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Abstract
In this note, we present an elementary proof for a well-known second-order suf-
ficient optimality condition in nonlinear semidefinite optimization which does not 
rely on the enhanced theory of second-order tangents. Our approach builds on an 
explicit elementary computation of the so-called second subderivative of the indica-
tor function associated with the semidefinite cone which recovers the best curvature 
term known in the literature.

Keywords Second subderivative · Second-order sufficient optimality conditions · 
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1 Introduction

Second-order sufficient optimality conditions play a significant role in the theory 
of nonlinear optimization. Among others, their validity guarantees stability of the 
underlying strict local minimizer with respect to perturbations of the data, and this 
opens a way in order to show local fast convergence of diverse types of numeri-
cal solution algorithms, including augmented Lagrangian, sequential quadratic pro-
gramming, and Newton-type methods.

Geometric constraints of type

where F ∶ � → �  is a twice continuously differentiable mapping between Euclid-
ean spaces � and �  , and C ⊂ � is a closed, convex set, provide a rather general 
paradigm for the modeling of diverse popular constraint systems in nonlinear opti-
mization. It has been well-recognized in the past that second-order optimality condi-
tions in constrained optimization depend on the second derivative of the objective 

(1.1)F(x) ∈ C,
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function as well as the curvature of the feasible set. In the presence of constraints 
of type (1.1), the latter can be described in terms of the second derivative of F and 
the curvature of C. Thus, associated second-order optimality conditions do not only 
comprise the second derivative of a suitable Lagrangian function, but a so-called 
curvature term associated with C pops up as well. In case where C is a polyhedral 
set, this curvature term vanishes, and one obtains very simple second-order condi-
tions as they are known from standard nonlinear programming, see [1, 24]. In more 
general cases, however, a suitable tool to keep track of the curvature of C has to be 
used to formulate a suitable curvature term. Classically, the support function of a 
(local) second-order tangent approximation of C has been exploited for that purpose, 
see [6, 7], and this exemplary led to second-order optimality conditions in nonlinear 
second-order cone and semidefinite optimization, see [5, 30]. However, we would 
like to mention here that the proofs in these papers are far from being elementary 
since the calculus of second-order tangents is a rather challenging task. With the aid 
of a generalized notion of support functions, the approach via second-order tangents 
can be further generalized to situations where C is not convex anymore, see [16]. 
Another less popular approach to curvature terms has been promoted recently in [3, 
26, 32] where the so-called second subderivative, see [27], of the indicator func-
tion of C has been used for that purpose. This tool yields promising results even in 
infinite-dimensional spaces, see [10, 34]. The approach via second subderivatives is 
particularly suitable for the derivation of second-order sufficient optimality condi-
tions due to the underlying calculus properties of second subderivatives, see [2] for 
a recent study. Second-order sufficient conditions obtained from this approach have 
been shown to serve as suitable tools for the local convergence analysis of solution 
algorithms associated with challenging optimization problems based on variational 
analysis, see [17, 19, 29]. In this note, we aim to popularize the approach using sec-
ond subderivatives even more by presenting an application in nonlinear semidefinite 
optimization.

Thus, let us focus on the special situation where � ∶= �
m equals the space of all 

real symmetric m × m-matrices and C ∶= �
m
+
 is the cone of all positive semidefi-

