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Abstract We give a simple technique for verifying the Restricted Isometry Property
(as introduced by Candès and Tao) for random matrices that underlies Compressed
Sensing. Our approach has two main ingredients: (i) concentration inequalities for
random inner products that have recently provided algorithmically simple proofs of
the Johnson–Lindenstrauss lemma; and (ii) covering numbers for finite-dimensional
balls in Euclidean space. This leads to an elementary proof of the Restricted Isometry
Property and brings out connections between Compressed Sensing and the Johnson–
Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s
theorems on widths of finite balls in Euclidean space (and their improvements due
to Gluskin) and proofs of the existence of optimal Compressed Sensing measure-
ment matrices. In the process, we also prove that these measurements have a certain
universality with respect to the sparsity-inducing basis.
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1 Introduction

It has recently become clear that matrices and projections generated by certain ran-
dom processes provide solutions to a number of fundamental questions in signal
processing [2, 8, 10]. In Compressed Sensing (CS) [2, 8], for example, a random
projection of a high-dimensional but sparse or compressible signal vector onto a
lower-dimensional space has been shown, with high probability, to contain enough
information to enable signal reconstruction with small or zero error.

However, random matrices and projections have also played a central role in a
number of related fields. In particular, random projections have been used as a fun-
damental tool in the asymptotic theory of finite-dimensional normed spaces [18] and
approximation theory [16] since the 1970s. For example, the results of Kashin and
Gluskin on n-widths [11, 14] relied heavily on random matrix constructions. These
same constructions were later applied in the study of point clouds in high-dimensional
spaces. Specifically, the well-known Johnson–Lindenstrauss (JL) lemma [13] states
that with high probability the geometry of a point cloud is not disturbed by certain
Lipschitz mappings onto a space of dimension logarithmic in the number of points.
Over the years, simplified and sharpened forms of both the statement and proof of
the JL lemma, as well as simpler and more efficient algorithms for constructing such
embeddings, have been developed using elementary concentration inequalities for
random inner products [1, 7, 9, 12].

The aims of this paper are twofold. First, we show an intimate linkage between
the CS theory, classic results on n-widths, and the JL lemma. Second, we exploit
this linkage to provide simple proofs for a fundamental CS construct, the so-called
Restricted Isometry Property (RIP). In particular, we show how the elementary con-
centration of measure inequalities for random inner products used in proving the JL
lemma together with simple covering arguments provide a simple and direct avenue
to obtain core results for both n-widths and CS. The concentration inequalities are
easy to verify for standard probability distributions such as Bernoulli, Gaussian, and
other distributions [1].

This paper is organized as follows. Sections 2 and 3 recall the appropriate results
on n-widths and CS, while Sect. 4 reviews the JL theory. Section 5 contains our main
result relating the RIP to the JL lemma through their common dependence on the
concentration of measure phenomenon. Section 6 concludes the paper with a brief
discussion of related issues.

2 n-Widths

Historically, the circle of ideas of interest to us began with the work of Kashin [14]
on widths in the late 1970s. Kashin proved fundamental results on widths in finite-
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dimensional spaces. To describe his results, we recall that the �N
p norm of a vector

x ∈ RN is given by

‖x‖�p := ‖x‖�N
p

:=
{(∑N

j=1 |xj |p
)1/p

, 0 < p < ∞,

maxj=1,...,N |xj |, p = ∞.
(2.1)

Kashin’s results pertain to Kolmogorov widths. However, they can be equivalently
stated in terms of Gelfand widths, which are dual to the Kolmogorov widths. Given a
compact set K in the Banach space X, its Gelfand width is defined by

dn(K)X := inf
codim(Y )=n

sup
x∈K∩Y

‖x‖X. (2.2)

The best spaces Y in the sense of (2.2) are those that slice through K in the most
economical direction so as to minimize the diameter of the set K ∩ Y .

