

University of Wollongong Research Online

Faculty of Engineering and Information Sciences -Papers: Part A

Faculty of Engineering and Information Sciences

2016

A simple proof of Euler's continued fraction of $e^{1/M}$

Joseph Tonien University of Wollongong, dong@uow.edu.au

Publication Details

Tonien, J. (2016). A simple proof of Euler's continued fraction of e^{1/M}. The Mathematical Gazette, 100 (548), 279-287.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A simple proof of Euler's continued fraction of $e^{1/M}$

Abstract

A continued fraction is an expression of the form

f₀+ g₀

 $f_1 + g_1$

 f_2+g_2

and we will denote it by the notation $[f_0, (g_0, f_1), (g_1, f_2), (g_2, f_3), ...]$. If the numerators g_i are all equal to 1 then we will use a shorter notation $[f_0, f_1, f_2, f_3, ...]$. A *simple continued fraction* is a continued fraction with all the g_i coefficients equal to 1 and with all the f_i coefficients positive integers except perhaps f_0 .

The finite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots, (g_{k-1}, f_k)]$ is called the *k*th convergent of the infinite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots]$. We define

 $[f_0, (g_0, f_1), (g_1, f_2), (g_2, f_3), \dots] = \lim [f_0, (g_0, f_1), (g_1, f_2), \dots, (g_{k-1}, f_k)]$

if this limit exists and in this case we say that the infinite continued fraction *converges*.

Keywords

proof, 1, e, fraction, continued, euler, m, simple

Disciplines Engineering | Science and Technology Studies

Publication Details

Tonien, J. (2016). A simple proof of Euler's continued fraction of $e^{1/M}$. The Mathematical Gazette, 100 (548), 279-287.

The Mathematical Gazette

http://journals.cambridge.org/MAG

Additional services for The Mathematical Gazette:

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

A simple proof of Euler's continued fraction of e ^{1/M}

Joseph Tonien

The Mathematical Gazette / Volume 100 / Issue 548 / July 2016, pp 279 - 287 DOI: 10.1017/mag.2016.65, Published online: 14 June 2016

Link to this article: http://journals.cambridge.org/abstract_S0025557216000656

How to cite this article:

Joseph Tonien (2016). A simple proof of Euler's continued fraction of *e* ^{1/M}. The Mathematical Gazette, 100, pp 279-287 doi:10.1017/mag.2016.65

Request Permissions : Click here

A simple proof of Euler's continued fraction of $e^{1/M}$

JOSEPH TONIEN

Introduction

A continued fraction is an expression of the form

$$f_0 + \frac{g_0}{f_1 + \frac{g_1}{f_2 + \frac{g_2}{g_2}}}$$

and we will denote it by the notation $[f_0, (g_0, f_1), (g_1, f_2), (g_2, f_3), ...]$. If the numerators g_i are all equal to 1 then we will use a shorter notation $[f_0, f_1, f_2, f_3, ...]$. A simple continued fraction is a continued fraction with all the g_i coefficients equal to 1 and with all the f_i coefficients positive integers except perhaps f_0 .

The finite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots, (g_{k-1}, f_k)]$ is called the *k* th *convergent* of the infinite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots]$. We define

$$[f_0, (g_0, f_1), (g_1, f_2), (g_2, f_3), \dots] = \lim_{k \to \infty} [f_0, (g_0, f_1), (g_1, f_2), \dots, (g_{k-1}, f_k)]$$

if this limit exists and in this case we say that the infinite continued fraction *converges*.

In a foundational publication on the theory of continued fractions, De fractionibus continuis dissertatio [1], Euler used the Ricatti differential equation to derive the following interesting continued fraction for any positive real number M:

$$e^{1/M} = 1 + \frac{1}{M - 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3M - 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{5M - 1 + \frac{1}{5}}}}}}}.$$
 (1)

When M = 1, we have the following simple continued fraction expansion of e

 $e = \begin{bmatrix} 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \dots \end{bmatrix}$ (2)

The fact that a rational number must have a finite simple continued fraction expansion implies that e is irrational. Lagrange's theorem asserts that a real number has a periodic simple continued fraction if, and only if, it is a quadratic irrational. Since (2) is not periodic, e must not be algebraic of degree 2.

