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Abstract

We provide a new proof of a Kramers’ type law for self-stabilizing diffusion. These
diffusions correspond to the hydrodynamical limit of a mean-field system of particles
and may be seen as the probabilistic interpretation of the granular media equation.
We use the same hypotheses as the ones used in the work “Large deviations and a
Kramers’ type law for self-stabilizing diffusions” by Herrmann, Imkeller and Peithmann
in which the authors obtain a first proof of the statement.
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1 Introduction

In the remarkable work “Large deviations and a Kramers’ type law for self-stabilizing
diffusions”, Herrmann, Imkeller and Peithmann establish large deviation results and
solve the exit problem of the so-called self-stabilizing diffusion. This consists of the
following model.

Xǫ
t = X0 +

∫ t

0

V (Xǫ
s)ds−

∫ t

0

∫

Rd

Φ (Xǫ
s − x) duǫs(x)ds+

√
ǫWt . (1.1)

In this equation, V and Φ denote vector fields on R
d ; (Wt)t≥0 is a d-dimensional Wiener

process ; duǫt denotes the law of the random variable Xǫ
t and X0 is a deterministic real.

We remark that the own law of the process intervenes in the drift which explains the
term self-stabilizing.

Equation (1.1) corresponds to the hydrodynamical limit of a mean-field system of
particles.

Zǫ,i,N
t = X0 +

√
ǫW i

t +

∫ t

0

V
(

Zǫ,i,N
s

)

ds− 1

N

N
∑

j=1

∫ t

0

Φ
(

Zǫ,i,N
s − Zǫ,j,N

s

)

ds ,

for all 1 ≤ i ≤ N . Here, the W i are independent Brownian motions and W 1 = W . See
[4].
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Kramers’ type law for self-stabilizing diffusions

In [3], the authors consider an open domain D satisfying some hypotheses and they
study the limit as ǫ goes to 0 of ǫ log {E [τD(ǫ)]} where τD(ǫ) is defined as the first exit
time of Xǫ from the domain D:

τD(ǫ) := inf {t ≥ 0 | Xǫ
t /∈ D} .

More precisely, they obtain the limit

lim
ǫ→0

P

{

e
1
ǫ (Q∞−ξ) < τD(ǫ) < e

1
ǫ (Q∞+ξ)

}

= 1 ,

for any ξ > 0. Here, Q∞ denotes the exit cost of the domain D:

Q∞ := inf
z∈∂D

inf
T>0

inf
ϕ∈H1

z

1

2

∫ T

0

||ϕ̇t − V (ϕt) + Φ(ϕt − xstable)||2 dt .

The setH1
z denotes the space of absolutely continuous functions f such that f(0) = xstable

and f(T ) = z. And, xstable is the unique point at which the vector field V is equal to 0.
In a gradient case, we simply have Q∞ := 2 infz∈∂D (H(z)−H(xstable)), where the

potential H is defined by ∇H(x) = V (x)− Φ(x− xstable).
To obtain their result, they reconstruct Freidlin-Wentzell theory to the self-stabilizing

diffusion. More precisely, they establish a large deviation principle with the good rate
function

Iy[0;T ](ϕ) :=
1

2

∫ T

0

||ϕ̇t − V (ϕt) + Φ (ϕt − xstable)||2 ,

if ϕ(0) = y and if ϕ is absolutely continuous. Otherwise, Iy[0;T ](ϕ) := +∞. Here xstable is
the unique point which anneals V . To obtain this large deviation principle, Herrmann,
Imkeller and Peithmann prove that the time homogeneous diffusion

Y∞,y
t = y +

√
ǫWt +

∫ t

0

[

V (Y∞,y
s )− Φ (Y∞,y − xstable)

]

ds

is an exponentially good approximation of the McKean-Vlasov diffusion.
More recently, we published a work ([5]) which proves the same result (albeit only in

the gradient case) by using a different method. We solve the exit problem of the first
particle Zǫ,1,N and we use a coupling method between Zǫ,1,N and Xǫ. The proof is more
natural and intuitive but is more technical.

In the present paper, we do not use large deviation principle but a coupling method
between the time-homogeneous diffusion and the McKean-Vlasov diffusion so that the
results on the exit-time of Y∞,y can be used for the exit-time of solution of Equation
(1.1).