In finite-dimensional geometry, the asymptotic behavior of the Gelfand widths of
the unit ball U(�N

p ) in �N
q , dn(U(�N

p ))�N
q

are known for all 1 ≤ p,q ≤ ∞ except for
the case p = 1, q = ∞. The deepest result among these is the theorem of Kashin
[14], who determined the behavior of dn(U(�N

1 ))�N
2

. The result, when put in the final
form by Garnaev and Gluskin [11], states that there exists a constant C0 > 0 such that
for all 0 < n < N we have

C−1
0

√
log(N/n) + 1

n
≤ dn(U(�N

1 ))�N
2

≤ C0

√
log(N/n) + 1

n
. (2.3)

Kashin proved only the upper bounds in (2.3) and did not achieve the best exponent
in the logarithm. It was Garnaev and Gluskin [11] who provided the lower bounds
and the correct exponent. Kashin’s constructions involved n × N random matrices �

whose entries φi,j are independent realizations of a 0/1 Bernoulli process. Garnaev
and Gluskin’s improvement used matrices with Gaussian entries. It was not until
quite recently that it was understood that the Bernoulli processes also yield the upper
bound in (2.3) [17, 19]. Paper [17] also generalizes (2.3) to an arbitrary compact,
convex body K ⊂ RN .

3 Compressed Sensing (CS)

Similar to n-widths, CS exploits the fact that many signal classes have a low-
dimensional structure compared to the high-dimensional ambient space. CS has been
recently brought to the forefront by the work of Candès, Romberg, and Tao [2] and
Donoho [8], who have shown the advantages of random projections for capturing
information about sparse or compressible signals. Both groups have noted the con-
nection between CS and n-widths.

In the discrete CS problem, we are interested in economically recording informa-
tion about a vector (signal) x ∈ RN . We allocate a budget of n nonadaptive questions
to ask about x. Each question takes the form of a linear functional applied to x. Thus,
the information we extract from x is given by

y = �x, (3.1)
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where � is an n × N matrix and y ∈ Rn. The matrix � maps RN , where N is gener-
ally large, into Rn, where n is typically much smaller than N .

To extract the information that y holds about x, we use a decoder � that maps from
Rn back into RN . The role of � is to provide an approximation x̄ := �(y) = �(�x)

to x. The mapping � is typically nonlinear. The central question of CS is: What are
the good encoder–decoder pairs (�,�)?

To measure the performance of an encoder–decoder pair (�,�), we introduce a
norm ‖ · ‖X in which we measure error. Then,

E(x,�,�)X := ‖x − �(�x)‖X (3.2)

is the error of the encoder–decoder on x. More generally, if K is any closed and
bounded set contained in RN , then the error of this encoder–decoder on K is given
by

E(K,�,�)X := sup
x∈K

E(x,�,�)X. (3.3)

Thus, the error on the set K is determined by the largest error on K . To address
the question of what constitute good encoder–decoder pairs, we introduce An,N :=
{(�,�) : � is n × N}. The best-possible performance of an encoder–decoder on K

is given by

En,N(K)X := inf
(�,�)∈An,N

E(K,�,�)X. (3.4)

This is the so-called “minimax” way of measuring optimality that is prevalent in
approximation theory, information-based complexity, and statistics.

The decoder � is important in practical applications of CS. In particular, we often
seek decoders that can be efficiently implemented numerically. However, in the the-
oretical setting of this paper, the role of the decoder is less important, and one could
always view the decoder to be the theoretically best one chosen for the task at hand.

There is a simple and direct relationship between n-widths and optimal CS. If
K ⊂ RN is any set for which K = −K and for which there is a C1 > 0 such that
K + K ⊂ C1K , then

dn(K)X ≤ En,N(K)X ≤ C1 dn(K)X, 1 ≤ n ≤ N. (3.5)

The proof of (3.5) is quite straightforward. Given any CS matrix �, we can use its
null space N as a candidate for Y in computing dn(K)X . Conversely, given any Y of
codimension n used in computing dn(K)X , we can take any basis for the orthogonal
complement of Y and use these basis vectors as the rows of a CS matrix � for esti-
mating En,N(K)X . This correspondence between Y and � leads easily to the proof
of (3.5) (see, e.g., [5] for the simple details).

