
Math. Program., Ser. A (2014) 147:207–229
DOI 10.1007/s10107-013-0718-0

FULL LENGTH PAPER

A simple randomised algorithm for convex optimisation
Application to two-stage stochastic programming

M. Dyer · R. Kannan · L. Stougie

Received: 8 July 2010 / Accepted: 17 September 2013 / Published online: 13 October 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract We consider maximising a concave function over a convex set by a simple
randomised algorithm. The strength of the algorithm is that it requires only approx-
imate function evaluations for the concave function and a weak membership oracle
for the convex set. Under smoothness conditions on the function and the feasible
set, we show that our algorithm computes a near-optimal point in a number of oper-
ations which is bounded by a polynomial function of all relevant input parameters
and the reciprocal of the desired precision, with high probability. As an application to
which the features of our algorithm are particularly useful we study two-stage stochas-
tic programming problems. These problems have the property that evaluation of the
objective function is #P-hard under appropriate assumptions on the models. Therefore,
as a tool within our randomised algorithm, we devise a fully polynomial randomised
approximation scheme for these function evaluations, under appropriate assumptions

L. Stougie: Supported by the Tinbergen Institute and ABRI.

M. Dyer
Department of Computer Science, University of Leeds, Leeds, UK
e-mail: dyer@comp.leeds.ac.uk

R. Kannan
Microsoft Research Labs, Bangalore, India
e-mail: kannan@microsoft.com

L. Stougie (B)
Division of Econometrics and Operations Research, Department of Economics and Business
Adminstration, VU University, Amsterdam, The Netherlands
e-mail: lstougie@feweb.vu.nl

L. Stougie
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: stougie@cwi.nl

123

208 M. Dyer et al.

on the models. Moreover, we deal with smoothing the feasible set, which in two-stage
stochastic programming is a polyhedron.

Keywords Convex optimisation · Stochastic programming · Randomised
algorithms · Polynomial time randomised approximation scheme

Mathematics Subject Classification 90C25 · 90C15 · 68W20 · 68Q25

1 Introduction

In this paper we develop a randomised approximation algorithm for certain convex
optimisation problems, defined as

max G(x)

subject to x ∈ S,

where G : R
n → R is a concave function and S ⊂ R

n is a convex set. The weak
optimisation version of this problem, finding a point x ∈ S with function value within
ε of the optimal (cf. [13]), can be solved in a polynomial number of basic computer
operations [13,24]. Generally, known polynomial time algorithms use a separation
oracle for S (and level sets of G(·)). While this can be simulated by a membership
oracle for S (and function evaluations for G(·)), in polynomial time, the simulation is
very expensive. We wish to avoid altogether the use of separation oracles.

As an alternative, we present a simple randomised algorithm based on local moves.
At each iteration, we choose a random point in a small ball centered at the current
feasible point. We move to it if it is feasible and the objective function is strictly better.
Otherwise, we stay at the current point and repeat the random selection.

The algorithm requires only a membership oracle for S and an approximate evalua-
tion oracle for G(·) (which returns an approximate function value in the queried point).
We show that with high probability our algorithm outputs a solution that is within ε of
the optimal solution value. Under reasonable smoothness conditions on the feasible
region and the function to be optimised, the number of oracle calls required is bounded
by a polynomial function of the size of various input parameters. In Sect. 2 we present
and analyse our randomised convex optimisation algorithm.

An important application of our result is to stochastic programming. We consider
randomised approximations to optimal solutions of two-stage stochastic programming
problems. Problems of this type have been studied since they were proposed in the
1950s [2,5,32]. They model optimisation under uncertainty. In Sect. 3 we give a brief
introduction to these problems.

In sharp contrast to ordinary linear programs, two-stage stochastic programs are
hard to solve in a well defined sense. In fact, even a single evaluation of the objec-
tive function is #-P hard already for a subclass of rather simple two-stage stochastic
linear programs [10]. Thus, simply assuming the existence of (even) an approximate
function evaluation oracle for these evaluations conceals the intrinsic complexity of
the problem: it is at least as hard as exact counting. Assuming higher order function

123

A simple randomised algorithm 209

information is also undesirable, since derivatives are numerically unstable with respect
to relative approximation. Therefore, an application of the usual solution methods for
convex optimisation is problematic.

On the other hand, although exact counting is usually hard, there are situations
where randomised approximate counting is possible. See, for example [15]. There-
fore, we might guess that a similar type of approximation would be possible here. We
show in Sect. 4 that this intuition is justified. In particular, we design a subroutine for
approximate evaluations of the objective function of two-stage stochastic program-
ming problems. This subroutine is again a randomised algorithm, which, with high
probability, produces a function value that is within any prescribed precision. Under
appropriate assumptions on the randomness in the two-stage stochastic programming
problem and under a given uniform bound on the directional derivatives of the second
stage random value function, the number of steps required is bounded by a polyno-
mial function of the size of input parameters of the function to be evaluated and of
the logarithm of the reciprocal of the desired precision, making our subroutine a fully
polynomial randomised approximation scheme in the absolute sense. The uniform
bound assumption is a strong assumption but seems hard to avoid. Other studies with
the same aim [26,31] required bounds of some kind, as we will discuss in Sect. 6. We
achieve our result by drawing on known techniques, but to our best knowledge it is a
new result.