The aim of this paper is to provide a much simpler method than the ones of [3, 5] to
obtain the result. Moreover, in [3, 5], the confining and interacting potentials (in the
gradient case) are assumed to be convex.

In [3], the authors need some uniform (with respect to the time) convergence of the
drift. In [5], the convexity is required in order to ensure the stability of some domains.
We expect some refinement in our work in the sense that we do not use directly the
global convexity. Indeed, let us note that the present work aims at solving the exit
problem of general time-inhomogeneous diffusions provided that long-time convergence
(with a rate of convergence which does not depend on the diffusion coefficient) holds
together with a local convexity (at least on the domain from which we search the exit).

For a complete review of Freidlin-Wentzell theory, see [1, 2].
First, we give the assumptions of the paper, that are the same as the ones in [3] (see

pages 1383 and 1406). Then, we remind the reader of the main result of the paper that
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Kramers’ type law for self-stabilizing diffusions

concerns the exit time. We have chosen not to deal with the exit location because we do
not have any improvement on this question. In a third section, we provide the proof of
the theorem.

2 Assumptions and notations

In this work, we take the same hypotheses as the ones in [3].

Assumption (A):

(A-1) The coefficients V and Φ are locally Lipschitz, that is, for each R > 0 there exists
KR > 0 such that ||V (x)− V (y)|| + ||Φ(x)− Φ(y)|| ≤ KR ||x− y||, for x, y ∈ BR(0) :=
{

z ∈ R
d : ||z|| < R

}

.
(A-2) The interaction function Φ is rotationally invariant, that is, there exists a function
φ from [0; +∞[ to [0; +∞[ such that Φ(x) = x

||x||φ(||x||), x 6= 0.

(A-3) The function φ is convex and φ(0) = 0.
(A-4) The function Φ grows at most polynomially: there exists K > 0 and r ∈ N such
that ||Φ(x)− Φ(y)|| ≤ ||x− y|| (K + ||x||r + ||y||r), x, y ∈ R

d.
(A-5) The function V is continuously differentiable.
(A-6) Let DV (x) denote the Jacobian of V . We assume that there exists KV > 0 such
that 〈h ; DV (x)h〉 ≤ −KV , for h ∈ R

d such that ||h|| = 1 and x ∈ R
d.

(A-7) We assume that the unique point at which the vector field is equal to 0 is xstable.
Under these assumptions, there exists a positive integer n0 such that for any compact

K, we have supx∈K |Φ ∗ µ(x)− Φ(x− xstable)| ≤ K (M1, · · · ,Mn0
), K being a continuous

function such that K(0, · · · , 0) = 0 and

Mp :=

∫

Rd

||y − xstable||p µ(dy) .

We now present the definition of what we denote as “stable by”.

Definition 2.1. Let k be any positive integer. Let G be a subset of Rk and let U be a
vector field from R

k to R
k which satisfies the same assumptions as in V in Assumptions

(A). For all x ∈ R
k, we consider the dynamical system ψt(x) = x +

∫ t

0
U (ψs(x)) ds. We

say that the domain G is stable by U if the orbit {ψt(x) ; t ∈ R+} is included in G for all
x ∈ G.
Hypothesis 2.2. We consider the dynamical system ϕt = X0 +

∫ t

0
V (ϕs) ds where X0 is

introduced in (1.1). The orbit {ϕt ; t > 0} is included in D.
Hypothesis 2.3. The open domain D is stable by V − Φ(.− xstable).

Definition 2.4. B
∞
κ denotes the set of all the probability measures µ on R

d satisfying
∫

Rd ||x− xstable||2r µ(dx) ≤ κ2r.

We now give the main result of the current work.
Theorem: We consider vector fields V and Φ which satisfy the set of assumptions (A).
Under Hypotheses 2.2–2.3, for all ξ > 0, we have the limit:

lim
ǫ→0

P

{

e
1
ǫ (Q∞−ξ) < τD(ǫ) < e

1
ǫ (Q∞+ξ)

}

= 1 .

Let us notice that Herrmann, Imkeller and Peithmann assume a stronger hypothesis
than Hypothesis 2.3. Indeed, in our work, the domain D is not assumed to be stable
by V .

