⊆ V (G(i + 1, j)) \ V (G(i + 1, x − 1)) by the previous paragraph
and V (P2) ⊆ V (G(i + 1, x− 1)) by assumption, it follows that V (P1) ∩ V (P2) = ∅.
Recall now that uk ∈ N(ui) for every uk ∈ V (P2) ⊆ V (G(i + 1, x− 1)) by Lemma 9.
Furthermore, recall that V (P1) ⊆ V (G(i + 1, j)) ⊆ V (G(i, j)) by Observation 4 and
that V (P2) ⊆ V (G(i + 1, x− 1)) ⊆ V (G(i, j)) by Lemma 10. Therefore, since ui ∈
V (G(i, j)) and ux ∈ N(ui) by assumption, it follows that P = (P1, ui, P2) is a path
of G(i, j). Moreover, uy is the last vertex of P , since uy is the last vertex of P2 by
assumption.

In the following we prove that P is normal. To this end, first let σ1 = σ|P1

be the restriction of the ordering σ on the vertices of the path P1 and let σ′
1 =

RMN(σ1). Then the ordering of the vertices of V (P1) in P1 coincides with the ordering
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σ′
1 by Observation 3. Note that σ1 is an umbrella-free ordering as a restriction of the

umbrella-free ordering σ.

Note now that the first vertex u� of P is also the first vertex of P1, since
P = (P1, ui, P2). Moreover, u� is the rightmost vertex of P1 in σ, since P1 is normal
by assumption. Furthermore, note that uk <σ ux ≤σ u� for every uk ∈ V (P2) ∪ {ui}.
Therefore, u� is also the rightmost vertex of P in σ. Let ur and ur′ be two consecutive
vertices of P1; i.e., ur′ is the rightmost unvisited vertex of N(ur)∩V (P1) in σ when P1

visits ur. We will prove that ur′ is also the rightmost unvisited vertex of N(ur)∩V (P )
in σ when P visits ur. Suppose otherwise that uk �= ur′ is the rightmost unvisited
vertex of N(ur) ∩ V (P ) in σ when P visits ur. Then, in particular, ur′ <σ uk and
ukur ∈ E. If uk ∈ V (P1), then uk would be also the rightmost unvisited vertex of
N(ur) ∩ V (P1) in σ when P1 visits ur, which is a contradiction.

Therefore uk ∈ V (P2)∪{ui} ⊆ {ui, ui+1, . . . , ux−1}, and thus in particular uk <σ

ux. Suppose that urux ∈ E. Then, since uk <σ ux and ux is unvisited when P
visits ur, it follows that uk is not the rightmost unvisited vertex of N(ur) ∩ V (P )
in σ when P visits ur, which is a contradiction to the assumption on uk. Thus
urux /∈ E. Recall that ux is the last vertex of P1 by assumption. Therefore, ur

appears before ux in P1, and thus ur <σ′
1
ux as we proved above, where σ1 = σ|P1

and σ′
1 = RMN(σ1). Therefore, since urux /∈ E and σ1 is an umbrella-free ordering,

it follows by Lemma 5 that ux <σ1 ur, i.e., ux <σ ur. That is, uk <σ ux <σ ur.
Recall that uk ∈ V (P2) ∪ {ui}. First let uk ∈ V (P2) ⊆ V (G(i + 1, x − 1)). Then
uk /∈ N(ux) by Definition 7. Therefore, since also urux /∈ E and ukur ∈ E, the
vertices uk, ux, ur build an umbrella in σ, which is a contradiction. Now let uk = ui.
Then uk = ui <σ ur′ , since ur′ ∈ V (P1) ⊆ V (G(i+1, j)). Thus uk is not the rightmost
unvisited vertex of N(ur) ∩ V (P ) in σ when P visits ur, which is a contradiction to
the assumption on uk. Therefore, for any two consecutive vertices ur, ur′ of P1, ur′

is the rightmost unvisited vertex of N(ur) ∩ V (P ) in σ when P visits ur.