Using integration of the form $\int e^{-rx}x^n(1-x)^n dx$, Hermite [2] gave the first proof that *e* is transcendental. As a by-product, Hermite also derived the identity (2). Based on Hermite's work, Olds [3] gave an expository proof of the continued fraction of *e*. Cohn [4] streamlined Olds' proof into a short presentation. Osler [5] extended Cohn's proof to the general case of $e^{1/M}$. All of these proofs rely heavily on the integration technique.

In this paper, we will present a simple proof of the continued fraction of $e^{1/M}$ – the identity (1) – which only involves the manipulation of recurrence equations. Our proof contains two steps. In the first step, we show that

$$e^{1/M} = 1 + \frac{1}{M - \frac{1}{2} + \frac{1}{\frac{1}{4}}}.$$
(3)
$$\frac{1}{3M + \frac{1}{\frac{1}{4}}}.$$

$$\frac{1}{5M + \frac{1}{\frac{1}{4}}}.$$

And in the second step of the proof, we transform the identity (3) into the form (1).

The interested reader is referred to [6, 7] for other proofs of related continued fractions which also use manipulation of recurrence relations instead of integration.

An interesting recurrence sequence

Let us look at the following sequence. Lemma 1: For a positive real number M, let

$$S_{0} = \sum_{i=1}^{\infty} \frac{1}{i! M^{i}}$$

$$S_{1} = \sum_{i=1}^{\infty} \frac{i-1}{(i+1)! M^{i}}$$

$$\vdots$$

$$S_{k} = \sum_{i=1}^{\infty} \frac{(i-1)(i-2) \dots (i-k)}{(i+k)! M^{i}}$$

then

$$S_{n+2} + (4n + 6)MS_{n+1} - S_n = 0.$$
⁽⁴⁾

Proof: $S_0 = e^{1/M} - 1$, and by ratio test, we can see that each of the series S_k converges to a positive number. We have

$$S_{n} - (4n+6)MS_{n+1}$$

$$= \sum_{i=1}^{\infty} \frac{(i-1)(i-2)\dots(i-n)}{(i+n)!M^{i}} - (4n+6)\sum_{i=1}^{\infty} \frac{(i-1)(i-2)\dots(i-n-1)}{(i+n+1)!M^{i-1}}$$

$$= \sum_{i=1}^{\infty} \frac{(i-1)(i-2)\dots(i-n)}{(i+n)!M^{i}} - (4n+6)\sum_{i=1}^{\infty} \frac{i(i-1)\dots(i-n)}{(i+n+2)!M^{i}}$$

$$= \sum_{i=1}^{\infty} \frac{(i-1)(i-2)\dots(i-n)[(i+n+1)(i+n+2)-(4n+6)i]}{(i+n+2)!M^{i}}$$

$$= \sum_{i=1}^{\infty} \frac{(i-1)(i-2)\dots(i-n)(i-n-1)(i-n-2)}{(i+n+2)!M^{i}}$$

$$= S_{n+2}.$$

Using the recurrence relation (4), we can consistently define S_{-1} as follows:

$$S_{-1} = S_1 + 2MS_0$$

$$= \sum_{i=1}^{\infty} \frac{i-1}{(i+1)! M^i} + 2M \sum_{i=1}^{\infty} \frac{1}{i! M^i}$$

$$= 2 + \sum_{i=1}^{\infty} \frac{i-1}{(i+1)! M^i} + 2 \sum_{i=2}^{\infty} \frac{1}{i! M^{i-1}}$$

$$= 2 + \sum_{i=1}^{\infty} \frac{i-1}{(i+1)! M^i} + 2 \sum_{i=1}^{\infty} \frac{1}{(i+1)! M^i}$$

$$= 2 + \sum_{i=1}^{\infty} \frac{i+1}{(i+1)! M^i} = 2 + \sum_{i=1}^{\infty} \frac{1}{i! M^i}$$

$$= e^{1/M} + 1.$$

We now use the recurrence relation

 $S_{n+2} + (4n + 6)MS_{n+1} - S_n = 0, \text{ for all } n \ge -1,$ to establish a continued fraction.