nite matrices. The tightest second-order sufficient condition in nonlinear semidefi-
nite optimization we are aware of has been established by Shapiro and can be found 
in [30, Theorem  9]. Its proof heavily relies on technical arguments which exploit 
second-order directional differentiability of the smallest eigenvalue of a positive 
semidefinite matrix and calculus rules for second-order tangent sets. Later, several 
authors tried to recover or enhance this result using reformulations of the original 
problem. In [14], the author obtained a related second-order sufficient condition 
based on a localized Lagrangian and some technical arguments via Schur’s comple-
ment. The authors of [23] applied the squared slack variable technique to semidefi-
nite optimization problems and obtained second-order sufficient conditions in the 
presence of so-called strict complementarity. In [21], strict complementarity and a 
second-order constraint qualification are needed to recover Shapiro’s original sec-
ond-order sufficient condition based on a simplified technique. Further results about 
second-order optimality conditions in nonlinear semidefinite optimization such as a 
strong second-order sufficient condition and a weak second-order necessary condi-
tion can be found in [15, 31]. The validation of second-order sufficient conditions 
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in the papers [14, 21, 23] is much simpler than the strategy used in [30]. However, 
these approaches either do not recover the original result from [30] in full generality, 
i.e., additional conditions are postulated to proceed, or the analysis still makes some 
technical preliminary considerations necessary. Here, we simply compute the sec-
ond subderivative of the indicator function associated with the positive semidefinite 
cone in order to recover the result from [30] in elementary way. Let us note that this 
calculation already has been done in [25, Example 3.7], but the arguments presented 
there are not self-contained and exploit involved variational properties of eigenvalue 
functions, see [33]. In contrast, our calculations are completely elementary.

The remainder of this note is structured as follows. In Sect. 2, we summarize the 
notation used in this paper and recall the definitions of some variational tools which 
we are going to exploit. We present an abstract second-order sufficient optimality 
condition for nonlinear semidefinite optimization problems in Sect. 3 which com-
prises the second subderivative of the indicator function of the semidefinite cone 
as the curvature term and can be distilled from a much more general result recently 
proven in [2, 3]. Then, by explicit computation of the appearing second subderiva-
tive, we specify this result in terms of initial problem data and recover the results 
from [6, 30]. Some concluding remarks close the paper in Sect. 4.

2  Preliminaries

The notation used in this note is fairly standard and follows [6, 28].

2.1  Basic notation

By ℝn
+
 , we denote the nonnegative orthant of ℝn . Let ℝm×n be the set of all rectangu-

lar matrices with m rows amd n columns, and O the all-zero matrix of appropriate 
dimensions. An Euclidean space � , i.e., a finite-dimensional Hilbert space, will be 
equipped with the inner product ⟨⋅, ⋅⟩∶ 𝕏 ×𝕏 → ℝ and the associated induced norm 
‖⋅‖∶ � → [0,∞) . For arbitrary x̄ ∈ � and 𝜀 > 0 , �𝜀(x̄) ∶= {x ∈ � � ‖x − x̄‖ ≤ 𝜀} 
represents the closed �-ball around x̄ . The space of all real symmetric n × n-matrices 
�
n is equipped with the Frobenius inner product given by

and the associated induced Frobenius norm.
For an arbitrary Euclidean space � and some nonempty, convex set A ⊂ � , we 

use

∀A,B ∈ �
n ∶ ⟨A,B⟩ ∶= trace(AB) =

n�

i=1

n�

j=1

AijBij

A◦ ∶= {x∗ ∈ � �∀x ∈ A∶ ⟨x∗, x⟩ ≤ 0},

A⟂ ∶= {x∗ ∈ � �∀x ∈ A∶ ⟨x∗, x⟩ = 0}
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in order to denote the polar cone of A, which is always a closed, convex cone, and 
the annihilator of A, which is a subspace of � . The distance function distA ∶ 𝕏 → ℝ 
of A is given by

For x̄ ∈ A , we make use of

in order to represent the tangent (or Bouligand) cone to A at x̄ . The associated polar 
cone, i.e.,

is the normal cone to A at x̄ . Note that TA(x̄) and NA(x̄) are closed, convex cones.
For a twice continuously differentiable mapping F∶ � → �  between Euclidean 

spaces � and �  as well as some point x̄ ∈ � , F�(x̄)∶ � → �  is the linear operator 
which represents the first derivative of F at x̄ . Similarly, F��(x̄)∶ � ×� → �  is the 
bilinear mapping which represents the second derivative of F at x̄ . Partial deriva-
tives are denoted in analogous way.

