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A simple proof of Euler's continued fraction of e^{1/M}

Abstract
A continued fraction is an expression of the form

f0+ g0

f1+g1

f2+g2

and we will denote it by the notation [f0, (g0, f1), (g1, f2), (g2, f3), … ]. If the numerators gi are all equal to 1
then we will use a shorter notation [f0, f1, f2, f3, … ]. A simple continued fraction is a continued fraction with all
the gi coefficients equal to 1 and with all the fi coefficients positive integers except perhaps f0.

The finite continued fraction [f0, (g0, f1), (g1, f2),…, (gk –1, fk )] is called the kth convergent of the infinite
continued fraction [f0, (g0, f1), (g1, f2),…]. We define

[f0, (g0, f1), (g1, f2), (g2,f3),...] = lim [f0, (g0, f1), (g1, f2),..., (gk-1,fk)]

if this limit exists and in this case we say that the infinite continued fraction converges.
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A simple proof of Euler's continued fraction of  e1/M

JOSEPH TONIEN

Introduction
A continued fraction is an expression of the form

f 0 +
g0

f 1 +
g1

f 2 +
g2

…
and we will denote it by the notation .  If
the numerators  are all equal to 1 then we will use a shorter notation

.  A simple continued fraction is a continued fraction with
all the  coefficients equal to 1 and with all the  coefficients positive
integers except perhaps .

[f 0, (g0, f 1) , (g1, f 2) , (g2, f 3) , … ]
gi

[f 0, f 1, f 2, f 3, … ]
gi f i

f 0

The finite continued fraction  is called
the convergent of the infinite continued fraction .
We define

[f 0, (g0, f 1), (g1, f 2), … , (gk − 1, f k)]
k th [f 0, (g0, f 1), (g1, f 2), … ]

[f 0, (g0, f 1), (g1, f 2), (g2, f 3), … ] = lim
k → ∞

[f 0, (g0, f 1), (g1, f 2), … , (gk −1, f k)]
if this limit exists and in this case we say that the infinite continued fraction
converges.

In a foundational publication on the theory of continued fractions, De
fractionibus continuis dissertatio [1], Euler used the Ricatti differential
equation to derive the following interesting continued fraction for any
positive real number :M

e1/M = 1 +
1

M − 1 +
1

1 +
1

1 +
1

3M − 1 +
1

1 +
1

1 +
1

5M − 1 +
1
…

. (1)

When , we have the following simple continued fraction
expansion of 

M = 1
e
e = [2,  1,  2,  1,  1,  4,  1,  1,  6,  1,  1,  8, … ] (2)

The fact that a rational number must have a finite simple continued
fraction expansion implies that  is irrational.  Lagrange's theorem asserts
that a real number has a periodic simple continued fraction if, and only if, it
is a quadratic irrational.  Since (2) is not periodic,  must not be algebraic of
degree 2.

e

e
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Using integration of the form , Hermite [2] gave the
first proof that  is transcendental.  As a by-product, Hermite also derived
the identity (2).  Based on Hermite's work, Olds [3] gave an expository
proof of the continued fraction of .  Cohn [4] streamlined Olds' proof into a
short presentation.  Osler [5] extended Cohn's proof to the general case of

.  All of these proofs  rely heavily on the integration technique.

∫ e−rxxn (1 − x)n dx
e

e

e1/M

In this paper, we will present a simple proof of the continued fraction of
 − the identity (1) − which only involves the manipulation of recurrence

equations.  Our proof contains two steps.  In the first step, we show that
e1/M

e1/M = 1 +
1

M − 1
2 +

1
4

3M +
1
4

5M +
1
4

7M +
1
4

…

. (3)

And in the second step of the proof, we transform the identity (3) into
the form (1).

The interested reader is referred to [6, 7] for other proofs of related
continued fractions which also use manipulation of recurrence relations
instead of integration.