Lemma 2: For any $n \ge 0$,

$$\left[M, \left(\frac{1}{4}, 3M\right), \left(\frac{1}{4}, 5M\right), \dots, \left(\frac{1}{4}, (2n+1)M\right), \left(\frac{1}{4}, \frac{S_n}{2S_{n+1}}\right)\right] = \frac{1}{e^{1/M} - 1} + \frac{1}{2}.$$

Proof: Using the sequence $\{S_n\}$ of Lemma 1, we have

$$S_{n+2} + (4n + 6)MS_{n+1} - S_n = 0$$

$$\Rightarrow \frac{S_n}{2S_{n+1}} = (2n + 3)M + \frac{S_{n+2}}{2S_{n+1}}$$

$$\Rightarrow \frac{S_n}{2S_{n+1}} = (2n + 3)M + \frac{\frac{1}{4}}{\frac{S_{n+1}}{2S_{n+2}}}.$$

So for any $n \ge 0$,

$$\frac{1}{e^{1/M} - 1} + \frac{1}{2} = \frac{e^{1/M} + 1}{2(e^{1/M} - 1)} = \frac{S_{-1}}{2S_0}$$

$$= M + \frac{\frac{1}{4}}{\frac{S_0}{2S_1}}$$

$$= M + \frac{\frac{1}{4}}{3M + \frac{\frac{1}{4}}{\frac{1}{2S_2}}}$$

$$= M + \frac{\frac{1}{4}}{3M + \frac{\frac{1}{4}}{\frac{1}{5M} + \frac{\frac{1}{4}}{\frac{S_2}{2S_3}}}$$

$$= \dots$$

$$= M + \frac{\frac{1}{3M + \frac{\frac{1}{4}}{\frac{1}{5M} + \frac{\frac{1}{4}}{\frac{1}{2S_{1-1}}}}}{3M + \frac{\frac{1}{4}}{\frac{1}{5M} + \frac{\frac{1}{4}}{\frac{1}{2S_{1-1}}}}}.$$

Lemma 2 almost gives us the continued fraction (3) for $e^{1/M}$. All we need to do is to show that the infinite continued fraction $[M, (\frac{1}{4}, 3M), (\frac{1}{4}, 5M), \dots]$ converges to $\frac{1}{e^{1/M} - 1} + \frac{1}{2}$. To do that we will review some basic facts about continued fractions.

Euler-Wallis recurrence formulas

The following theorem due to Lord Brouncker, the first President of the Royal Society, is called *the fundamental theorem of continued fractions*. It gives us recursive formulas to calculate the numerator and the denominator of the convergents. Wallis and Euler made extensive use of these formulas and now they are called the Euler-Wallis formulas.

Theorem 1: For any $n \ge 0$, the *n*th convergent can be determined as

$$[f_0, (g_0, f_1), (g_1, f_2), \dots, (g_{n-1}, f_n)] = \frac{p_n}{q_n}$$

where the sequences $\{p_n\}_{n \ge -2}$ and $\{q_n\}_{n \ge -1}$ are specified as follows

$$p_{-2} = 0, p_{-1} = 1, p_n = f_n p_{n-1} + g_{n-1} p_{n-2}$$
, for all $n \ge 0$,

$$q_{-1} = 0, q_0 = 1, q_n = f_n q_{n-1} + g_{n-1} q_{n-2}$$
, for all $n \ge 1$.

The theorem can be easily proved by induction as

$$\begin{bmatrix} f_{0}, (g_{0}, f_{1}), (g_{1}, f_{2}), \dots, (g_{n-1}, f_{n}), (g_{n}, f_{n+1}) \end{bmatrix} \\ = \begin{bmatrix} f_{0}, (g_{0}, f_{1}), (g_{1}, f_{2}), \dots, (g_{n-1}, f_{n} + \frac{g_{n}}{f_{n+1}}) \end{bmatrix} \\ = \frac{(f_{n} + \frac{g_{n}}{f_{n+1}})p_{n-1} + g_{n-1}p_{n-2}}{(f_{n} + \frac{g_{n}}{f_{n+1}})q_{n-1} + g_{n-1}q_{n-2}} = \frac{(f_{n+1}f_{n} + g_{n})p_{n-1} + f_{n+1}g_{n-1}p_{n-2}}{(f_{n+1}f_{n} + g_{n})q_{n-1} + f_{n+1}g_{n-1}q_{n-2}} \\ = \frac{f_{n+1}(f_{n}p_{n-1} + g_{n-1}p_{n-2}) + g_{n}p_{n-1}}{f_{n+1}(f_{n}q_{n-1} + g_{n-1}q_{n-2}) + g_{n}q_{n-1}} = \frac{f_{n+1}p_{n} + g_{n}p_{n-1}}{f_{n+1}q_{n} + g_{n}q_{n-1}} = \frac{p_{n+1}}{q_{n+1}}.$$