As an example, consider the unit ball U(�N
1 ) in �N

2 . Since U(�N
1 ) + U(�N

1 ) ⊂
2U(�N

1 ), we have from (2.3) and (3.5) that, for all 0 < n < N ,

C−1
0

√
log(N/n) + 1

n
≤ En,N(U(�N

1 ))�N
2

≤ 2C0

√
log(N/n) + 1

n
(3.6)
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with C0 from (2.3). There are numerous variants of (3.6) where �N
1 and �N

2 are re-
placed by other �N

p spaces.
One of the main problems in CS is to understand which encoder–decoder

pairs (�,�) provide estimates like (3.6). Independently, Donoho [8] and Candès,
Romberg, and Tao [3] have given sufficient conditions on the matrix � for (3.6) to
hold. Both approaches show that certain random constructions generate matrices �

with these properties. Moreover, in both of these settings, they show that the decoding
can be accomplished by the linear program

�(y) := argmin
x : �x=y

‖x‖�N
1
. (3.7)

Candès and Tao [4] introduced the following isometry condition on matrices � and
established its important role in CS. Given a matrix � and any set T of column
indices, we denote by �T the n×#(T ) matrix composed of these columns. Similarly,
for a vector x ∈ RN , we denote by xT the vector obtained by retaining only the entries
in x corresponding to the column indices T . We say that a matrix � satisfies the
Restricted Isometry Property (RIP) of order k if there exists a δk ∈ (0,1) such that

(1 − δk)‖xT ‖2
�N

2
≤ ‖�T xT ‖2

�n
2
≤ (1 + δk)‖xT ‖2

�N
2

(3.8)

holds for all sets T with #T ≤ k. The condition (3.8) is equivalent to requiring that
the Grammian matrix �t

T �T has all of its eigenvalues in [1 − δk,1 + δk] (here �t
T

denotes the transpose of �T ).
The “good” matrices for CS should satisfy (3.8) for the largest possible k. For

example, Candès and Tao [4] show that whenever � satisfies the RIP of order 3k

with δ3k < 1, then

‖x − �(�x)‖�N
2

≤
C2σk(x)�N

1√
k

, (3.9)

where σk(x)�N
1

denotes the �1 error of the best k-term approximation, and the constant
C2 depends only on δ3k . The proof of (3.9) is quite elementary; see [2] for the original
proof and [5] for this particular formulation. Since σk(x)�N

1
≤ ‖x‖�N

1
, we see that we

obtain the best possible performance (in the sense of (3.6)) if we can find matrices
that satisfy the RIP for k of the order n/(log(N/n) + 1).

The question now before us is: How can we construct matrices � that satisfy the
RIP for the largest possible range of k? For a fixed value of δk , the lower bound
in (2.3) for widths combined with (3.9) shows that the widest range possible is k ≤
C3 n/(log(N/n)+1). The only known constructions yielding matrices that satisfy the
RIP for this range are based on random matrices. Basically, one shows that matrices
built using random entries from certain probability distributions will have the RIP
with high probability.

It is important to note that verifying the RIP may be a difficult task. First, this
property requires bounded condition number for all submatrices built by selecting
k := #(T ) arbitrary columns. Thus, there are

(
N
k

)
such matrices to check. Second, the

spectral norm of a matrix is not generally easy to compute. In some cases, spectral
norms can be bounded by using diagonal dominance, but this will not be the case
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for the random constructions we are interested in because subtle cancellations help
control these norms.

The main point of this paper is to show that for certain random constructions of �,
the RIP follows in a simple way from the same concentration of measure inequalities
for inner products that have been employed to prove the JL lemma [1, 13] and, in
fact, can even be viewed as a straightforward consequence of the JL lemma.