 
An interesting recurrence sequence

Let us look at the following sequence.
Lemma 1:  For a positive real number , let M

S0 = ∑
∞

i = 1

1
i! Mi

S1 = ∑
∞

i = 1

i − 1
(i + 1)! Mi

:

Sk = ∑
∞

i = 1

(i − 1) (i − 2) … (i − k)
(i + k)! Mi

then

Sn + 2 + (4n + 6) MSn + 1 − Sn = 0. (4)
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Proof: , and by ratio test, we can see that each of the series
 converges to a positive number.  We have

S0 = e1/M − 1
Sk

Sn − (4n + 6)MSn+ 1

= ∑
∞

i =1

(i − 1)(i − 2)… (i − n)
(i + n)!Mi

− (4n + 6) ∑
∞

i =1

(i − 1)(i − 2)… (i − n − 1)
(i + n + 1)!Mi −1

= ∑
∞

i =1

(i − 1)(i − 2)… (i − n)
(i + n)!Mi

− (4n + 6) ∑
∞

i =1

i (i − 1)… (i − n)
(i + n + 2)!Mi

= ∑
∞

i =1

(i − 1)(i − 2)… (i − n)[(i + n + 1)(i + n + 2) − (4n + 6)i]
(i + n + 2)!Mi

= ∑
∞

i =1

(i − 1)(i − 2)… (i − n)(i − n − 1)(i − n − 2)
(i + n + 2)!Mi

= Sn+ 2.
Using the recurrence relation (4), we can consistently define  as follows:S−1

S−1 = S1 + 2MS0

= ∑
∞

i = 1

i − 1
(i + 1)! Mi

+ 2M ∑
∞

i = 1

1
i! Mi

= 2 + ∑
∞

i = 1

i − 1
(i + 1)! Mi

+ 2 ∑
∞

i = 2

1
i! Mi − 1

= 2 + ∑
∞

i = 1

i − 1
(i + 1)! Mi

+ 2 ∑
∞

i = 1

1
(i + 1)! Mi

= 2 + ∑
∞

i = 1

i + 1
(i + 1)! Mi

= 2 + ∑
∞

i = 1

1
i! Mi

= e1/M + 1.
We now use the recurrence relation

Sn + 2 + (4n + 6) MSn + 1 − Sn = 0, for all n ≥ −1,
to establish a continued fraction.

Lemma 2:  For any ,n ≥ 0

⎡⎢⎣
M, (1

4
,  3M), (1

4
,  5M), … , (1

4
, (2n + 1)M), (1

4
,

Sn

2Sn+ 1
)⎤⎥⎦ =

1
e1/M − 1

+
1
2

.
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Proof:  Using the sequence  of Lemma 1, we have{Sn}
Sn + 2 + (4n + 6) MSn + 1 − Sn = 0

⇒
Sn

2Sn + 1
= (2n + 3) M +

Sn + 2

2Sn + 1

⇒
Sn

2Sn + 1
= (2n + 3) M +

1
4

Sn + 1
2Sn + 2

.

So for any ,n ≥ 0

1
e1/M − 1

+
1
2

=
e1/M + 1

2(e1/M − 1) =
S−1

2S0

= M +
1
4
S0
2S1

= M +
1
4

3M +
1
4
S1
2S2

= M +
1
4

3M +
1
4

5M +
1
4
S2
2S3

=  …

= M +
1
4

3M +
1
4

5M +
1
4

… (2n + 1)M +
1
4
Sn

2Sn + 1

.