3 Proof of Theorem

For the sake of the reading, we assume xstable = 0 in this section. Immediately, we
have V (0) = 0. Let us note that there is no loss of generality.
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Kramers’ type law for self-stabilizing diffusions

3.1 Control of the moments

We now establish an important result about all the moments of Xǫ. Indeed, since
these moments intervene in the drift, the asymptotic behaviour (deterministic) of the
law uǫt is related to the asymptotic behaviour (probabilistic) of the trajectories.

Proposition 3.1. 1. The 2nth moment is uniformly bounded:

sup
t∈R+

E

{

||Xǫ
t ||2n

}

≤ max

{

||X0||2n ;

(

2n− 1

2KV

)n

ǫn
}

. (3.1)

2. Let κ be a positive real. We introduce the deterministic time

Tn
κ (ǫ) := min

{

t ≥ 0
∣

∣

∣
E

{

||Xǫ
t ||2n

}

≤ κ2n
}

.

For ǫ < κ2KV

2n−1 , we have the inequality: Tn
κ (ǫ) ≤ 1

nKV κ2n ||X0||2n.
3. Moreover, for all t ≥ Tn

κ (ǫ), E
{

||Xǫ
t ||2n

}

≤ κ2n, still for ǫ < κ2KV

2n−1 .

Proof. We put ξǫ(t) := E

{

||Xǫ
t ||2n

}

. We apply the Itô formula, we integrate, we take the

expectation then we take the derivative. We obtain:

ξ′ǫ(t) =2nE
{

||Xǫ
t ||

2n−2 〈Xǫ
t ; V (Xǫ

t )〉
}

− 2nE
{

||Xǫ
t ||2n−2 〈Xǫ

t ; Φ ∗ uǫt (Xǫ
t )〉

}

+ n(2n− 1)ǫE
{

||Xǫ
t ||2n−2

}

=: 2n (aǫ(t) + bǫ(t)) + cǫ(t) .

By definition, the second term bǫ(t) can be written as

bǫ(t) = −E

[

||Xǫ
t ||2n−2 〈Xǫ

t ; Φ (Xǫ
t − Y ǫ

t )〉
]

where Y ǫ is a solution of (1.1) independent from Xǫ. We can exchange Xǫ and Y ǫ.
Thereby, by using the assumptions, we get:

bǫ(t) = E

{

φ (||Xǫ
t − Y ǫ

t ||)
||Xǫ

t − Y ǫ
t ||

〈

||Xǫ
t ||2n−2

Xǫ
t ; X

ǫ
t − Y ǫ

t

〉

}

=
1

2
E

{

φ (||Xǫ
t − Y ǫ

t ||)
||Xǫ

t − Y ǫ
t ||

〈

Xǫ
t ||Xǫ

t ||2n−2 − Y ǫ
t ||Y ǫ

t ||
2n−2

; Xǫ
t − Y ǫ

t

〉

}

.

This last term is nonnegative. Indeed, the Cauchy-Schwarz inequality implies
〈

x ||x||2n−2 − y ||y||2n−2
; x− y

〉

≥
(

||x||2n−1 − ||y||2n−1
)

(||x|| − ||y||) ≥ 0

for all x, y ∈ R
d. Therefore, we obtain bǫ(t) ≥ 0.

Moreover, the convexity assumption implies

aǫ(t) = E

{

||Xǫ
t ||2n−2 〈Xǫ

t ; V (Xǫ
t )〉

]

≤ −KV E

{

||Xǫ
t ||2n

}

= −KV ξǫ(t) .

Hence, by using Jensen inequality, we deduce cǫ(t) ≤ n(2n− 1)ǫξǫ(t)
1− 1

2n . By combining
results on aǫ(t), bǫ(t) and cǫ(t), we obtain

ξ′ǫ(t) ≤ −2nKV ξǫ(t)
1− 1

n

{

ξǫ(t)
1
n − (2n− 1)ǫ

2KV

}

. (3.2)

The statements of the lemma are obvious consequences of Inequality (3.2).

This means that the self-stabilizing process tends to be trapped in a ball with center
0 = xstable.
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Kramers’ type law for self-stabilizing diffusions

3.2 Probability of exiting before Tκ(ǫ)

In this paragraph, we give the following result.