Recall that V (P2) ⊆ V (G(i+1, x−1)) by assumption, and thus ukux /∈ E for every
vertex uk ∈ V (P2). Therefore, ui is the rightmost unvisited vertex of N(ux) ∩ V (P )
in σ when P visits ux (i.e., the last vertex of P1). Note that exactly the vertices of
V (P2) are the unvisited vertices of V (P ) when P visits ui. Moreover, recall that P2

is a normal path and that ukui ∈ E for every uk ∈ V (P2) ⊆ V (G(i + 1, x − 1)) by
Lemma 9. Therefore, the first vertex of P2 is also the rightmost unvisited vertex of
N(ui) ∩ V (P ) in σ when P visits ui. Consider now any pair of consecutive vertices
ur, ur′ of P2. Then, ur′ is the rightmost unvisited vertex of N(ur)∩V (P2) in σ (resp.,
of N(ur) ∩ V (P ) in σ) when P2 (resp., P ) visits ur. Therefore, P is a normal path.
This completes the proof of the lemma.

Notation 2. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. Let i, j ∈ {1, 2, . . . , n} be a pair of indices, let uk ∈ V (G(i, j)), and
let P be a normal path of G(i, j). For simplicity of presentation, we will say in the
following that “P is a longest normal path of G(i, j) with uk as its last vertex” if,
among the normal paths ending at uk in G(i, j), P has maximum length.

Lemma 12. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. Let P be a longest normal path of G(i, j) with uy �= ui as its last
vertex, and let P = (P1, ui, P2). Let ux be the last vertex of P1. Then, P1 is a longest
normal path of G(i + 1, j) with ux as its last vertex and P2 is a longest normal path
of G(i+ 1, x− 1) with uy as its last vertex.
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Proof. Note that P has at least two vertices, since uy, ui ∈ V (P ). Therefore,
since ui <σ uk for every uk ∈ V (P ) \ {ui}, it follows that ui is not the first vertex of
P , and thus P1 �= ∅. Note that V (P1) ⊆ V (G(i+1, j)), i.e., V (P1) ⊆ V (G(i, j))\{ui}
by Observation 4, since ui /∈ V (P1). Furthermore, since P is a normal path by
assumption and P1 is a subpath of P , it follows that P1 is a normal path of G(i+1, j)
with ux as its last vertex.

Let σ′ = σ|P be the restriction of the ordering σ on the vertices of the path P ,
and let σ′′ = RMN(σ′). Then, since P is a normal path by assumption, the ordering
of the vertices of V (P ) in P coincides with the ordering σ′′ by Observation 3.

We will now prove that V (P2) ⊆ V (G(i+1, x− 1)). Consider an arbitrary vertex
uk ∈ V (P2), and note that ui <σ uk. Note that both ui and uk are unvisited by P
when ux is visited. Suppose that ukux ∈ E. Then, since ui <σ uk, it follows that ui

is not the rightmost unvisited vertex of N(ux) ∩ V (P ) in σ when P visits ux. Thus,
since P is normal by assumption, it follows that ui is not the next vertex of ux in P ,
which is a contradiction. Therefore ukux /∈ E for every uk ∈ V (P2). Recall by the
previous paragraph that the ordering of the vertices of V (P ) in P coincides with the
ordering σ′′ = RMN(σ′), where σ′ = σ|P . Therefore, since uk ∈ V (P2) appears after
ux in P , it follows that ux <σ′′ uk. Thus, since ukux /∈ E, Lemma 5 implies that
uk <σ′ ux, i.e., uk <σ ux. Summarizing, ukux /∈ E and ui <σ uk <σ ux for every
uk ∈ V (P2), and thus V (P2) ⊆ V (G(i + 1, x− 1)) by Definition 7.