4 The Johnson–Lindenstrauss (JL) Lemma and Concentration of Measure

The Johnson–Lindenstrauss (JL) lemma is concerned with the following problem.
We are given a set Q of points in RN with N typically large. We would like to embed
these points into a lower-dimensional Euclidean space Rn while approximately pre-
serving the relative distances between any two of these points. The question is how
small can we make n (relative to #(Q)) and which types of embeddings work? The
original formulation of Johnson and Lindenstrauss [13] is as follows.

Lemma 4.1 (Johnson–Lindenstrauss) Let ε ∈ (0,1) be given. For every set Q of
#(Q) points in RN , if n is a positive integer such that n > n0 = O(ln(#(Q))/ε2),
there exists a Lipschitz mapping f : RN → Rn such that

(1 − ε)‖u − v‖2
�N

2
≤ ‖f (u) − f (v)‖2

�n
2
≤ (1 + ε)‖u − v‖2

�N
2

(4.1)

for all u,v ∈ Q.

In the past several years, various improvements have been made in both the state-
ment and the proof of this lemma (see, e.g., [1, 7, 9, 12]). In particular, there are now
rather simple proofs of the lemma that show that f can be taken as a linear mapping
represented by an n × N matrix � whose entries are randomly drawn from certain
probability distributions. A concise description of this evolution is provided in [1].

To describe these probabilistic constructions, let (	, ρ) be a probability measure
space and let r be a random variable on 	. Given n and N , we can generate random
matrices � by choosing the entries φi,j as independent realizations of r . This yields
the random matrices �(ω), ω ∈ 	nN . It was shown in [1] that, starting with any
random variable satisfying certain moment conditions, for most draws ω, the matrix
�(ω) can be used as the function f in the JL lemma. More precisely, given any set
of points Q, with high probability the matrix f = �(ω) will satisfy (4.1) provided n

satisfies the conditions of the lemma.
Without going into complete detail, let us mention how one proves the JL lemma

using such random matrices. One first proves that for any x ∈ RN , the random vari-
able ‖�(ω)x‖2

�n
2

has expected value ‖x‖2
�N

2
; that is,

E(‖�(ω)x‖2
�n

2
) = ‖x‖2

�N
2
. (4.2)
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Next one must show that for any x ∈ RN , the random variable ‖�(ω)x‖2
�n

2
is strongly

concentrated about its expected value (thanks to the moment conditions); that is,

Pr(|‖�(ω)x‖2
�n

2
− ‖x‖2

�N
2
| ≥ ε‖x‖2

�N
2
) ≤ 2e−nc0(ε), 0 < ε < 1, (4.3)

where the probability is taken over all n × N matrices �(ω) and c0(ε) is a constant
depending only on ε and such that for all ε ∈ (0,1), c0(ε) > 0. To prove the JL
lemma one then applies (4.3) using the union bound to the set of differences between
all possible pairs of points in Q.

The study of concentration of measure inequalities like (4.3) is an important sub-
ject in probability and analysis. There is now a vast literature on this subject that is
described in [15]. The proof of the RIP given in the next section can begin with any
random matrices that satisfy (4.3). However, in the case of CS, it is of interest to have
specific examples for which one can easily establish (4.3) and for which there are
reasonable bounds on the constants. We point out some examples of this type.

Perhaps the most prominent example is the n × N random matrices � whose
entries φi,j are independent realizations of Gaussian random variables

φi,j ∼ N
(

0,
1

n

)
. (4.4)

The verification of (4.3) with c0(ε) = ε2/4 − ε3/6 is elementary using Chernoff in-
equalities and a comparison of the moments of a Bernouli random variable to those
of a Gaussian random variable.