Using Euler-Wallis recurrence formulas, one can prove many identities. The following identity is due to Euler.

$$\frac{p_n}{q_n} = f_0 + \sum_{k=1}^n (-1)^{k+1} \frac{\prod_{j=0}^{k-1} g_j}{q_{k-1} q_k}, \text{ for all } n \ge 0.$$
(5)

To prove (5), we first observe that

$$p_n q_{n-1} - q_n p_{n-1} = (f_n p_{n-1} + g_{n-1} p_{n-2}) q_{n-1} - (f_n q_{n-1} + g_{n-1} q_{n-2}) p_{n-1}$$

= $-g_{n-1} (p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$

It follows that

$$p_n q_{n-1} - q_n p_{n-1} = (-1)^n g_{n-1} g_{n-2} \dots g_0 (p_0 q_{-1} - q_0 p_{-1})$$

= $(-1)^{n+1} g_{n-1} g_{n-2} \dots g_0$

so

$$\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = (-1)^{n+1} \frac{g_{n-1}g_{n-2}\cdots g_0}{q_{n-1}q_n}, \text{ for all } n \ge 1.$$

Taking the sum then we have (5). Using (5), we have a simple necessary condition for a *positive* continued fraction to converge.

Theorem 2: Let ε be a positive number. If f_n , g_n are positive numbers and

$$\frac{f_{n+1}f_n}{g_n} > \varepsilon$$

then the infinite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots]$ converges.

Proof: Since f_n , g_n are positive, q_n is also positive. Writing (5) as

$$\frac{p_n}{q_n} = f_0 + \sum_{k=1}^n (-1)^{k+1} a_k$$

where

$$a_k = \frac{\prod_{j=0}^{k-1} g_j}{q_{k-1}q_k},$$

we have

$$\frac{a_k}{a_{k+1}} = \frac{q_{k+1}}{q_{k-1}g_k} = \frac{f_{k+1}q_k + g_kq_{k-1}}{q_{k-1}g_k} = 1 + \frac{f_{k+1}q_k}{q_{k-1}g_k}$$
$$= 1 + \frac{f_{k+1}(f_kq_{k-1} + g_{k-1}q_{k-2})}{q_{k-1}g_k} > 1 + \frac{f_{k+1}f_k}{g_k} > 1 + \varepsilon.$$

Thus, by Leibniz's alternating series test, the series

$$[f_0, (g_0, f_1), (g_1, f_2), \dots] = f_0 + \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

converges.

Corollary 1: Let ε be a positive number. If for large enough $n, f_n, g_n > 0$ and $\frac{f_{n+1}f_n}{g_n} > \varepsilon$ then the infinite continued fraction $[f_0, (g_0, f_1), (g_1, f_2), \dots]$ converges.

By Theorem 2, we know that the infinite continued fraction

$$\left[M, \left(\frac{1}{4}, 3M\right), \left(\frac{1}{4}, 5M\right), \dots\right]$$

converges, but does Lemma 2 say that this continued fraction converges to

$$\frac{1}{e^{1/M} - 1} + \frac{1}{2}?$$

Here is an example. Since $x_0 = 1 - \sqrt{2}$ is a root of the quadratic equation $x^2 - 2x - 1 = 0$, we have $x_0 = 2 + \frac{1}{x_0}$. This gives us the following continued fraction of arbitrary length

$$1 - \sqrt{2} = 2 + \frac{1}{2 + \frac{1}{\dots 2 + \frac{1}{2 + (-1 - \sqrt{2})}}}$$

Does this mean the infinite continued fraction [2, (1, 2), (1, 2), ...] converges to $1 - \sqrt{2}$? No, in fact, this continued fraction converges to $1 + \sqrt{2}$.

The difference between Lemma 2 and the above $1 - \sqrt{2}$ example is that in Lemma 2, $\frac{S_n}{2S_{n+1}}$ is positive, whereas in the $1 - \sqrt{2}$ example, $-1 - \sqrt{2}$ is negative.

The following theorem is known as Markov's test for *positive* continued fractions.

