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We give a simple proof of the A2 conjecture proved recently by Hytönen. Our proof

completely avoids the notion of the Haar shift operator, and is based only on the “local

mean oscillation decomposition.” Also our proof yields a simple proof of the “two-weight

conjecture” as well.

1 Introduction

Let T be an L2 bounded Calderón–Zygmund operator. We say that w ∈ A2 if

‖w‖A2 = sup
Q⊂Rn

w(Q)w−1(Q)/|Q|2 < ∞.

In this note, we give a rather simple proof of the A2 conjecture recently settled by

Hytönen [7].

Theorem 1.1. For any w ∈ A2,

‖T‖L2(w) ≤ c(n, T)‖w‖A2 . (1.1)
�

Below is a partial list of important contributions to this result. First, (1.1) was

proved for the following operators:

• Hardy–Littlewood maximal operator (Buckley [3], 1993);
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• Beurling transform (Petermichl and Volberg [23], 2002);

• Hilbert transform (Petermichl [21], 2007);

• Riesz transform (Petermichl [22], 2008);

• Dyadic paraproduct (Beznosova [2], 2008);

• Haar shift (Lacey et al. [15], 2010).

After that, the following works appeared in very small intervals:

• a simplified proof for Haar shifts (Cruz-Uribe et al. [5, 6], 2010);

• the L2(w) bound for general T by ‖w‖A2 log(1 + ‖w‖A2) (Pérez et al. [20], 2010);

• (1.1) in full generality (Hytönen [7], 2010);

• a simplification of the proof (Hytönen et al. [12], 2010);

• (1.1) for the maximal Calderón–Zygmund operator T� (Hytönen et al. [9], 2010).

The “Bellman function” proof of the A2 conjecture in a geometrically doubling

metric space was given by Nazarov et al. [18] (see also [19]).

All currently known proofs of (1.1) were based on the representation of T in

terms of the Haar shift operators S
m,k
D . Such representations also have a long history;

for general T it was found in [7]. The second key element of all known proofs was

showing (1.1) for S
m,k
D in place of T with the corresponding constant depending linearly

(or polynomially) on the complexity. Observe that over the past year several different

proofs of this step appeared (see, e.g., [14, 24]).

In a very recent work [17], we have proved that for any Banach function space

X(Rn),

‖T� f‖X ≤ c(T, n) sup
D,S

‖AD,S | f |‖X, (1.2)

where

AD,S f(x) =
∑
j,k

fQk
j
χQk

j
(x)

(this operator is defined by means of a sparse family S = {Qk
j} from a general dyadic grid

D ; for these notions see Section 2 below).

Observe that for the operator AD,S f inequality (1.1) follows just in few lines by a

very simple argument. This was first observed in [5, 6] (see also [17]). Hence, in the case

when X = L2(w), inequality (1.2) easily implies the A2 conjecture. Also, (1.2) yields the

“two-weight conjecture” by Cruz-Uribe and Pérez; we refer to [17] for the details.

The proof of (1.2) in [17] still depended on the representation of T in terms of the

Haar shift operators. In this note, we will show that this difficult step can be completely
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A Simple Proof of the A2 Conjecture 3161

avoided. Our new proof of (1.2) is based only on the “local mean oscillation decompo-

sition” proved by the author in [16]. It is interesting that we apply this decomposition

twice. First, it is applied directly to T�, and we obtain that T� is essentially pointwise

dominated by the maximal operator M and a series of dyadic type operators Tm. In order

to handle Tm, we apply the decomposition again to the adjoint operators T �
m. After this

step, we obtain a pointwise domination by the simplest dyadic operators AD,S .

Note that all our estimates are actually pointwise, and they do not depend on

a particular function space. This explains why we prefer to write (1.2) with a general

Banach function space X.

2 Preliminaries

2.1 Calderón–Zygmund operators

By a Calderón–Zygmund operator in R
n we mean an L2 bounded integral operator

represented as

T f(x) =
∫

Rn
K(x, y) f(y) dy, x �∈ supp f,

with kernel K satisfying the following growth and smoothness conditions:

(i) |K(x, y)| ≤ c
|x−y|n for all x �= y;

(ii) there exists 0 < δ ≤ 1 such that

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ c
|x − x′|δ

|x − y|n+δ
,

whenever |x − x′| < |x − y|/2.