Lemma 2 almost gives us the continued fraction (3) for .  All we
need to do is to show that the infinite continued fraction

 converges to .  To do that we

will review some basic facts about continued fractions.

e1/M

[M, (1
4,  3M) , (1

4,  5M) , … ] 1
e1/M − 1

+
1
2

Euler-Wallis recurrence formulas
The following theorem due to Lord Brouncker, the first President of the

Royal Society, is called the fundamental theorem of continued fractions.  It
gives us recursive formulas to calculate the numerator and the denominator
of the convergents.  Wallis and Euler made extensive use of these formulas
and now they are called the Euler-Wallis formulas.
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Theorem 1:  For any , the  convergent can be determined asn ≥ 0 n th

[f 0, (g0, f 1) , (g1, f 2) , … , (gn − 1, f n)] =
pn

qn

where the sequences  and  are specified as follows{pn}n ≥ −2 {qn}n ≥ −1

p−2 = 0, p−1 = 1, pn = f npn − 1 + gn − 1pn − 2, for all  n ≥ 0,

q−1 = 0, q0 = 1, qn = f nqn − 1 + gn − 1qn − 2, for all  n ≥ 1.

The theorem can be easily proved by induction as

[f 0, (g0, f 1) , (g1, f 2) , … , (gn − 1, f n) , (gn, f n + 1)]

= ⎡⎢⎣
f 0, (g0, f 1) , (g1, f 2) , … , (gn − 1, f n +

gn

f n + 1
)⎤⎥⎦

=
(f n + gn

f n + 1) pn − 1 + gn − 1pn − 2

(f n + gn
f n + 1) qn − 1 + gn − 1qn − 2

=
(f n + 1f n + gn) pn − 1 + f n + 1gn − 1pn − 2

(f n + 1f n + gn) qn − 1 + f n + 1gn − 1qn − 2

=
f n + 1 (f npn − 1 + gn − 1pn − 2) + gnpn − 1

f n + 1 (f nqn − 1 + gn − 1qn − 2) + gnqn − 1
=

f n + 1pn + gnpn − 1

f n + 1qn + gnqn − 1
=

pn + 1

qn + 1
.

Using Euler-Wallis recurrence formulas, one can prove many identities.
The following identity is due to Euler.

pn

qn
= f 0 + ∑

n

k = 1

(−1)k + 1 ∏k − 1
j = 0 gj

qk − 1qk
, for all n ≥ 0. (5)

To prove (5), we first observe that

pnqn− 1 − qnpn− 1 = (f npn− 1 + gn− 1pn− 2)qn− 1 − (f nqn− 1 + gn− 1qn− 2)pn− 1

= −gn− 1(pn− 1qn− 2 − qn− 1pn− 2).
It follows that

pnqn − 1 − qnpn − 1 = (−1)n gn − 1gn − 2… g0 (p0q−1 − q0p−1)
= (−1)n + 1 gn − 1gn − 2… g0

so
pn

qn
−

pn − 1

qn − 1
= (−1)n + 1 gn − 1gn − 2… g0

qn − 1qn
, for all n ≥ 1.

Taking the sum then we have (5).  Using (5), we have a simple necessary
condition for a positive continued fraction to converge.

Theorem 2:  Let  be a positive number.  If ,  are positive numbers and ε f n gn

f n + 1f n

gn
> ε

then the infinite continued fraction  converges.[f 0, (g0, f 1) , (g1, f 2) , … ]
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Proof:  Since ,  are positive,  is also positive.  Writing (5) as f n gn qn

pn

qn
= f 0 + ∑

n

k = 1

(−1)k + 1 ak

where

ak =
∏

k − 1

j = 0
gj

qk − 1qk
,

we have

ak

ak + 1
=

qk + 1

qk − 1gk
=

f k + 1qk + gkqk − 1

qk − 1gk
= 1 +

f k + 1qk

qk − 1gk

= 1 +
f k + 1 (f kqk − 1 + gk − 1qk − 2)

qk − 1gk
> 1 +

f k + 1f k

gk
> 1 + ε.

Thus, by Leibniz's alternating series test, the series

[f 0, (g0, f 1) , (g1, f 2) , … ] = f 0 + ∑
∞

k = 1

(−1)k + 1 ak

converges.

Corollary 1: Let  be a positive number.  If for large enough ,  and
 then the infinite continued fraction

converges.