Since ui <σ ux and uxui ∈ E, Lemma 9 implies that ukui ∈ E for every
uk ∈ V (P2) ⊆ V (G(i + 1, x− 1)). Therefore, since P = (P1, ui, P2) is a normal path
by assumption, the first vertex of P2 is the rightmost vertex of V (P2) in σ. Consider
now any two consecutive vertices ur, ur′ of P2. Then, since P = (P1, ui, P2) is a nor-
mal path, it follows that ur′ is the rightmost unvisited vertex of N(ur)∩V (P ) (resp.,
of N(ur) ∩ V (P2)) in σ when P (resp., P2) visits ur. Therefore, since also uy is the
last vertex of P by assumption, P2 is a normal path of V (G(i + 1, x− 1)) with uy as
its last vertex.

Suppose now that there exists a normal path P ′
1 (resp., P ′

2) of G(i+1, j) (resp., of
G(i+1, x− 1)) with ux (resp., with uy) as its last vertex such that |P ′

1| > |P1| (resp.,
|P ′

2| > |P2|). Then, Lemma 11 implies that P ′ = (P ′
1, ui, P2) (resp., P

′ = (P1, ui, P
′
2))

is a normal path of G(i, j) with uy as its last vertex such that |P ′| > |P |. This is a
contradiction to the assumption that P is a longest normal path of G(i, j) with uy as
its last vertex. Therefore, there exists no such path P ′

1 (resp., P ′
2), and thus P1 (resp.,

P2) is a longest normal path of G(i + 1, j) (resp., of G(i + 1, x − 1)) with ux (resp.,
with uy) as its last vertex. This completes the proof of the lemma.

4.1. The algorithm. In the following we present Algorithm 4, which computes
a longest path of a given cocomparability graph G. For simplicity of presentation of
this algorithm, we make the following convention.

Notation 3. Let G = (V,E) be a cocomparability graph and σ = (u1, u2, . . . ,
un, un+1) be an LDFS umbrella-free ordering of V ∪ {un+1}, where un+1 is a dummy
isolated vertex. For every pair of indices i, j ∈ {1, 2, . . . , n} and for every ver-
tex uk ∈ V (G(i, j)), we denote by P (uk; i, j) a longest normal path of G(i, j) with
uk as its last vertex and by �(uk; i, j) the length |P (uk; i, j)| of P (uk; i, j), i.e., the
number of vertices of P (uk; i, j).

We first give a brief overview of Algorithm 4. It takes as input a cocomparability
graph G = (V,E) and an umbrella-free ordering π of V . As a preprocessing step, the
algorithm applies LDFS+ (i.e., Algorithm 2) to the ordering π in order to compute
an LDFS umbrella-free ordering σ of V . In what follows, the dynamic programming
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part of Algorithm 4 builds a 3-dimensional table where for every pair of indices i, j ∈
{1, 2, . . . , n} and for every vertex uk ∈ V (G(i, j)), the entry P (uk; i, j) stores the
ordered vertices of a longest normal path of G(i, j) with uk as its last vertex; the
length of this path (i.e., |P (uk; i, j)|) is stored in �(uk; i, j). Thus a longest normal
path of G = G(1, n) will be stored in P (uk; 1, n) for a uk that maximizes �(uy; 1, n)
among all uy ∈ V (cf. line 18). Note that from the for -loops in lines 3 and 4 of the
algorithm and the obvious inductive hypothesis, it may be assumed during the {i, j}th
iteration of the body of the dynamic programming (cf. lines 5–17) that the values
P (uk′ ; i′, j′) and �(uk′ ; i′, j′) have been correctly computed at previous iterations of
the algorithm for every i′ > i.

On entry to the initialization phase for a particular {i, j} (cf. lines 5–8), we want
initial paths that do not use vertex ui as an intermediate vertex. For a path with
uy ∈ V (G(i+1, j)) as its last vertex, such a path is stored in P (uy; i+1, j). For a path
with ui itself as its last vertex, we are interested only in the case where ui ∈ V (G(i, j)),
and, if so, we initialize P (ui; i, j) = (ui).