Given a Calderón–Zygmund operator T , define its maximal truncated version by

T� f(x) = sup
0<ε<ν

∣∣∣∣
∫
ε<|y|<ν

K(x, y) f(y) dy

∣∣∣∣ .
2.2 Dyadic grids

Recall that the standard dyadic grid in R
n consists of the cubes

2−k([0, 1)n + j), k∈ Z, j ∈ Z
n.

Denote the standard grid by D.
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By a general dyadic grid D, we mean a collection of cubes with the following

properties: (i) for any Q ∈ D its sidelength �Q is of the form 2k, k∈ Z; (ii) Q ∩ R∈ {Q, R,∅}
for any Q, R∈ D ; (iii) the cubes of a fixed sidelength 2k form a partition of R

n.

Given a cube Q0, denote by D(Q0) the set of all dyadic cubes with respect to Q0,

that is, the cubes from D(Q0) are formed by repeated subdivision of Q0 and each of its

descendants into 2n congruent subcubes. Observe that if Q0 ∈ D , then each cube from

D(Q0) will also belong to D .

A well-known principle says that there are ξn general dyadic grids Dα such

that every cube Q ⊂ R
n is contained in some cube Q′ ∈ Dα such that |Q′| ≤ cn|Q|. For

ξn = 3n this is attributed in the literature to Christ and, independently, to Garnett and

Jones. For ξn = 2n, it can be found in a recent work by Hytönen and Pérez [11]. Very

recently it was shown by Conde et al. [4] that one can take ξn = n+ 1, and this number

is optimal. For our purposes any of such variants is suitable. We will use the one

from [11].

Proposition 2.1. There are 2n dyadic grids Dα such that for any cube Q ⊂ R
n there exists

a cube Qα ∈ Dα such that Q ⊂ Qα and �Qα
≤ 6�Q. �

The grids Dα here are the following:

Dα = {2−k([0, 1)n + j + α)}, α ∈ {0, 1/3}n.

We outline briefly the proof. First, it is easy to see that it suffices to con-

sider the one-dimensional case. Take an arbitrary interval I ⊂ R. Fix k0 ∈ Z such that

2−k0−1 ≤ 3�I < 2−k0 . If I does not contain any point 2−k0 j, j ∈ Z, then I is contained in

some I ′ = [2−k0 j, 2−k0( j + 1)) (since such intervals form a partition of R), and �I ′ ≤ 6�I .

On the other hand, if I contains some point j02−k0 , then I does not contain any point

2−k0( j + 1/3), j ∈ Z (since �I < 2−k0/3), and therefore I is contained in some I ′′ = [2−k0( j +
1/3), 2−k0( j + 4/3)), and �I ′′ ≤ 6�I .

2.3 Local mean oscillations

Given a measurable function f on R
n and a cube Q, the local mean oscillation of f on Q

is defined by

ωλ( f; Q) = inf
c∈R

(( f − c)χQ)∗(λ|Q|) (0 < λ < 1),

where f∗ denotes the nonincreasing rearrangement of f .
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A Simple Proof of the A2 Conjecture 3163

By a median value of f over Q we mean a possibly nonunique, real number

m f (Q) such that

max(|{x ∈ Q : f(x) > m f (Q)}|, |{x ∈ Q : f(x) < m f (Q)}|) ≤ |Q|/2.

It is easy to see that the set of all median values of f is either one point or the

closed interval. In the latter case, we will assume for the definiteness that m f (Q) is the

maximal median value. Observe that it follows from the definitions that

|m f (Q)| ≤ ( fχQ)∗(|Q|/2). (2.1)

Given a cube Q0, the dyadic local sharp maximal function M#,d
λ;Q0

f is defined by

M#,d
λ;Q0

f(x) = sup
x∈Q′∈D(Q0)

ωλ( f; Q′).

