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Many recent rationail expectations models have been estimated by the
techniques developed by Hansen (1982), Hansen and Singleton (1982), Cumby,
Huizinga, and Obstfeld (1983), and White and Domowitz (1984). These estima-
tion techniques make use of an orthogonality conditian Eht(e*) = 0, where
6% is a (k x 1) wvector of unknown parameters and ht(e) is a (r x 1)
vector of functions of the data and parameters, where r 2 k. This orthogo-
nality condition can be employed to form a generalized method of moments

(GMM, Hansen (1982}) estimator of 6% by choosing 8 as the solution to
. ,A

where h(8) = Ztllht(e)/T is the vector of sample moments of he(6) and
A
Wi is a (possibly) random, symmetric weighting matrix.
As shown in Cumby, Huizinga, and Obstfeld (1983), Hansen (1982), and White

A
and Domowitz (1984), the asymptotic covariance matrix of & 1is given by
(2) Vi = (Hp'WpHp) TUHp WeSqWpHp (Hp WoHp) 7!

T : - . g .
where Hy = ZtélEEhte(G*}]/T and hyg(6) s the (r x kj matrix of
partial derivatives of ht(s)' Wr is a nonrandom matrix such that plim
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of this asymptotic covariance matrix is essential for the construction of
asymptotic confidence intervals and hypothesis tests. Estimation of Hy
and Wp is straightforward, since QT forms a natural estimator of Wy
and under the regularity conditions in Hansen {(1982) or White and Domowitz

(1984) it will be the case that

(3) Hy - Dol hea(8)/T =B» 0
T = Zp=1Nte :

Estimation of S; is more difficult, and is also more important. As shown
by Hansen (1982), an optimal GMM estimator (in the sense that Vr is as
small as possible) is obtained when WT is a consistent estimator of
(ST)—I, so that estimation of Sy is also important for the formation of
an optimal GMM estimator.

The simplest estimator of St that has been proposed takes the form

m T
~ A A " - A A
(4) S =8+ EZ [Qj + QJ 1, QJ = Z htht'j/T’
j=t t=j+1

A A
where hy = hy(6). The bound m on the number of sample autocovariances

(1]

A .
Qj used to form 7+ s in many studies equal to the number of nonzero
autocorrelations of ht(e*), which is known a priori (e.g., Cumby,

Huizinga, and Obstfeld (1983), Hansen and Singleton (1982), and West

(1986a}). In some studies the number of nonzero autocorrelations is not
known a priori and may not even be finite (e.g., West (1985,1986a)). In

. . . ® . ¥ . P
such cases Sy maey still be consistently estimated by St (i.e. Sy - S¢ —>

0y if m 1is chosen to be a function m(T) of sample size and is allowed to
grow slowly enough with the sample size (see White and Domowitz (1984) and
Theorem 2 below).

~

While Sy 1is consistent, it need not be positive semi-definite in any

tinite sample when m is not zero. It follows that an estimator of VT



that uses gT as the middle matrix need not be positive semi-definite.
This property of gT interferes with asymptotic confidence interval forma-
tion and hypothesis testing. Estimated variances and test statistics will
be negative for some linear combinations of 5 when the estimated
covariance matrix is not positive semi-definite, In addition, an estimator
of S¢ that is not positive semi-definite may be troublesome because, as
pointed out to us by John Huizinga, iterative techniques for computing an
optimal GMM estimator with QT = (g})"l may behave poorly if g} is not
positive semi-definite,

Time domain techniques to calculate an estimator of St that is
positive semi-definite have been suggested by Eichenbaum, Hansen, and
Singleton (1984) and by Cumby, Huizinga, and Obstfeld (1983). These
techniques appear to be difficult to appiy in practice. Hansen (1982)
suggested the use of spectral methods for the estimation of S, motivated
by the fact that in the covariance stationary case the 1imit of Sy is 2nm
times the spectral density of ht(e*) at frequency zsro. Although
frequency domain techniques for estimating S; are cumbersome, a time
domain approach turns out to be very useful. As in West (1985) we consider
an estimator ET of ST that is as simple to compute as g},