Proposition 3.2. We have: limǫ→0 P (τD(ǫ) < Tκ(ǫ)) = 0 for any κ > 0.

We skip the proof but the ideas are the following. For all δ > 0, we introduce
τδ(ǫ) := inf {t > 0 : ||Xǫ

t − ϕt|| > δ}, where we remind the reader that ϕt = X0 +
∫ t

0
V (ϕs) ds. Thus, for any T > 0, the following limit is an easy and classical result:

limǫ→0 P (τδ(ǫ) < T ) = 0. However, here, we consider the interval [0;Tκ(ǫ)] which de-
pends on ǫ. But, we have uniformly bounded Tκ(ǫ). Indeed, we have P (τδ(ǫ) < Tκ(ǫ)) ≤
P

(

τδ(ǫ) <
1

nKV κ2n ||X0||2n
)

, which goes to 0 as the noise elapses.

Due to Hypothesis 2.2, we have {ϕt : t > 0} ⊂ D. Consequently, for any κ > 0, we
obtain the limit limǫ→0 P (τD(ǫ) < Tκ(ǫ)) = 0.

3.3 Coupling result

Let K be a compact domain which contains the open set D.
We have proven that the diffusion does not exit the domain D before the time Tκ(ǫ)

with large probability when ǫ is small. Now, we study the exit of the diffusion from the

domain after the time Tκ(ǫ). To do so, we use the inequality: supt≥Tκ(ǫ) E

{

||Xǫ
t ||2n

}

≤
κ2n, which holds for any κ > 0 (as soon as ǫ < κ2KV

2n−1 ), we deduce that the drift V −Φ ∗ uǫt
is close to the vector field V − Φ ∗ δ0 = V − Φ. Consequently, we consider the following
diffusion defined for t ≥ Tκ(ǫ):

Y ǫ
t = XTκ(ǫ) +

√
ǫ
(

Wt −WTκ(ǫ)

)

+

∫ t

Tκ(ǫ)

V (Y ǫ
s )ds−

∫ t

Tκ(ǫ)

Φ (Y ǫ
s ) ds ,

if XTκ(ǫ) ∈ K and Y ǫ
t := Xǫ

t otherwise. We introduce the two exit times: τK(ǫ) :=

inf {t > Tκ(ǫ) : Xǫ
t /∈ K} and τ ′K,κ(ǫ) := inf {t > Tκ(ǫ) : Y ǫ

t /∈ K}.
We introduce the stopping time: TK,κ(ǫ) := min {τK(ǫ); τ ′K(ǫ)}. The following result

tells us that the two diffusions are close on [Tκ(ǫ) ; TK,κ(ǫ)].

Theorem 3.3. There exists κ0 such that for all κ < κ0, there exists ǫ0(κ) > 0 such that

P

{

supTκ(ǫ)≤t≤TK,κ(ǫ) ||Xǫ
t − Y ǫ

t || ≥ r(κ)
}

≤ r(κ) for all ǫ < ǫ0(κ). Here, r is a positive,

continuous and increasing function such that r(0) = 0.

Proof. Step 1. We introduce the vector fields H∞(x) := V (x) − Φ(x) and Ht(x) :=

V (x)− Φ ∗ uǫt(x). The assumptions on V and Φ imply DHt(x) ≤ −KV < 0. From now on,
we put ξǫ(t) := ||Xǫ

t − Y ǫ
t ||. If Xǫ

Tκ
, Y ǫ

Tκ
∈ K then, for all Tκ ≤ t ≤ Tκ(ǫ), we have:

d

dt
(ξǫ(t))

2
=− 2 〈Ht (X

ǫ
t )−H∞ (Y ǫ

t ) ; X
ǫ
t − Y ǫ

t 〉

=− 2 〈Ht (X
ǫ
t )−Ht (Y

ǫ
t ) ; X

ǫ
t − Y ǫ

t 〉
− 2 〈Φ ∗ uǫt (Y ǫ

t )− Φ (Y ǫ
t ) ; X

ǫ
t − Y ǫ

t 〉
≤ − 2KV (ξǫ(t))

