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Abstract—This correspondence gives a simple proof of Shannon’s en-
tropy-power inequality (EPI) using the relationship between mutual infor-
mation and minimum mean-square error (MMSE) in Gaussian channels.

Index Terms—Differential entropy, entropy-power inequality (EPI),
minimum mean-square error (MMSE).

I. INTRODUCTION

In A Mathematical Theory of Communication [1], Claude Shannon
put forth the inequality

exp (2h(X + Y )) � exp (2h(X))+ exp (2h(Y )) (1)

where X and Y are independent real-valued random variables and
h(X) is the differential entropy of the probability density function fX 1

h(X) = �
1

�1

fX(u) log fX(u)du:

The entropy-power (variance of a Gaussian random variable with the
same differential entropy) is maximum and equal to the variance when
the random variable is Gaussian, and thus, the essence of (1) is that the
sum of independent random variables tends to be “more Gaussian” than
one or both of the individual components. Note that (1) is equivalent to

exp (2h(X1 + � � �+Xn)) �
n

i=1

exp (2h(Xi)) (2)

for n independent random variables.
The first proof of (1) was given by Stam [2], based on an identity

communicated to him by N. G. De Bruijn, which couples Fisher’s in-
formation with Shannon’s differential entropy.

Capitalizing on the relationship between mutual information and
minimum mean-square error (MMSE) for additive Gaussian channels
[3], this note gives a simpler proof of the entropy-power inequality
(EPI) based on an elementary estimation-theoretic reasoning which
sidesteps invoking Fisher’s information. In a follow-up to this work
[4], we use the MMSE to give simple proofs of two variations of the
EPI, namely, Costa’s strengthened EPI in which one of the variables is
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1For convenience, throughout this correspondence we assume that all loga-
rithms are natural.

Gaussian [5], and a generalized EPI for linear transforms of a random
vector due to Zamir and Feder [6].
Following a simple “noise-incremental” argument, [3] shows that

regardless of the distribution of X we can write

d

d

I(X;

p

X +N) =

1

2
(X; 
) (3)

where N � N (0; 1) is standard Gaussian independent of X , and the
MMSE of estimatingX in unit-variance additive Gaussian noise is

(X; 
) = (X � fX j p
 X +Ng)2 :

Here 
 is understood as the (gain of the) signal-to-noise ratio of the
Gaussian channel whose input is X .
A direct consequence of (3) is the representation of the differential

entropy of a random variable with variance �2X as [3, eq. (182)]

h(X) =
1

2
log 2�e�2X � 1

2

1

0

�2X
1 + 
 �2

X

� (X; 
) d
:

(4)
Thus, the nongaussianness ofX (divergence of fX with respect to the
Gaussian density with identical first and second moments) is given by
one half of the integral of the difference of the MMSEs achievable by
a Gaussian input with variance �2X and by X , respectively.
For a unit-variance X , (4) reduces to

h(X) =
1

2
log (2�e)� 1

2

1

0

1

1 + 

� (X; 
) d
: (5)

It is amusing (and useful) to note that (5) holds even ifX does not have
unit variance: simply observe that

log �2X =
1

0

�2X
1 + 
 �2

X

� 1

1 + 

d
: (6)

Note that whenever (X; 
) = o(1=
) (as in the case of a dis-
crete random variable, where it vanishes exponentially), (4) indicates
that h(X) = �1.
Since (5) expresses the differential entropy of an arbitrary random

variable in terms of the MMSE of its estimation when observed in
Gaussian noise, (1) can be seen as a relationship between the MMSEs
(integrated over signal-to-noise ratios) of the sum and of the individual
random variables.

II. PROOF OF (1)

Instead of showing (1) directly, it is more convenient to prove the
equivalent inequality:

Lemma 1: (Lieb [7])2 The inequality

h(X1 cos� +X2 sin�) � cos2�h(X1) + sin2�h(X2) (7)

for all independentX1 andX2 and � 2 [0; 2�] is equivalent to the EPI
(1) for all independent X and Y .