Then, we enter the induction step phase of the algorithm (cf. lines 9–17) and
determine how the entries of the table can be extended with the inclusion of vertex
ui (in the case where ui ∈ V (G(i, j))). First, we note that if a normal path P of
G(i, j) that includes ui has at least two vertices, then P must involve a vertex ux ∈
V (G(i + 1, j)) with uxui ∈ E. For such a vertex ux, there are two different roles
that it can play in getting a possibly longer normal path to be stored in the table.
First, adding the edge uxui to a longest normal path of G(i+1, j) with ux as its last
vertex might create a normal path with ui as its last vertex, which is longer than the
one currently stored in P (ui; i, j). This situation is covered in lines 11–13. The other
role that vertex ux might play is to serve as the “glue” between a normal path P1 of
G(i + 1, j) with ux as its last vertex and a normal path P2 of G(i + 1, x − 1) with
some vertices uy′ and uy as its first and last vertices, respectively (uy′ and uy are not
necessarily distinct). Note that these two paths would be “glued” together via the
two edges uxui and uiuy′ . This situation is covered in lines 14–17.

The main theorem of this section proves that Algorithm 4 computes in O(n4)
time a longest path of a cocomparability graph with n vertices.

Theorem 3. For a given cocomparability graph G = (V,E) with n vertices,
Algorithm 4 computes a longest path P of G in O(n4) time.

Proof. In the first line, Algorithm 4 applies an LDFS+ preprocessing step to the
given umbrella-free ordering π of V . The resulting LDFS ordering σ is again umbrella-
free [6]. In the second line, the algorithm adds a dummy isolated vertex un+1 to σ
to the right of all other vertices of V ; i.e., we consider without loss of generality that
σ = (u1, u2, . . . , un, un+1). Note that σ remains an LDFS umbrella-free ordering, also
after the addition of un+1 to it. Furthermore, note that any longest path of G is also
maximal (cf. Definition 4). Therefore, in order to compute a longest path of G, it
suffices by Theorem 2 to compute a longest normal path of G (with respect to the
ordering σ), i.e., a longest path among the normal ones.

In lines 3–17, Algorithm 4 iterates for every pair of indices i, j ∈ {1, 2, . . . , n} and
computes a path P (uk; i, j) and a value �(uk; i, j) for every vertex uk ∈ V (G(i, j)).
We will prove by induction on i that P (uk; i, j) is indeed a longest normal path of
G(i, j) with uk as its last vertex and that �(uk; i, j) = |P (uk; i, j)|.

For the induction basis, let i = n; in this case also j = n (cf. line 4). Furthermore,
ui /∈ N(ui+1) for i = n, since un+1 is an isolated vertex, and thus the algorithm
executes line 8. In this line, the algorithm computes the path P (un;n, n) = (un),
which is clearly the only (and thus also the longest) normal path of G(n, n) with un
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Algorithm 4. Computing a longest path of a cocomparability graph.

Input: A cocomparability graph G = (V,E) with |V | = n and an umbrella-free
ordering π of V

Output: A longest path of G

1: Run an LDFS+ preprocessing step to π to obtain the LDFS umbrella-free ordering
σ

2: Add an isolated dummy vertex un+1 to σ; denote σ = {u1, u2, . . . , un, un+1}
3: for i = n downto 1 do
4: for j = i to n do

5: for every uy ∈ V (G(i + 1, j)) do
6: P (uy; i, j)← P (uy; i+ 1, j); �(uy; i, j)← �(uy; i+ 1, j) {initialization}
7: if ui ∈ V (G(i, j)) then
8: P (ui; i, j)← (ui); �(ui; i, j)← 1 {initialization}
9: for every ux ∈ V (G(i + 1, j)) do

10: if ui ∈ V (G(i, j)) and ux ∈ N(ui) then

11: if �(ui; i, j) < �(ux; i+ 1, j) + 1 then
12: P (ui; i, j)← (P (ux; i+ 1, j), ui)
13: �(ui; i, j)← �(ux; i+ 1, j) + 1

14: for every uy ∈ V (G(i + 1, x− 1)) do
15: if �(uy; i, j) < �(ux; i+ 1, j) + �(uy; i+ 1, x− 1) + 1 then
16: P (uy; i, j)← (P (ux; i+ 1, j), ui, P (uy; i+ 1, x− 1))
17: �(uy; i, j)← �(ux; i+ 1, j) + �(uy; i+ 1, x− 1) + 1

18: return a path P (uk; 1, n) with �(uk; 1, n) = max{�(uy; 1, n) | uy ∈ V }

as its last vertex. Then, since G(n+1, n) = ∅ (cf. Definition 7), lines 6 and 10–17 are
not executed at all. This proves the induction basis.