One can also use matrices where the entries are independent realizations of ±1
Bernoulli random variables

φi,j :=
{+1/

√
n with probability 1

2 ,

−1/
√

n with probability 1
2 ,

(4.5)

or related distributions such as

φi,j :=

⎧⎪⎨
⎪⎩

+√
3/n with probability 1

6 ,

0 with probability 2
3 ,

−√
3/n with probability 1

6 .

(4.6)

Again these matrices satisfy (4.3) with c0(ε) = ε2/4 − ε3/6 which is proved in [1].

5 Verifying the RIP from Concentration Inequalities

We shall now show how the concentration of measure inequality (4.3) can be used
together with covering arguments to prove the RIP for random matrices. To begin,
we restrict our attention to the action of random � matrices on fixed k-dimensional
subspaces. Specifically, given any set of indices T with #T ≤ k, denote by XT the set
of all vectors in RN that are zero outside of T . This is a k-dimensional linear space
to which we endow the �2 norm.
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Our general approach will be to construct nets of points in each k-dimensional
subspace, apply (4.3) to all of these points through a union bound, and then extend
the result from our finite set of points to all possible k-dimensional signals. This
approach is a common strategy in analysis and probability. A similar construction is
used, for example, in modern proofs of Dvoretsky’s theorem (see [15, 18]). In our
case, we have to add a certain bootstrapping argument to handle the fact that we do
not begin with a favorable bound on the norm of � on these finite-dimensional spaces
(in fact, we are trying to derive one).

Lemma 5.1 Let �(ω), ω ∈ 	nN , be a random matrix of size n×N drawn according
to any distribution that satisfies the concentration inequality (4.3). Then, for any set
T with #(T ) = k < n and any 0 < δ < 1, we have

(1 − δ)‖x‖�N
2

≤ ‖�(ω)x‖�n
2
≤ (1 + δ)‖x‖�N

2
for all x ∈ XT (5.1)

with probability

≥1 − 2(12/δ)k e−c0(δ/2)n. (5.2)

Proof First note that it is enough to prove (5.1) in the case ‖x‖�N
2

= 1, since � is
linear. Next, we choose a finite set of points QT such that QT ⊆ XT , ‖q‖�N

2
= 1 for

all q ∈ QT , and for all x ∈ XT with ‖x‖�N
2

= 1 we have

min
q∈QT

‖x − q‖�N
2

≤ δ/4. (5.3)

It is well known from covering numbers and easy to prove (see, e.g., Chap. 13 of [16])
that we can choose such a set QT with #(QT ) ≤ (12/δ)k . We next use the union
bound to apply (4.3) to this set of points with ε = δ/2, with the result that, with
probability exceeding the right side of (5.2), we have

(1 − δ/2)‖q‖2
�N

2
≤ ‖�q‖2

�n
2
≤ (1 + δ/2)‖q‖2

�N
2

for all q ∈ QT , (5.4)

which trivially gives us

(1 − δ/2)‖q‖�N
2

≤ ‖�q‖�n
2
≤ (1 + δ/2)‖q‖�N

2
for all q ∈ QT . (5.5)

We now define A as the smallest number such that

‖�x‖�n
2
≤ (1 + A)‖x‖�N

2
for all x ∈ XT . (5.6)

Our goal is to show that A ≤ δ. For this, we recall that for any x ∈ XT with ‖x‖�N
2

= 1,
we can pick a q ∈ QT such that ‖x − q‖�N

2
≤ δ/4. In this case we have

‖�x‖�n
2
≤ ‖�q‖�n

2
+ ‖�(x − q)‖�n

2
≤ 1 + δ/2 + (1 + A)δ/4. (5.7)

Since by definition A is the smallest number for which (5.6) holds, we obtain A ≤
δ/2 + (1 + A)δ/4. Therefore A ≤ 3δ/4/(1 − δ/4) ≤ δ, as desired. We have proved
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the upper inequality in (5.1). The lower inequality follows from this since

‖�x‖�n
2
≥ ‖�q‖�n

2
− ‖�(x − q)‖�n

2
≥ 1 − δ/2 − (1 + δ)δ/4 ≥ 1 − δ, (5.8)

which completes the proof. �

Theorem 5.2 Suppose that n, N , and 0 < δ < 1 are given. If the probability distri-
bution generating the n × N matrices �(ω), ω ∈ 	nN , satisfies the concentration
inequality (4.3), then there exist constants c1, c2 > 0 depending only on δ such that
the RIP (3.8) holds for �(ω) with the prescribed δ and any k ≤ c1n/ log(N/k) with
probability ≥ 1 − 2e−c2n.