2
+ 2ξǫ(t)fK(κ) , (3.3)

where we set fK(κ) := sup
µ1∈B∞

κ

sup
x∈K

||Φ ∗ µ1(x)− Φ(x)|| =: KV r(κ)
3
2 . Inequality (3.3) di-

rectly implies sup
Tκ≤t≤Tκ(ǫ)

||Xǫ
t − Y ǫ

t ||2 ≤ r(κ)3 which yields E

{

sup
Tκ(ǫ)≤t≤Tκ(ǫ)

||Xǫ
t − Y ǫ

t ||2
}

≤

r(κ)3. The claim thus follows from the Markov inequality.
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3.4 Proof

Step 1. Let κ > 0. We can easily prove (by proceeding like in [5]) that there exist
two families of domains (Di,κ)κ>0 and (De,κ)κ>0 such that

• Di,κ ⊂ D ⊂ De,κ.

• Di,κ and De,κ are stable by V −Φ. The terminology “stable by” has been introduced
in Definition 2.1.

• sup
z∈∂Di,κ

d (z ; Dc) + sup
z∈∂De,κ

d (z ; D) tends to 0 when κ goes to 0.

• inf
z∈∂Di,κ

d (z ; Dc) = inf
z∈∂De,κ

d (z ; D) = r(κ).

Step 2. By τ ′i,κ(ǫ) (resp. τ
′
e,κ(ǫ)), we denote the first exit time of Y ǫ from Di,κ (resp.

De,κ).

Step 3. We prove here the upper bound:

P

{

τD(ǫ) ≥ e
Q∞+ξ

ǫ

}

=P

{

τD(ǫ) ≥ e
Q∞+ξ

ǫ ; τ ′e,κ(ǫ) ≥ e
Q∞+ξ

ǫ

}

+ P

{

τD(ǫ) ≥ e
Q∞+ξ

ǫ ; τ ′e,κ(ǫ) < e
Q∞+ξ

ǫ

}

≤P

{

τe,κ(ǫ) ≥ e
Q∞+ξ

ǫ

}

+ P

{

τD(ǫ) ≥ e
Q∞+ξ

ǫ ; τ ′e,κ(ǫ) < e
Q∞+ξ

ǫ

}

=: aκ(ǫ) + bκ(ǫ) .

Step 3.1. By classical results in Freidlin-Wentzell theory, there exists κ1 > 0 such that
for all 0 < κ < κ1, we have: limǫ→0 P

{

τ ′e,κ(ǫ) < exp
[

1
ǫ

(

Q∞ + ξ
)]}

= 0. Therefore, the
first term aκ(ǫ) tends to 0 as ǫ goes to 0.
Step 3.2. Let us look at the second term bκ(ǫ). For κ sufficiently small, we have De,κ ⊂ K.
Consequently, we have:

P

{

τD(ǫ) ≥ e
Q∞+ξ

ǫ ; τ ′e,κ(ǫ) ≤ e
Q∞+ξ

ǫ

}

≤ P

{
∣

∣

∣

∣

∣

∣
Xǫ

τ ′
e,κ(ǫ)

− Y ǫ
τ ′
e,κ(ǫ)

∣

∣

∣

∣

∣

∣
≥ r(κ)

}

≤ P

{

sup
Tκ(ǫ)≤t≤TK,κ(ǫ)

||Xǫ
t − Y ǫ

t || ≥ r(κ)

}

.

According to Theorem 3.3, there exists ǫ0 > 0 such that the previous term is less than
r(κ) for all ǫ < ǫ0.
Step 3.3. Let ξ be a positive real. By taking κ arbitrarily small, we obtain the upper

bound limǫ→0 P

{

τD(ǫ) ≥ exp
[

Q∞+ξ
ǫ

]}

= 0.

Step 3. Analogous arguments show that limǫ→0 P

{

Tκ(ǫ) ≤ τ(ǫ) ≤ e
Q∞−ξ

ǫ

}

= 0. However,

we have limǫ→0 P {τ(ǫ) ≤ Tκ(ǫ)} = 0. This ends the proof.

Remark 3.4. We could use the same technics to provide the exit time of the first particle
in the mean-field system of particles. The only difference is that we would need to use
the first time that the empirical measure exits from the ball B∞

κ ; which is close to the
arguments in [5].
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