We say that {Qk
j} is a sparse family of cubes if: (i) the cubes Qk

j are disjoint in j,

with k fixed; (ii) if Ωk = ∪ j Qk
j, then Ωk+1 ⊂ Ωk; (iii) |Ωk+1 ∩ Qk

j| ≤ 1
2 |Qk

j|.
The following theorem was proved in [17] (its very similar version can be found

in [16]).

Theorem 2.2. Let f be a measurable function on R
n and let Q0 be a fixed cube. Then

there exists a (possibly empty) sparse family of cubes Qk
j ∈D(Q0) such that for a.e. x ∈

Q0,

| f(x) − m f (Q0)| ≤ 4M#,d
1

2n+2 ;Q0
f(x) + 2

∑
k, j

ω 1
2n+2

( f; Qk
j)χQk

j
(x). �

The following proposition is well known, and it can be found in a slightly differ-

ent form in [? ]. We give its proof here for the sake of the completeness. The proof is a

classical argument used, for example, to show that T is bounded from L∞ to BMO. Also

the same argument is used to prove a good-λ inequality relating T and M.

Proposition 2.3. For any cube Q ⊂ R
n,

ωλ(T f; Q) ≤ c(T, λ, n)

∞∑
m=0

1

2mδ

(
1

|2m Q|
∫

2m Q
| f(y)| dy

)
(2.2)

and

ωλ(T� f; Q) ≤ c(T, λ, n)

∞∑
m=0

1

2mδ

(
1

|2m Q|
∫

2m Q
| f(y)| dy

)
. (2.3)

�
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Proof. Let f1 = fχ2
√

nQ and f2 = f − f1. If x ∈ Q and x0 is the center of Q, then by the

kernel assumptions,

|T( f2)(x) − T( f2)(x0)| ≤
∫

Rn\2
√

nQ
| f(y)| |K(x, y) − K(x0, y)| dy

≤ c�δ
Q

∫
Rn\2Q

| f(y)|
|x − y|n+δ

dy≤ c�δ
Q

∞∑
m=0

1

(2m�Q)n+δ

∫
2m+1 Q\2m Q

| f(y)| dy

≤ c
∞∑

m=0

1

2mδ

(
1

|2m Q|
∫

2m Q
| f(y)| dy

)
.

From this and from the weak type (1, 1) of T ,

((T f − T( f2)(x0))χQ)∗(λ|Q|) ≤ (T( f1))
∗(λ|Q|) + ‖T( f2) − T( f2)(x0)‖L∞(Q)

≤ c
1

|Q|
∫

2
√

n|Q|
| f(y)| dy + c

∞∑
m=0

1

2mδ

(
1

|2m Q|
∫

2m Q
| f(y)| dy

)

≤ c′
∞∑

m=0

1

2mδ

(
1

|2m Q|
∫

2m Q
| f(y)| dy

)
,

which proves (2.2).

The same inequalities hold for T� as well, which gives (2.3). The only trivial dif-

ference in the argument is that one needs to use the sublinearity of T� instead of the

linearity of T . �

3 Proof of (1.2)

Combining Proposition 2.3 and Theorem 2.2 with Q0 ∈D, we get that there exists a

sparse family S = {Qk
j} ∈D such that for a.e. x ∈ Q0,

|T� f(x) − mQ0(T� f)| ≤ c(n, T)

(
Mf(x) +

∞∑
m=0

1

2mδ
TS,m| f |(x)

)
,

where M is the Hardy–Littlewood maximal operator and

TS,m f(x) =
∑
j,k

f2m Qk
j
χQk

j
(x).
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A Simple Proof of the A2 Conjecture 3165

If f ∈ L1, then it follows from (2.1) that |mQ(T� f)| → 0 as |Q| → ∞. Therefore,

letting Q0 to anyone of 2n quadrants and using Fatou’s lemma, we obtain

‖T� f‖X ≤ c(n, T)

(
‖Mf‖X +

∞∑
m=0

1

2mδ
sup
S∈D

‖TS,m| f |‖X

)

(for the notion of the Banach function space X we refer to [1, Chapter 1]).