For the induction step, let i ≤ n− 1. Consider the iteration of the algorithm
for any j ∈ {i, i+ 1, . . . , n}. First, the algorithm initializes in lines 5–8 the val-
ues P (uk; i, j) and �(uk; i, j) for every uk ∈ V (G(i, j)). Then, it updates these values
if necessary in lines 9–17. For every vertex uy ∈ V (G(i + 1, j)), the induction hy-
pothesis implies that P (uy; i + 1, j) is a longest normal path of G(i + 1, j) with uy

as its last vertex and that �(uy; i+ 1, j) = |P (uy; i+ 1, j)|. Recall by Observation 4
that G(i + 1, j) = G(i, j) \ {ui}. Therefore, for every uy ∈ V (G(i + 1, j)), the value
�(uy; i + 1, j) is the greatest length of a normal path P of G(i, j) with uy as its last
vertex such that P does not include ui. The algorithm initializes in line 6 for ev-
ery uy ∈ V (G(i + 1, j)) the values P (uy; i, j) and �(uy; i, j) as P (uy; i + 1, j) and
�(uy; i+ 1, j), respectively. Furthermore, in the case where ui ∈ V (G(i, j)), the algo-
rithm initializes in line 8 the values P (ui; i, j) = (ui) and �(ui; i, j) = 1. Otherwise,
in the case where ui /∈ V (G(i, j)), the algorithm does not execute line 8, since the
values P (ui; i, j) and �(ui; i, j) cannot be defined (cf. Notation 3).

Suppose that ui ∈ V (G(i, j)); then the path P (ui; i, j) is well defined (cf. Nota-
tion 3). Recall by Observation 6 that for any normal path P1 ofG(i+1, j) with a vertex
ux as its last vertex, such that ux ∈ N(ui), the path (P1, ui) is a normal path of G(i, j).
Conversely, recall by Observation 5 that the path P (ui; i, j) \ {ui} (if not empty) is a
normal path of G(i + 1, j). Therefore, in order to update the value of P (ui; i, j), the



THE LONGEST PATH PROBLEM ON COCOMPARABILITY GRAPHS 961

algorithm correctly computes in lines 11–13 the paths (P (ux; i + 1, j), ui) for every
ux ∈ V (G(i + 1, j)), such that ux ∈ N(ui), and keeps the longest of them.

Recall now that for every uy ∈ V (G(i + 1, j)), the value �(uy; i + 1, j) is the
greatest length of a normal path P of G(i, j) with uy as its last vertex such that
P does not include ui. Furthermore, recall that for every uy ∈ V (G(i + 1, j)) the
values P (uy; i, j) and �(uy; i, j) have been initialized in line 6 as P (uy; i + 1, j) and
�(uy; i+1, j), respectively. In the case where ui ∈ V (G(i, j)) (cf. line 10), the algorithm
executes lines 15–17 for every ux ∈ V (G(i + 1, j)) with ux ∈ N(ui) and for every
uy ∈ V (G(i + 1, x− 1)). For such a pair of vertices ux, uy, recall by Lemma 11 that
(P (ux; i + 1, j), ui, P (uy; i + 1;x − 1)) is a normal path of G(i, j) with uy as its last
vertex. Conversely, let P be a normal path of G(i, j) with uy �= ui as its last vertex,
let P = (P1, ui, P2), and let ux be the last vertex of P1. Then Lemma 12 implies
that P1 = P (ux; i + 1, j) and P2 = P (uy; i + 1, x − 1). Therefore, the algorithm
correctly computes during the multiple executions of lines 15–17 the greatest length
� of a normal path P of G(i, j) with uy as its last vertex such that P includes ui. If
at least one of these paths has greater length than the initial value �(uy; i, j) that has
been computed in line 6, the algorithm keeps in P (uy; i, j) the longest among these
paths. This completes the induction step.