A m A A
{5) St =8g + Z w(j,m)[nj + 0.1, w(j,m) =1 - [j/(m+1)],
This estimator is numerically equal to 2n times an estimator of the
spectral density of ht(e*) at frequency zero, where the modified Bartlett
weights are used to smooth the sample autocovariance function; see Anderson
(1971, Section 9.2). Note that gT is obtained in a similiar fashion to

~

St, except that the sample autcocovariances are weighted by



w(j,m) =1 - [j/(m+t1)], which declines as j increases. Such a covariance
smoothing approach to estimation of S; has been suggested by Doan and

A
Litterman (1983).2 That Sy 1s positive semi-definite foliows from the

positive semi-definiteness of the sample autocovariance function.

Theorem 1: ET is positive semi-definite.

A
Proof: For any (r x 1) wvector c, c’Syc = wg + Znglw(j,m)w(j), where

A A
w(j) = Zt=}+1(c'ht)(c'ht_j)/T, (§=0, 1, ..., T-1). Let P = [p;;1 be the

{m+1)-dimensional symmetric matrix with = w(li-jl). Positive semi-

pij
definiteness of P is proven, for example, in MclLeod and Jimenez (1984),.

Letting e be a (m+l x 1) vector of ones, we then have

(6) c’Stc = e’Pe/(m+1) 2 O.

Other choices of the weight function w(j,m) will also yield positive
semi-definite estimators of ST. If the vector of ones in the proof of
Theorem 1 is replaced by (v(O,m), ..., v(m,m)), where gach wv(j,m) 1{s an
arbitrary number, then we find that the following choice of weights will
also yield a positivé semi-definite estimator of ST;

m-j m
(7) wii,m) = [ T v(&,mv(2+j,m3I/L £ v(2,m?1.

£=0 2=0
Also, if w(j,m) 1is chosen to be a weight function that would generate a
nonnegative spectral density estimate for a univariate time series then the
resulting estimator of S; will be positive semi-definite. Anderson (1971,
Section 9.2) discusses the relative merits of different weighting schemes
under a different set of regularity condtions than those we consider below.

Galtlant {1985) also discusses the choice of weights and presents results



similiar to ours.3

Note that for fixed j the weight w(j,m) =1 - [j/(m+1)] approaches
one as m grows, It is reasonable to expect that estimators of St that
are formed by smoothing sample autocovariances with weights that approach
one as m grows should be consistent if m 1is allowed to grow with the
sample size. The consistency of such estimators of St can be shown to
hold under regularity conditions like those of White and Domowitz (1984),
where the interested reader is referred for the notation and definitions

that relate to mixing conditions. For a matrix A = laj;1, let |A|

;
denote the norm maxi’jlaijl.
Theorem 2: Suppose that
(i) hy(6) = h(zy,8), where h(z,6) 1is measurable in z for all &,
and continuously differentiable in 8 for ail 6 in a neighborhood
N of 6%, with probability one;
(ii) (a) There is a measurable function m(z) such that
supNIht(G)! < m(z) and supNthte(G)i < m(z), where for some finite
constant D, EIm(zy)?1 <D for all t;
{b) There are finite constants DB, 6§ >0 and ¢ 2 1, such that for
all t, ECIhg(6%)14(r*8)y ¢ p;
(iii) zy s a mixing sequence with either @(f) of size 2r/(2r-1) or
a(?) of size 2r/(r-1), r > 1;
(iv) For all t, ELh (6%)]1 = 0, and JT(8 - 6%) 1is bounded in
probability;
(v) The weights w(j,m), (m =1, 2, ..., j =1, ..., m) satisfy |(w(j,m)|

£ C for some finite constant C and for each j, 1lim

meao¥(jam) = 1.

Then if m is chosen to be a function m(T) of sample size such that

ViMp,m(T) = +0 and 1imp, (miT)/TH/42 = 0 it follows that



m{T) a A b
(8) g + Z w(j,m(T)J[Qj *RyT13 - 5t — 0.

j=1

The proof of Theorem 2 is given below.