Hence, (1.2) will follow from

‖Mf‖X ≤ c(n) sup
D,S

‖AD,S f‖X ( f ≥ 0) (3.1)

and

sup
S∈D

‖TS,m f‖X ≤ c(n)m sup
D,S

‖AD,S f‖X ( f ≥ 0). (3.2)

Inequality (3.1) was proved in [17]; we give the proof here for the sake of the com-

pleteness. The proof is just a combination of Proposition 2.1 and the Calderón–Zygmund

decomposition. First, by Proposition 2.1,

Mf(x) ≤ 6n
2n∑

α=1

MDα f(x). (3.3)

Second, by the Calderón-Zygmund decomposition, if

Ωk = {x : Md f(x) > 2(n+1)k} =
⋃

j Q
k
j and Ek

j = Qk
j \ Ωk+1,

then the family {Qk
j} is sparse and

Md f(x) ≤ 2n+1
∑
k, j

fQk
j
χEk

j
(x) ≤ 2n+1A f(x).

From this and from (3.3),

Mf(x) ≤ 2 · 12n
2n∑

α=1

ADα,Sα
f(x), (3.4)

where Sα ∈ Dα depends on f . This implies (3.1) with c(n) = 2 · 24n.

We now turn to the proof of (3.2). Fix a family S = {Qk
j} ∈D. Applying Proposi-

tion 2.1 again, we can decompose the cubes Qk
j into 2n disjoint families Fα such that
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for any Qk
j ∈ Fα there exists a cube Qk

j,α ∈ Dα such that 2m Qk
j ⊂ Qk

j,α and �Qk
j,α

≤ 6�2m Qk
j
.

Hence,

TS,m f(x) ≤ 6n
2n∑

α=1

∑
j,k:Qk

j∈Fα

fQk
j,α

χQk
j
(x).

Set

Am,α f(x) =
∑
j,k

fQk
j,α

χQk
j
(x).

We have that (3.2) will follow from

‖Am,α f‖X ≤ c(n)m sup
D,S

‖AD,S f‖X ( f ≥ 0). (3.5)

Consider the formal adjoint to Am,α:

A�
m,α f =

∑
j,k

(
1

|Qk
j,α|

∫
Qk

j

f

)
χQk

j,α
(x).

Proposition 3.1. For any m ∈ N,

‖A�
m,α f‖L2 = ‖Am,α f‖L2 ≤ 8‖ f‖L2 . �

Proof. Set Ek
j = Qk

j \ Ωk+1. Observe that the sets Ek
j are pairwise disjoint and |Qk

j| ≤
2|Ek

j |. From this,

∫
Rn

(Am,α f)g dx =
∑
k, j

fQk
j,α

gQk
j
|Qk

j| ≤ 2
∑
k, j

∫
Ek

j

(MDα f)(Mdg) dx

≤ 2
∫

Rn
(MDα f)(Mdg) dx.

From this, using Hölder’s inequality, the L2 boundedness of Md and duality, we get the

L2 bound for Am,α. �

Lemma 3.2. For any m ∈ N,

‖A�
m,α f‖L1,∞ ≤ c(n)m‖ f‖L1 . �
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Proof. Set Ω = {x : Mf(x) > α} and let Ω = ∪l Ql be a Whitney decomposition such that

3Ql ⊂ Ω, where Ql ∈D (see, e.g., [1, p. 348]). Set also

bl = ( f − fQl )χQl , b =
∑

l

bl

and g = f − b. We have

|{x : |A�
m,α f(x)| > α}| ≤ |Ω| + |{x : |A�

m,αg(x)| > α/2}|

+ |{x ∈ Ωc : |A�
m,αb(x)| > α/2}|. (3.6)

Further, |Ω| ≤ c(n)

α
‖ f‖L1 , and, by the L2 boundedness of A�

m,α,

|{x : |A�
m,αg(x)| > α/2}| ≤ 4

α2
‖A�

m,αg‖2
L2 ≤ c

α2
‖g‖2

L2 ≤ c

α
‖g‖L1 ≤ c

α
‖ f‖L1

(we have used here that g ≤ cα).

It remains therefore to estimate the term in (3.6). For x ∈ Ωc, consider

A�
m,αb(x) =

∑
l

∑
k, j

(
1

|Qk
j,α|

∫
Qk

j

bl

)
χQk

j,α
(x).