Theorem 3: Assume that f_n , g_n are positive numbers and the following infinite continued fraction converges:

$$[f_0, (g_0, f_1), (g_1, f_2), \dots] = \ell$$

Construct a sequence $\{z_n\}$ as follows:

$$z_0 = f_0 + \frac{g_0}{f_1 + \frac{g_1}{\dots f_{n-1} + \frac{g_{n-1}}{f_n + z_n}}}$$

If the terms z_n are positive then $z_0 = \ell$.

Proof: [8] Let $\tau_0(x) = f_0 + x$, $\tau_k(x) = g_{k-1}/(f_k + x)$ then $z_0 = T_n(z_n) = \tau_0 \circ \tau_1 \circ \dots \circ \tau_n(z_n)$.

Every function τ_k is continuous and monotonic on $[0, +\infty)$. Hence the same is true for their composition T_n . Picking two limit values x = 0 and $x = +\infty$, we find that z_0 must be in the interval with the end-points at

$$T_n(0) = \frac{p_n}{q_n}, \qquad T_n(+\infty) = \frac{p_{n-1}}{q_{n-1}}.$$

Since the continued fraction is assumed to converge to ℓ , so $z_0 = \ell$.

So now, by Markov's test, it follows from Lemma 2 that $[M, (\frac{1}{4}, 3M), (\frac{1}{4}, 5M), \dots]$ converges to $\frac{1}{e^{1/M} - 1} + \frac{1}{2}$ and thus we obtain (3):

$$e^{1/M} = 1 + \frac{1}{M - \frac{1}{2} + \frac{\frac{1}{4}}{3M + \frac{\frac{1}{4}}{5M + \frac{\frac{1}{4}}{7M + \frac{\frac{1}{4}}{\dots}}}}}.$$

The transformation

We will use the following algebraic identity to transfrom (3) into (1)

$$(2k+1)M - 1 + \frac{1}{1+\frac{1}{1+\frac{1}{x}}} = (2k+1)M - \frac{1}{2} + \frac{\frac{1}{4}}{\frac{1}{2}+x}.$$
 (6)

Theorem 4: For any positive real number M,

 $e^{1/M} = [1, M - 1, 1, 1, 3M - 1, 1, 1, 5M - 1, 1, 1, ...].$

Proof: The coefficients of the continued fraction

[1, M - 1, 1, 1, 3M - 1, 1, 1, 5M - 1, 1, 1, ...]

are eventually positive, so by Corollary 1, it converges.

We apply the identity (6) repeatedly as follows:

$$= 1 + \frac{1}{M - \frac{1}{2} + \frac{1}{3M + \frac{1}{4}}} = e^{1/M}.$$

We have finally proved the continued fraction expansion formula for $e^{1/M}$. Our proof is self-contained and does not employ any integration.

Acknowledgement

The author wishes to thank the referee for many helpful suggestions, and especially Professor Martin Bunder for his guidance in this research.

References

- 1. L. Euler, De fractionibus continuis dissertatio, *Commentarii academiae scientiarum Petropolitanae* **9** (1744) pp. 98-137 also available at http://eulerarchive.maa.org/pages/E071.html
- 2. C. Hermite, *Sur la fonction exponentielle*, Comptes rendus de l'Académie des sciences Paris (1873) pp. 18-24, pp. 74-79, pp. 226-233, pp. 285-293.
- 3. C. D. Olds, The simple continued fraction expansion of *e*, *Amer. Math. Monthly* **77** (1970) pp. 968-974.
- 4. H. Cohn, A short proof of the simple continued fraction expansion of *e*, *Amer. Math. Monthly* **113** (2006) pp. 57-62.
- 5. T. J. Osler, A proof of the continued fraction expansion of $e^{1/M}$, *Amer. Math. Monthly* **113** (2006) pp. 62-66.
- 6. J. M. Borwein, A. J. van der Poorten, J. O. Shallit and W. Zudilin, *Neverending fractions: an introduction to continued fractions*, Cambridge University Press (2014) pp. 45-49.
- 7. H. E. Rose, *A course in number theory* (2nd edn.), Oxford University Press (1994) Excercises 15, 16, pp. 143-144.
- 8. S. Khrushchev, On Euler's differential methods for continued fractions, *Electronic transactions on numerical analysis* **25** (2006) pp. 178-200.

10.1017/mag.2016.65

JOSEPH TONIEN

School of Computing and Information Technology, University of Wollongong, Australia e-mail: joseph tonien@uow.edu.au