The assumptions of Theorem 2 require that h,(8) and h g4(6) are
dominated by a function of 2z, that has uniformly bounded second moment,
that ht(e*) has uniformly bounded moments of up to slightly more
than the fourth order, and that the dependence between observations go to
zero at certain rates as the distance between observations increases.
Consistency follows if m(T) goes to infinity with T more slowly than

1174

Note that choosing w(j,m) equal to one for each j and m yields

we

the estimator T of equation (4), a special case of which was considered
by wWhite and Domowitz (1984). The consistency result of Theorem 2 differs

from that of Theorem 3.5 of White and Domowitz (1984) in two respects,.

First, the siower rate of growth of m{(7) reguired in Theorem 2, with

7i/4 T1/3,

m(T) required to grow slower than rather than slower than
results from a slight correction to the arguments in White and
Domowitz (1984), and not from allowing for a general class of weights,
Second, the above consistency result allows for general forms of
nonlinearity in the parameters.

It should be noted that the derivation of the slower than T!/4 growth
rate for m(T) depends heavily on the use of mixing conditions. If ht(e*)
is an infinite order moving average with absolutely summable coefficients
and i.i.d. innovations, where the innovations have finite fourth moments,
then the proof of Theorem 2 and Theorem 7.2.3 in Fuller (1976) can be
TH2 for m(T) wil

combined to show that a growth rate of slower than

A
suffice for consistency of 54, On the other hand, as pointed out to us by



Lars Hansen, it may be difficult to obtain an appropriate growth rate for
m(T) under weaker dependence restrictions than mixing, such as the station-
ary, ergodic situation considered in Hansen (1982},

The specification of an appropriate growth rate for m(T) gives little
guidance concerning the choice of m in practice. Cross-validation methods
(e.g. Wahba and Wold (1975)) and the testing approach suggested by White and
Domowitz (1984) may prove useful. The assesment of such suggestions using
Monte Carlo work or more refined asymptotics is an important topic of future
research. It would also be useful to know if the estimators suggested by
Cumby, Huizinga, and Obstfeld (1983) and Eichenbaum, Hansen, and Singleton
(1984) provide better estimators of 5S¢ than gT when the number of

nonzero autocorrelations is known a priori.

PROOF OF THEOREM 2

A sequence of symmetric matrices {A;} coverges to a symmetric matrix

Ag 1f and only if c’Ayc -> C’AgC for all conformable vectors c. Then
A A A
taking a linear combination c’'hy, where e.g., lc'hel g rlclihet, we can
restrict attention to the scatar case with r = 1.
- = T 32 LT T o - *
Let ST - (..t___lht/T + Zijl\V(J,m)zt=j+1htht_j/.r and ht - ht(e ). FOI‘

notational convenience we will suppress the T argument in m(T). It

follows by the triangle inequality and the form of §T that
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_ T m T
1S - L2 0f/T+ 2 2 wi,m £ hyhy /T3
t=1 =1 t=j+1
T m T
+ 1 Z (h2-Eth21)/T + 2 T w(j,m) = (hghy_y = EChghy §13/T)
t=1 =1 t=j+1
T m T
+ L ZEINI/T + 2 Twg,m) I EChghg 1T - Sqios
t=1 j=1 t=3+1
_ T m T
ISy - L Zh{/T+ 2T w@,m £ heng 5/TI
t=1 j=t t=j+1
T ) ) m T
+ 1T (hE-ELhE1I/T + 2 T w(j,m) I (hghy g ~ EChghy §3)/TI
t=1 j=1 t=j+1
m T
+ 2 E dwy,m=1 I IEChehy y31/T
i=1 t=j+1
-1 T
+2 X £ IEthghy y1I/T.
j=m+1 t=j+1

The fourth term goes to zero as T goes to infinity by Lemma 6.17 of
White (1984) and limp,gn = +oo.
By Corollary 6.16 in White (1984), there is a sequence 7(R),

(2=1,...,0), and a finite constant D’ such that [|EChihi_ ;11 < D'¥(j)