ε n f n, gn > 0
f n + 1f n

gn
> ε [f 0, (g0, f 1), (g1, f 2), … ]

By Theorem 2, we know that the infinite continued fraction 

⎡⎢⎣M, (1
4

,  3M) , (1
4

,  5M) , … ⎤⎥⎦
converges, but does Lemma 2 say that this continued fraction converges to

1
e1/M − 1

+
1
2

?

Here is an example.  Since  is a root of the quadratic equation
, we have .  This gives us the following

continued fraction of arbitrary length

x0 = 1 − 2
x2 − 2x − 1 = 0 x0 = 2 + 1

x0

1 − 2 = 2 +
1

2 +
1

… 2 +
1

2 + (−1 − 2)

.

Does this mean the infinite continued fraction
converges to ?  No, in fact, this continued fraction converges to

.

[2, (1,  2) , (1,  2) , … ]
1 − 2

1 + 2
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The difference between Lemma 2 and the above  example is that

in Lemma 2,  is positive, whereas in the  example,

is negative.

1 − 2
Sn

2Sn + 1
1 − 2 −1 − 2

The following theorem is known as Markov's test for positive continued
fractions.

Theorem 3:  Assume that ,  are positive numbers and the following
infinite continued fraction converges:

f n gn

[f 0, (g0, f 1) , (g1, f 2) , … ] = � .
Construct a sequence  as follows:{zn}

z0 = f 0 +
g0

f 1 +
g1

… f n − 1 +
gn − 1

f n + zn

.

If the terms  are positive then .zn z0 = �

Proof: [8]
Let ,  thenτ0 (x) = f 0 + x τk (x) = gk − 1 / (f k + x)

z0 = Tn (zn) = τ0 � τ1 �  … � τn (zn) .
Every function  is continuous and monotonic on .  Hence the same
is true for their composition .  Picking two limit values  and

, we find that  must be in the interval with the end-points at

τk [0, +∞)
Tn x = 0

x = +∞ z0

Tn (0) =
pn

qn
,  Tn (+∞) =

pn − 1

qn − 1
.

Since the continued fraction is assumed to converge to , so .� z0 = �
So now, by Markov's test, it follows from Lemma 2 that

 converges to  and thus we obtain (3):[M, (1
4,  3M), (1

4,  5M), … ] 1
e1/M − 1 + 1

2

e1/M = 1 +
1

M − 1
2 +

1
4

3M +
1
4

5M +
1
4

7M +
1
4

…

.

The transformation
We will use the following algebraic identity to transfrom (3) into (1)

(2k + 1) M − 1 +
1

1 +
1

1 +
1
x

= (2k + 1) M −
1
2

+
1
4

1
2 + x

. (6)
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Theorem 4:  For any positive real number ,M

e1/M = [1, M − 1,  1,  1,  3M − 1,  1,  1,  5M − 1,  1,  1, … ] .

Proof:  The coefficients of the continued fraction 

[1, M − 1,  1,  1,  3M − 1,  1,  1,  5M − 1,  1,  1, … ]
are eventually positive, so by Corollary 1, it converges. 

We apply the identity (6) repeatedly as follows:

1 +
1

M − 1 +
1

1 +
1

1 +
1

3M − 1 +
1

1 +
1

1 +
1

5M − 1 +
1
…

= 1 +
1

M − 1
2 +

1
4

1
2 + 3M − 1 +

1

1 +
1

1 +
1

5M − 1 +
1
…

= 1 +
1

M − 1
2 +

1
4

1
2 + 3M − 1

2 +
1
4

1
2 + 5M − 1 + 1

…

=…

= 1 +
1

M − 1
2 +

1
4

1
2 + 3M − 1

2 +
1
4

1
2 + 5M − 1

2 +
1
4

1
2 + 7M − 1

2 +
1
4

…
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= 1 +
1

M − 1
2 +

1
4

3M +
1
4

5M +
1
4

7M +
1
4

…

= e1/M.

We have finally proved the continued fraction expansion formula for .
Our proof is self-contained and does not employ any integration.

e1/M
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