Finally, for a lower semicontinuous function �∶ 𝕏 → ℝ ∪ {∞} , some x̄ ∈ � 
such that 𝜑(x̄) < ∞ , and some x∗ ∈ � , the function d2𝜑(x̄, x∗)∶ 𝕏 → ℝ ∪ {−∞,∞} 
given by

is referred to as the second subderivative of � at x̄ with x∗ . The recent study [2] 
reports on the calculus of this variational tool and its usefulness for the derivation 
of second-order optimality conditions in nonlinear optimization, and these findings 
can be partially extended even to infinite-dimensional situations, see [10, 34]. Here, 
we are particularly interested in the second subderivative of indicator functions 
�A ∶ 𝕏 → ℝ ∪ {∞} , associated with closed, convex sets A ⊂ � , given by

For this particular function, the definition of the second subderivative yields

∀x ∈ �∶ distA(x) ∶= inf{‖y − x‖ � y ∈ A}.

TA(x̄) ∶=

{
u ∈ 𝕏

|||||

∃{tk}k∈ℕ ⊂ (0,∞)∃{uk}k∈ℕ ⊂ 𝕏∶

tk ↓ 0, uk → u, x̄ + tkuk ∈ A∀k ∈ ℕ

}

NA(x̄) ∶= TA(x̄)
◦

∀u ∈ �∶ d2𝜑(x̄, x∗)(u) ∶= lim inf
t↓0, u�→u

𝜑(x̄ + tu�) − 𝜑(x̄) − t⟨x∗, u�⟩
t2∕2

∀x ∈ � ∶ �A(x) ∶=

{
0 x ∈ A,

∞ x ∉ A.

∀u ∈ TA(x̄)∶ d2𝛿A(x̄, x
∗)(u) = lim inf

t↓0, u�→u
x̄+tu�∈A

−
2⟨x∗, u�⟩

t
,



1 3

Second-order sufficiency in semidefinite optimization

and one can easily check that d2𝛿A(x̄, x∗)(u) = ∞ if u ∉ TA(x̄) or ⟨x∗, u⟩ < 0 . In case 
where u ∈ TA(x̄) and ⟨x∗, u⟩ > 0 , d2𝛿A(x̄, x∗)(u) = −∞ holds. Thus, only the case 
u ∈ TA(x̄) ∩ {x∗}⟂ is interesting. In turn, for given x̄ ∈ A and u ∈ TA(x̄) , the consid-
eration of the second subderivative is only reasonable if x∗ ∈ NA(x̄) ∩ {u}⟂.

2.2  Matrix analysis

In order to carry out our analysis related to the cone of all positive semidefinite 
matrices, we need to introduce some further notation first. Fix some m ∈ ℕ such 
that m ≥ 2 . By �m

+
,�m

−
⊂ �

m , we denote the cones of all positive semidefinite and 
negative semidefinite matrices, respectively. For each matrix Y ∈ �

m
+
 , there exists 

an orthogonal matrix P ∈ ℝ
m×m such that Y = P⊤MP where M ∈ ℝ

m×m is the diago-
nal matrix whose diagonal is made of the eigenvalues of Y, ordered non-increas-
ingly. We refer to this representation as an ordered eigenvalue decomposition of Y. 
Throughout the paper, we will denote the index sets of (row) indices of M associated 
with the positive and zero eigenvalues of Y by � and � , respectively. For later use, let 
us also mention that Y† = P⊤M†P holds for the Moore–Penrose pseudoinverse of Y, 
and that M† results from M by inverting its positive diagonal elements. For arbitrary 
matrices A ∈ �

m and index sets I, J ⊂ {1,… ,m} , we use AIJ to denote the matrix 
which results from A by deleting those rows and columns whose indices do not 
belong to I and J, respectively. Furthermore, we set AP ∶= PAP⊤ and AP

IJ
∶= (AP)IJ.

In [6, Section 5.3.1], the formula

has been established. Furthermore, [20, Section 4.2.4] gives

In the course of this note, we will need a criterion for semidefiniteness of block 
matrices. The following lemma is taken from [8, Appendix A.5.5].

Lemma 1 Let m1,m2 ∈ ℕ be positive integers. Furthermore, let A ∈ �
m1

+  be posi-
tive definite, and let B ∈ ℝ

m1×m2 as well as C ∈ �
m2 be arbitrarily chosen. For 

m ∶= m1 + m2 , we consider the block matrix

Then M ∈ �
m
+
 is equivalent to C − B⊤A−1B ∈ �

m2

+ .