The second sum is taken over those cubes Qk
j for which Qk

j ∩ Ql �= ∅. If Ql ⊆ Qk
j, then

(bl)Qk
j
= 0. Therefore, one can assume that Qk

j ⊂ Ql . On the other hand, Qk
j,α ∩ Ωc �= ∅. Since

3Ql ⊂ Ω, we have that Ql ⊂ 3Qk
j,α. Hence

�Ql ≤ 3�Qk
j,α

≤ 18 · 2m�Qk
j
.

The family of all dyadic cubes Q for which Q ⊂ Ql and �Ql ≤ 18 · 2m�Q can be decomposed

into m + 4 families of disjoint cubes of equal length. Therefore,

∑
k, j:Qk

j⊂Ql⊂3Qk
j,α

χQk
j
≤ (m + 4)χQl .

From this, we obtain

|{x ∈ Ωc : |A�
m,αb(x)| > α/2}| ≤ 2

α
‖A�

m,αb‖L1(Ωc)

≤ 2

α

∑
l

∑
k, j:Qk

j⊂Ql⊂3Qk
j,α

∫
Qk

j

|bl | dx
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3168 A. K. Lerner

≤ 2(m + 4)

α

∑
l

∫
Ql

|bl | dx

≤ 4(m + 4)

α
‖ f‖L1 .

The proof is complete. �

Lemma 3.3. For any cube Q ∈ Dα,

ωλn(A�
m,α f; Q) ≤ c(n)mfQ (λn = 1/2n+2).

�

Proof. For x ∈ Q,

∑
k, j:Q⊆Qk

j,α

(
1

|Qk
j,α|

∫
Qk

j

f

)
χQk

j,α
(x) =

∑
k, j:Q⊆Qk

j,α

(
1

|Qk
j,α|

∫
Qk

j

f

)
≡ c.

Hence

|A�
m,α f(x) − c|χQ(x) =

∑
k, j:Qk

j,α⊂Q

(
1

|Qk
j,α|

∫
Qk

j

f

)
χQk

j,α
(x) ≤A�

m,α( fχQ)(x).

From this and from Lemma 3.2,

inf
c

((A�
m,α f − c)χQ)∗(λn|Q|) ≤ (A�

m,α( fχQ))∗(λn|Q|) ≤ c(n)mfQ,

which completes the proof. �

We are now ready to prove (3.5). One can assume that the sum defining Am,α is

finite. Then mA�
m,α f (Q) = 0 for Q big enough. Hence, By Lemma 3.3 and Theorem 2.2, for

a.e. x ∈ Q (where Q ∈ Dα),

A�
m,α f(x) ≤ c(n)m(Mf(x) + ASα,Dα

f(x)).
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A Simple Proof of the A2 Conjecture 3169

From this and from (3.4), for any g ≥ 0 we have

∫
Rn

(Am,α f)g dx =
∫

Rn
f(A�

m,αg) dx

≤ cnm
2n+1∑
α=1

∫
Rn

f(ADα,Sα
g) dx

= cnm
2n+1∑
α=1

∫
Rn

(ADα,Sα
f)g dx ≤ c′

nm sup
D,S

‖AD,S f‖X‖g‖X′ .

Taking here the supremum over g with ‖g‖X′ = 1 completes the proof.

Added in proof. We have just learned that Hytönen et al. [10] have also found a proof

of the A2 conjecture avoiding a representation of T in terms of Haar shifts. The first

step in this proof is the same: the “local mean oscillation decomposition” combined

with Proposition 2.3 which reduces the problem to operators Am,α. In order to han-

dle Am,α, the authors use the result from [8] where it was observed that this operator

can be viewed as a positive Haar shift operator of complexity m. As we have men-

tioned previously, our proof avoids completely the notion of the Haar shift operator,

and to bound Am,α we apply the decomposition again (as it is shown starting with

Lemma 3.2). �
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[5] Cruz-Uribe, D., J. M. Martell, and C. Pérez. “Sharp weighted estimates for approximating

dyadic operators.” Electronic Research Announcements in Mathematical Sciences 17 (2010):

12–9.
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