-]
for all T and for all j, with Z,%7(2) < +e. Then 2t=§+1lE[htht_33i/T
< D'r(j) for alt T and j. Since Vimp, w(j,m) = 1 for each J follows
from assumption (v), the dominated convergence theorem, applied to the
counting measure on the positive integers, implies that the third term in
equation (9) goes to zero as T goes to infinity,

Let th = htht—j - Eihtht_j]. Assumption (ii) (b) implies that there
is a finite constant D’ such that EC1Z¢512(7"8)) < b for a1l t and

j. The proof of Lemma 6.19 in White (1984} is incorrect as stated, and so0

cannot be used to show that the second term in eguation (9) converges in



probability to zero. Nevertheless, 1f one replaces (in our notation) the
double sum 171 Z;_f,; on page 153 of White (1984) with the correctly
indexed sum 22T22115t=j11+2 and applies the same argument as in the proof
of Lemma 6.19 in White (1984), one finds that there is a finite constant 0¥
such that for all j between zero and T, and for allt T,
T

(10) E(L = ztj32) g (T-5)03+1)0* g T(j+1)0*, j 2 0.

t=3+1
It follows from w{(j,m) wuniformly bounded by C that ngllw(j,mJI s mC.
Then for any € > 0, the triangie inequality, the implication rule (i.e. if
the occurence of event A implies that event B has occured then Prob(A}
s Prob(B})), the fact that the proability of the union of several events is
less than or equal to the sum of the probabilities, Chebyshev’s inequality,

and equation (10) imply

m T m T
(11) PUZwW(I,m) I Zgyl/T > €) g PO (Wi mill I Zyy/T1 > g)
j=1 t=j+1 j=t t=j+1
m T
€ ZP(L Z th/Tl > £/Cm)
j=1 t=j+1
m
< I (Cm/e)20*(3+1)/T = p*c2m3(m+3)/(262T).
Jj=t1

Then the second term in equation (9) converges in probability to zero by
the fact that m grows more slowly than T1/4, equation (10) (with j = 0
applied to £,l,(h? - ECh?1)/T, and the triangle inequality.
A

By (iv), 6 lies in N with probability approaching one as T

grows, so that with probability approaching one it is possible to obtain a
X - * ~ ~ "

mean value expansion of St around 6. Let hy = h,(6) and hig =

-~ ~
hte(e)’ where 6 is the mean value from this expansion. Then with

probability approaching one the first term after the inequality in eguation



(9) can be written as,

T ~ o~ m i 1 a4 ~ ~ . ~ * .
21 2 hthte + = W(J,m) I {htht-_]e + ht—JhtB’](G - 6 1/7
t=1 j=1 t=j+1
T m T N
<20 £ mizg)? + T Iw(i,m)l T 2m(zygim(ze )16 - 6°1/T
t=1 j=1 t=j+1
T m T N
<20 Tmiz? + T owii,mil E mizg)2emizy 023116 - 6¥ 0T
t=1 j=1 t=j+1
T
- - 2 A *
s 20(2Cm + 1)/YTI-0 Z m(z)/T1-JTI6 - 671,
t=1

Note that JTI§ - 6%| s bounded in probability by assumption (iv) and
that Ztllm(zt)2/T is bounded in probability by Markov’'s ineguality and
assumption (ii)(a). Then the first term in equation (9} converges in
probability to zero, since the fact that m grows mare slowly than Ti/4
implies that (2Cm + 1)/4T <converges to zero.

The conclusion now follows from equation (9), since we have shown that
each of the terms on the right-hand side of the second ineguality converges

in probability to zero,

10



FOOTNOTES

1. We are grateful to Stephen Cecchetti, Lars Hansen, John Huizinga, and
two referees for heipful comments. We are also grateful to the NSF for

research support under grants SES-8410249 amd SES-8511070.

2. Doan and Litterman (1983) do not assert or show that St 1is positive

semi-definite, nor do they establish consistency.

3. Gallant’s (1985) manuscript came to our attention after this note was

submitted.
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