(2.1)T
�
m
+
(Y) =

{
V ∈ �

m |||V
P
��

∈ �
|�|
+

}

(2.2)N
�
m
+
(Y) =

{
Y∗ ∈ �

m ||| (Y
∗)P

��
= O, (Y∗)P

��
= O, (Y∗)P

��
∈ �

|�|
−

}
.

M ∶=

[
A B

B⊤ C

]
∈ �

m.
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3  Second‑order sufficient optimality conditions in nonlinear 
semidefinite optimization

Let m ∈ ℕ such that m ≥ 2 be fixed. Throughout the section, we consider the nonlin-
ear semidefinite optimization problem

where f ∶ 𝕏 → ℝ and F∶ � → �
m are twice continuously differentiable mappings 

and � is some Euclidean space. Let F ⊂ � be the feasible set of (NSDP). For � ≥ 0 , 
we introduce the generalized Lagrangian function L� ∶ 𝕏 × 𝕊

m → ℝ associated with 
(NSDP) by means of

Furthermore, for x ∈ F  , we exploit the critical cone associated with (NSDP) given 
by

Note that, due to (2.1), this cone can be computed explicitly as soon as an ordered 
eigenvalue decomposition of F(x) is at hand. For u ∈ C(x) and � ≥ 0 , the associated 
directional Lagrange multiplier set is given by

and this set can be computed via (2.2).
The following second-order sufficient optimality condition for (NSDP) can be 

distilled from the more general result [3, Theorem  3.3] which has been proven via 
a straight contradiction argument, and a direct proof of it, which is merely based on 
calculus rules for the second subderivative, is stated in [2, Theorem 5.2]. A slightly 
less general result, which clearly motivated the authors of [3], can be found in [26, 
Theorem 7.1].

Theorem 1 Let x̄ ∈ F  be chosen such that for each u ∈ C(x̄)⧵{0} , there are � ≥ 0 
and Y∗ ∈ Λ𝛼(x̄, u) such that

Then x̄ is an essential local minimizer of second order for (NSDP), i.e., there are 
𝜀 > 0 and 𝛽 > 0 such that

Particularly, x̄ is a strict local minimizer of (NSDP).

(NSDP)min
{
f (x)

|||F(x) ∈ �
m
+

}

∀x ∈ �∀Y∗ ∈ �
m ∶ L

�(x, Y∗) ∶= �f (x) + ⟨Y∗,F(x)⟩.

C(x) ∶=
{
u ∈ �

||| f
�(x)u ≤ 0, F�(x)u ∈ T

�
m
+
(F(x))

}
.

Λ�(x, u) ∶=
{
Y∗ ∈ N

�
m
+
(F(x)) ∩ {F�(x)u}⟂

||| (L
�)�

x
(x, Y∗) = 0

}
,

(3.1)(L𝛼)��
xx
(x̄, Y∗)[u, u] + d2𝛿

�
m
+
(F(x̄), Y∗)(F�(x̄)u) > 0.

(3.2)∀x ∈ �𝜀(x̄)∶ max

�
f (x) − f (x̄), dist

�
m
+
(F(x))

�
≥ 𝛽‖x − x̄‖2.
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It is clear by definition of the second subderivative that (3.1) can only hold for some 
u ∈ C(x̄)⧵{0} , � ≥ 0 , and Y∗ ∈ Λ𝛼(x̄, u) if (�, Y∗) ≠ (0,O) , i.e., the non-triviality of the 
appearing generalized Lagrange multipliers is inherent.

We also note that the growth condition (3.2) is slightly more restrictive than

which is referred to as the second-order growth condition associated with (NSDP) at 
x̄ in the literature.

In order to turn (3.1) into a valuable second-order optimality condition, the 
appearing second subderivative of �

�
m
+
 has to be evaluated or, at least, estimated 

from below. Exemplary, this strategy has been used in [2] in order to infer sec-
ond-order sufficient conditions in nonlinear second-order cone programming and 
turned out to be much simpler than the more technical verification strategies from 
[5, 18]. Here, we present a similar analysis for nonlinear semidefinite programs. 
As already remarked in [2], obtaining second-order necessary optimality con-
ditions based on second subderivatives is often not reasonable since this would 
come along with comparatively strong regularity conditions which are necessary 
in order to get the calculus rules for second subderivatives working.