2See the Appendix for the proof.
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Proof: [Inequality (7)]. Select arbitrary independentX1 andX2,
� 2 [0; 2�]. According to (5), the difference between the left- and
right-hand sides of (7) is equal to

1

2

1

0

(X1 cos� +X2 sin�; 
)

� cos2� (X1; 
)� sin2� (X2; 
) d
:

Thus, it suffices to show that for all 


(X; 
) � cos2� (X1; 
) + sin2� (X2; 
) (8)

where we define

X = X1 cos�+X2 sin�:

LetN1 andN2 be independent standard Gaussian random variables,
and let

Z1 =
p

 X1 +N1

Z2 =
p

 X2 +N2

Z =Z1 cos� + Z2 sin�:

Then, the left-hand side of (8) can be written as

(X � fX j Zg)2

� (X � fX j Z1; Z2g)2 (9)

= cos2� (X1 � fX1 j Z1g)2

+ sin2� (X2 � fX2 j Z2g)2 (10)

thereby showing (8). Note that in (10) we have used the mutual inde-
pendence of N1, N2,X1,X2.

Note that the only inequality used in the proof of (7) (and, hence,
(1) via Lemma 1) is (9), namely, the fact that it is easier to estimate
the sum of independent random variables on the basis of individual
measurements than on the basis of their sum.

As an addendum to the foregoing proof, we call attention to the
fact that the main inequality (7) also holds when the random variables
therein are finitely or countably (real) valued and the differential en-
tropies are replaced by entropies. To see this, note that in the discrete
case, the representation

H(X1 cos� +X2 sin�)� cos2�H(X1)� sin2�H(X2)

=
1

0

(X1 cos� +X2 sin�; 
)

� cos2� (X1; 
)� sin2� (X2; 
) d


follows immediately from [3, eq. (176)], and the argument we gave
above for (8) holds also for discrete random variables.

Unlike previous proofs of the EPI (e.g., [2], [8]), the new proof does
not hinge on Fisher’s information.

III. VECTOR ENTROPY-POWER INEQUALITY

To show the vector EPI for independent random n-vectorsXXX and YYY ,

exp (2h(XXX + YYY )=n) � exp (2h(XXX)=n) + exp (2h(YYY )=n)

we can follow the same steps as above using the following representa-
tion for the differential entropy of an n vector with covariance matrix
���, which follows easily from [3, eq. (22)]:

h(XXX)=
1

2
log ((2�e)n det���)

� 1

2

1

0

����1 + 
I
�1 � (XXX; 
) d


=
n

2
log (2�e)� 1

2

1

0

n

1+

� (XXX; 
) d
: (11)

Here, the MMSE of estimating a vector in Gaussian noise is

(XXX; 
) = kXXX � fXXX j p
 XXX +NNNgk2

where NNN consists of independent and identically distributed (i.i.d.)
unit-variance Gaussian entries.
With (11), the same proof we used above can be employed to show

that (7) holds when X1 and X2 therein are replaced by independent
vectors of identical dimensions.

APPENDIX

For completeness we include a simple proof of Lemma 1.

Proof [Lemma 1]

To verify that (1) follows from (7), choose arbitrary independentX
and Y and let

tan� = exp (h(Y )� h(X)) (12)

X1 =
X

cos�
(13)

X2 =
Y

sin�
: (14)

Then, using (7) and h(aV ) = h(V ) + log jaj, we can bound

h(X + Y )

� cos2� (h(X)� log cos�) + sin2� (h(Y )� log sin�)

=
1

2
log [exp(2h(X)) + exp(2h(Y ))]

which is (1).
The reverse direction is not needed in the proof of (1), but it is very

simple: fixing arbitrary � and independent X1, X2, choose X and Y
to satisfy (13) and (14). Upon taking logarithms of both sides of (1),
(7) follows from the concavity of the logarithm.
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