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A SIMPLE PROOF OF HEYMANN'S LEMMA

of

M.L.J. Hautus*

Abs tract. Heymann's lemma is proved by a simple induction argument •

The problem of pole assignment by state feedback in the system

(k = 0,1, ••• )

where A is an n x n-matrix and B an n x m-matrix, has been considered by

many authors. The case m = has been dealt with by Rissanen [3J in 1960.

In 1964 Popov [2J showed the pole assignability for complex systems (more

generally systems over an algebraically closed field). In 1967 Wonham

gave a proof valid for real systems (or more generally for systems over

an infinite field). Finally, in 1968, Heymann [IJ gave a proof which is

valid for systems over an arbitrary field. Heymann's proof depends on the

following result.

LEMMA 1. If (A, b) is controUab"le and b = Bv :f 0, then there e:cistB F suoh

that (A + BF, b) is controUab"le.

By means of this result the multivariable problem can be reduced to the

single variable problem.

It is the aim of this correspondence to give a simple proof of this

lemma. The result follows ~ediately from

LEMMA 2. If (A,B) is contl'oUab"le and b = Bv :f 0, then there mstB

u
l

, ••• ,un_
l

such that the sequenoe defined by

(1) Xl :=b. ~+1 := ~ + BUk '

for k = 1, ••• ,n - is independent.
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Indeed, if Lemma 2 is shown we can choose u arbitrary and define F
n

by F~ = uk' Then it is easily seen that (A + BF)~ = ~, so that

(A + BF,b) is controllable.

PROOF OF LEMMA 2. We proceed stepwise,x l ~ 0 and hence independent.

Suppose that x1"",xk have been constructed according to (I) and are

independent. Denote by £ the linear space generated by xI""'~' We

have to choose ~ such that ~+I = Axk + BUk t £. If this is not possible,

then

(2) Ax
k

+ Bu E £

for all u. Choosing in particular u = 0 we find

(3) A~ E £

and consequently, by the linearity of £, Bu E £ for all u. That is,

imB c £. Also, for i < k we have

Hence Ax. E £ for i = I, ••• ,k, and, consequently, £ is A-invariant. From
1

the controllability of (A,B) it follows that £ must be the whole state

space, which implies that k = n.

REMARK. In [IJ and in [5, Lemma 2.2J proofs of Lemma I were given by

constructing a particular sequence uk satisfying the condition of Lemma 2.

These constructions may suggest that such a special uk is essential

for the calculation of F, which is not the case as follows from the

proof of Lemma 2. It also follows that the uk's can be constructed

recursively in the following sense: Once u , ••• ,u I have been chosen
I t-

so as to render xl,.,.,x
t

independent, one can always continue the

construction of the remaining uk's.

The may be useful when it comes to an actual numerical compution of F.

o
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