In the subsequent lemma, an explicit formula for the second subderivative of 
�
�
m
+
 is presented.

Lemma 2 For each Y ∈ �
m
+
 , V ∈ T

�
m
+
(Y) , and Y∗ ∈ N

�
m
+
(Y) ∩ {V}⟂ , we have

Proof Let Y = P⊤MP be an ordered eigenvalue decomposition of Y with orthogonal 
matrix P ∈ ℝ

m×m and diagonal matrix M ∈ �
m as well as the index sets � and � 

as defined in Sect.  2.2. From Y∗ ∈ N
�
m
+
(Y) , we find (Y∗)P

��
= O , (Y∗)P

��
= O , and 

(Y∗)P
��

∈ �
|�|
−

 . Furthermore, V ∈ T
�
m
+
(Y) gives VP

��
∈ �

|�|
+  . From ⟨Y∗,V⟩ = 0 and 

orthogonality of P, we have

which gives 
⟨
(Y∗)P

��
,VP

��

⟩
= 0.

For given V � ∈ �
m and sufficiently small t > 0 , M�� + t(V �)P

��
 is positive definite, 

and since Y + tV � ∈ �
m
+
 and M + t(V �)P ∈ �

m
+
 are equivalent by orthogonality of P, 

Lemma 1 can be used to infer that, for small enough t > 0 , Y + tV � ∈ �
m
+
 equals

Thus, from (Y∗)P
��

∈ �
|�|
−

 , we find

∀x ∈ F ∩ �𝜀(x̄)∶ f (x) − f (x̄) ≥ 𝛽‖x − x̄‖2

d2�
�
m
+
(Y , Y∗)(V) = −2⟨Y∗,VY†V⟩.

0 = ⟨Y∗,V⟩ = ⟨(Y∗)P,VP⟩ = ⟨(Y∗)P
��

,VP
��

⟩

(V �)P
��

− t(V �)P
��

[
M�� + t(V �)P

��

]−1
(V �)P

��
∈ �

|�|
+ .
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Finally, we construct particular sequences {tk}k∈ℕ ⊂ (0,∞) and {Vk}k∈ℕ ⊂ 𝕊
m which 

show that this lower estimate is sharp. Therefore, let {tk}k∈ℕ ⊂ (0,∞) be a null 
sequence such that M�� + tkV

P
��

 is invertible for each k ∈ ℕ . Define

and

for each k ∈ ℕ . Clearly, we have Δk → O which gives Vk → V  . By construction, we 
also have

and rearrangements lead to

Thus, Lemma 1 gives Y + tkVk ∈ �
m
+
 for each k ∈ ℕ . Reprising the above steps for 

the estimation of the lower limit and recalling 
⟨
(Y∗)P

��
,VP

��

⟩
= 0 , we find

This already completes the proof.  ◻

d2�
�
m
+
(Y , Y∗)(V) = lim inf

t↓0,V �→V
Y+tV �∈�m

+

−
2⟨Y∗,V �⟩

t
= lim inf

t↓0,V �→V
Y+tV �∈�m

+

−
2

t
⟨(Y∗)P

��
, (V �)P

��
⟩

≥ lim inf
t↓0,V �→V
Y+tV �∈�m

+

−2
�
(Y∗)P

��
, (V �)P

��

�
M�� + t(V �)P

��

�−1
(V �)P

��

�

= −2⟨(Y∗)P
��

,VP
��
M−1

��
VP
��
⟩ = −2⟨(Y∗)P,VPM†VP⟩

= −2⟨Y∗,VY†V⟩.