Therefore, for every pair of indices i, j ∈ {1, 2, . . . , n} (such that G(i, j) �= ∅) and
every uk ∈ V (G(i, j)), the algorithm correctly computes after the execution of lines 1–
17 a longest normal path P (uk; i, j) of G(i, j) with uk as its last vertex and its length
�(uk; i, j) = |P (uk; i, j)|. Finally, the algorithm computes and returns in line 18 the
longest among the paths P (uy; 1, n), where uy ∈ V (G(1, n)). Since G(1, n) = G, the
returned path is a longest normal path of G and thus also a longest path of G by
Theorem 2.

Before establishing the running time of the algorithm, we discuss some imple-
mentation details. First, to avoid the search of the table indicated in line 18, the
length and location of the current longest path would be maintained throughout the
algorithm. Second, we have to state exactly what is stored in each entry of the table.
Following standard dynamic programming techniques, we do not store the path itself
but rather an indication of how the path is built. In particular, each of lines 6, 8, 12,
and 16 gives “instructions” on how to build the current longest path using informa-
tion that has already been computed. At the end of the algorithm a simple recursive
unwinding of these “instructions” yields a longest path in the given graph.

Regarding the running time of Algorithm 4, we first examine the dynamic pro-
gramming part of the algorithm. Lines 15–17 lie in four loops of O(n) iterations each.
Following the implementation details described above, each step in lines 15–17 can
be executed in constant time, yielding an O(n4) bound on the dynamic programming
portion of the algorithm. Since the other parts of the algorithm, even if we have to
confirm that we have an umbrella-free ordering of V , can easily be implemented to
run in O(n3) time, the total running time of Algorithm 4 is O(n4). This completes
the proof of the theorem.

Remark 1. Recall by Observation 1 that an I-ordering σ of any interval graph G
is also an umbrella-free ordering. Furthermore, it is easy to see that σ is also an LDFS
ordering. Thus, since lines 2–17 of Algorithm 4 are applied to such an ordering σ, and
since interval graphs are strictly included in cocomparability graphs [3], Theorem 3
implies that Algorithm 4 (which is essentially simpler than the algorithm presented
in [16]) also computes with the same time complexity a longest path of an interval
graph.
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5. Conclusion and further research. In this paper we provided the first poly-
nomial algorithm for the longest path problem on cocomparability graphs. This algo-
rithm is based on a dynamic programming approach that is applied to a lexicographic
depth first search (LDFS) characterizing ordering of the vertices of cocomparability
graphs. Our results provide hope that this general dynamic programming approach
can be used in a more general setting, leading to efficient algorithms for the longest
path problem on even greater classes of graphs. Furthermore, more interestingly, in
addition to the recent results presented in [6], our results also provide evidence that
cocomparability graphs present an interval graph structure when they are considered
using an LDFS characterization ordering of their vertices, which may lead to other
new and more efficient combinatorial algorithms. Many interesting open questions
are raised by the results in this paper:

• There are now two path problems where the interval graph algorithm can be
modified by the addition of an LDFS+ preprocessing sweep to solve the same
problem on cocomparability graphs. Are there other such problems?
• More importantly, is there an underlying “interval structure” in cocompara-
bility graphs exposed by an LDFS+ sweep of an umbrella-free ordering?
• There are many applications of multisweeping of LBFS (see [9] for a recent
result; for a survey see [5]). Is anything gained by multisweeping LDFS?
• Are there other applications of LDFS?
• Can the new Hamiltonian path, minimum path cover, and longest path algo-
rithms for cocomparability graphs be extended to asteroidal triple–free (AT-
free) graphs or, failing that, to graph classes that lie between cocomparability
graphs and AT-free graphs [7]? The complexity of all Hamiltonicity problems
is still open for AT-free graphs.
• Can LDFS be implemented to run in linear time?
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