Proof We know that for each of the k-dimensional spaces XT , the matrix �(ω) will
fail to satisfy (5.1) with probability

≤2(12/δ)ke−c0(δ/2)n. (5.9)

There are
(
N
k

) ≤ (eN/k)k such subspaces. Hence, (5.1) will fail to hold with proba-
bility

≤2(eN/k)k(12/δ)ke−c0(δ/2)n = 2e−c0(δ/2)n+k[log(eN/k)+log(12/δ)]. (5.10)

Thus, for a fixed c1 > 0, whenever k ≤ c1n/ log(N/k), we will have that the exponent
in the exponential on the right side of (5.10) is ≤ −c2n provided that c2 ≤ c0(δ/2) −
c1[1 + (1 + log(12/δ))/ log(N/k)]. Hence, we can always choose c1 > 0 sufficiently
small to ensure that c2 > 0. This proves that with probability 1 − 2e−c2n the matrix
φ(w) will satisfy (5.1) for each x ∈ ∑

k . From this one easily derives the theorem. �

From the validity of the theorem for the range of k ≤ c1n/ log(N/k), one can
easily deduce its validity for k ≤ c′

1n/[log(N/n) + 1] for c′
1 > 0 depending only

on c1.

6 Discussion

In the proof of Lemma 5.1, we directly applied (4.3) to the set of points QT . An
alternative way to derive this result would have been to simply add the origin to
our set QT and then apply the JL lemma. This would have yielded a similar result
with only slightly worse constants (since the JL lemma seeks to preserve not only
the norms, but also the interpoint distances). While we find our direct approach to be
somewhat simpler, this alternative proof clearly illustrates that the RIP can be thought
of as a straightforward consequence of the JL lemma, and that any distribution that
yields a satisfactory JL-embedding will also generate matrices satisfying the RIP.

Furthermore, we prove above that the RIP holds for �(ω) with high probability
when the matrix is drawn according to one of the distributions (4.4), (4.5), or (4.6).
However, we are often interested in signals that are sparse or compressible in some
orthonormal basis � �= I , in which case we would like the RIP to hold for the ma-
trix �(ω)� . In this setting it is easy to see that by choosing our net of points in the
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k-dimensional subspaces spanned by sets of k columns of � , Theorem 5.2 will es-
tablish the RIP for �(ω)� for each of the distributions (4.4), (4.5), and (4.6). This
universality of � with respect to the sparsity-inducing basis is an attractive feature
that is known for the Gaussian distribution (4.4) (based on symmetry arguments), but
to our knowledge the universality of the distributions (4.5) and (4.6) has not been
previously shown. Indeed, we see that any distribution satisfying a concentration in-
equality analogous to that of (4.3) will provide both the canonical RIP and the univer-
sality with respect to � . More generally, it follows that with high probability such a
� will simultaneously satisfy the RIP with respect to an exponential number of fixed
bases.

In addition to streamlining the proofs underlying the theories of n-widths and
CS, the bridge to the JL lemma could enable new lines of research. For instance,
simplifying the verification that a random matrix � satisfies the RIP could aid the
design of new kinds of CS measurement systems. One promising direction is towards
new CS � that can be efficiently applied to vectors x, since a major application of
the JL lemma has been in large database systems where efficiency is critical [1].
For example, the random matrix defined by (4.6) requires 2/3 fewer additions and
multiplies than either (4.5) or (4.4).
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