Δk ∶= tkV
P
��

[
M�� + tkV

P
��

]−1
VP
��

Vk ∶= P⊤

[
VP
𝜋𝜋

VP
𝜋𝜔

VP
𝜔𝜋

VP
𝜔𝜔

+ Δk

]
P

(Vk)
P
��

= VP
��

+ Δk

= VP
��

+ tkV
P
��

[
M�� + tkV

P
��

]−1
VP
��

= VP
��

+ tk(Vk)
P
��

[
M�� + tk(Vk)

P
��

]−1
(Vk)

P
��
,

(Vk)
P
��

− tk(Vk)
P
��

[
M�� + tk(Vk)

P
��

]−1
(Vk)

P
��

= VP
��

∈ �
|�|
+ .

lim inf
k→∞

−
2⟨Y∗,Vk⟩

tk
= lim inf

k→∞
−
2

tk
⟨(Y∗)P

��
, (Vk)

P
��

⟩

= lim inf
k→∞

−
2

tk

�
(Y∗)P

��
,VP

��
+ tkV

P
��

�
M�� + tkV

P
��

�−1
VP
��

�

= lim inf
k→∞

−2
�
(Y∗)P

��
,VP

��

�
M�� + tkV

P
��

�−1
VP
��

�

= −2⟨Y∗,VY†V⟩.
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Let us note that the assertion of Lemma 2 has been proven in [25, Example 3.7] 
with the aid of some deeper results from [33] addressing variational properties of 
eigenvalue functions. In contrast, our proof is rather elementary.

Combining this result with Theorem 1, we obtain fully explicit second-order 
sufficient optimality conditions for (NSDP).

Corollary 1 Let x̄ ∈ F  be chosen such that for each u ∈ C(x̄)⧵{0} , there are � ≥ 0 
and Y∗ ∈ Λ𝛼(x̄, u) such that

Then x̄ is an essential local minimizer of second-order for the associated optimiza-
tion problem (NSDP).

Let us point the reader’s attention to the simplicity of the above arguments 
which have been used to obtain this second-order optimality condition. Theorem 1 
is proven via a standard contradiction argument. Further, the computation of the 
appearing second subderivative of �

�
m
+
 is completely elementary and relies on the 

standard approach of working with an ordered eigenvalue decomposition. In [30, 
Theorem 9] and [6, Section 5.3.5], related second-order sufficient conditions, based 
on the same expression for the curvature term, i.e., the right-hand side in (3.3), but 
with a weaker growth condition were obtained using the theory of second-order tan-
gent sets. This approach is much more technical and relies on deeper mathemat-
ics such as second-order directional differentiability of the smallest eigenvalue of a 
positive semidefinite matrix.

4  Concluding remarks

In this note, we computed the second subderivative of the indicator function associ-
ated with the cone of all positive semidefinite matrices, and this finding was used to 
obtain second-order sufficient optimality conditions in nonlinear semidefinite opti-
mization. This procedure recovered the findings from [30] in elementary way. In the 
future, it needs to be studied whether this second-order sufficient condition can be 
employed beneficially in numerical optimization like in [19] where local analysis of 
a multiplier-penalty method associated with second-order cone programs is investi-
gated. Furthermore, it seems reasonable to check whether our approach to second-
order sufficient conditions yields comprehensive results when applied to optimiza-
tion problems with semidefinite cone complementarity constraints, see e.g. [11, 22, 
35]. Finally, we note that

holds, so �m
+
 is a special instance of the closed, convex cone

(3.3)(L𝛼)��
xx
(x̄, Y∗)[u, u] > 2⟨Y∗, (F�(x̄)u)F(x̄)†(F�(x̄)u)⟩.

𝕊
m
+
= {Y ∈ 𝕊

m |∀v ∈ ℝ
m ∶ v⊤Yv ≥ 0}
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where K ⊂ ℝ
m is an arbitrary closed, convex cone. In the literature, �m

+
(K) is referred 

to as the set-semidefinite or set-copositive cone associated with K, and for K ∶= ℝ
m
+
 , 

the popular copositive cone is obtained, see [4, 9, 12, 13] for further information 
about this cone and applications of copositive optimization. Following the approach 
of this note, it might be possible to obtain second-order sufficient conditions for 
nonlinear optimization problems involving �m

+
(K) . However, it is well known that 

the variational geometry of �m
+
(K) is much more challenging for general K than for 

K ∶= ℝ
m , so the necessary computations might be much more involved than the 

ones from Lemma 2.
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