In Sect. 5 we combine the subroutine of Sect. 4 with the randomised convex opti-
misation algorithm developed in Sect. 2 to yield an algorithm for solving two-stage
stochastic programming problems. It turns out that the conditions we place on the
input of the stochastic programming problem, in order to get approximate function
values, imply the smoothness requirement on the objective function which we need
for our convex optimisation algorithm to converge in a polynomial number of steps.

We conclude in Sect. 6 with a comparison of our paper with similar approaches that
have appeared in the literature, notably the papers [31] and [26], giving the advantages
and disadvantages of our approach. We postpone this comparison to the end for a better
appreciation by the reader. Next to a historical note, we also review relevant literature
which has appeared subsequent to the completion of the work described in this paper.

2 Random local improvement

In this section we consider the general problem of maximizing a twice differentiable
concave real-valued function G : R

n → R, over a compact convex set S ⊂ R
n . We

will assume little about the function G and the set S. We assume S is given only by a
membership oracle, which can decide, for a given x ∈ R

n , whether or not x ∈ S. We
assume G is given by an approximation oracle, which, for x ∈ R

n and a given error
parameter ε0 > 0, returns a number ̂G(x) in the interval [G(x) − ε0,G(x) + ε0]. In
the sequel we denote by x∗ an optimal solution of the maximisation problem.

We propose a very simple solution strategy. Starting from a given initial feasible
point x0 ∈ S, we successively generate points in S as follows. At x ∈ S, we generate
a point z uniformly at random in a ball of a certain radius r and centre x . If this point
is feasible (i.e. in S) and has a significantly better objective function value than x ,

123

210 M. Dyer et al.

we move to it and iterate. Otherwise, we repeat the random generation. We stop the
algorithm if a certain number of successive trials have not given a significantly better
point. Thus we look simply for a local random move which improves the objective
function. We call this the “Ball Walk algorithm”.

This strategy does not lead to an efficient method for general concave functions and
convex sets. For example, if S = R

n+, and our current point is the origin, we have an
exponentially small probability of hitting S. This example illustrates one problem—
poor local conductance in the terminology of [22]. However, we will show that, under
mild smoothness conditions, the method converges rapidly.

In the sequel we denote the volume of a set S by vol(S), and B(x, r) denotes a
ball with radius r and centre x . A cap of B(x, r) is the subset cut off by a half-
space which excludes x . We denote the unit n-ball by Bn . We use ∂S to denote
the boundary of a set S. We denote the first and second directional derivatives of
a function F : R

n → R in direction w by F ′(w; x) and F ′′(w; x), respectively.
The gradient of a function F at a point x ∈ R

n will be denoted by ∇F(x), and its
Hessian by ∇2 F(x). We denote the Euclidean norm of a vector x by ‖x‖, and the
L2-norm of a matrix A by ‖A‖, i.e., ‖A‖ = maxx :‖x‖=1 ‖Ax‖. Thus |F ′(w; x)| ≤
‖∇F(x)‖ and |F ′′(w; x)| ≤ ‖∇2 F(x))‖ for all x and w ∈ ∂Bn , and equality holds in
both cases for every x and some w(x) ∈ ∂Bn . We now list the assumptions that we
make.

Assumption A 1. G is concave and S ⊂ R
n is convex and has diameter bounded

above by a constant D;
2. there exists τ > 0 such that, for all x ∈ S, ‖∇G(x)‖ ≤ τ ;
3. there exists ν > 0, such that, for all x ∈ S, ‖∇2G(x)‖ ≤ ν;
4. there exist σ, r0 > 0, such that, for all r ≤ r0, x ∈ S,

vol(B(x, r) ∩ S)

vol(B(x, r))
≥ 1

2
− σr;

5. Some point x0 ∈ S is given.

The Ball Walk algorithm aims at finding a point x for which G(x) ≥ G(x∗)− ετD
with probability at least 1 − η. The choices of the various parameters that we make
now, may seem magic at this point of the text, but their justification will become
clear later. Because of the uncertainty in the estimation of G, we must choose ε ≥
24

√
nε0

τr , so ε0 ≤ ετr
24

√
n

. The algorithm is described in Fig. 1, where we choose r =
min{r0,

D√
n
, ετ

90στ+3ν
√

n
}. Note that it might appear at first sight that Assumption A.4

could be satisfied by simply choosing a large value of σ . However, the value of r must
then be very small, and so the running time of the algorithm will be large.

The improvement we get in one step of Ball Walk will be examined below in
Theorem 2.1. But first we give some preliminary elementary estimates which will
proveuseful.

123

A simple randomised algorithm 211

Fig. 1 The Ball Walk algorithm

Lemma 2.1 For n ≥ 2,
√

n/3 ≤ vol(Bn−1)/vol(Bn) ≤ 2
√

n/3.

Proof Since vol(Bn) = πn/2/	(n/2 + 1),

vol(Bn−1)

vol(Bn)
= 	(n/2 + 1)√

π(((n − 1)/2 + 1)
.

Stirling’s approximation to the Gamma function gives the conclusion after some cal-
culation. �
Lemma 2.2 For n ≥ 2, let U = {x = (x1, . . . , xn) ∈ B(0, r)|0 ≤ x1 ≤ cr/

√
n} be a

slice of B(0, r) ⊂ R
n, where 0 < c < 1. Then c/5 ≤ vol(U)/vol(B(0, r)) ≤ 2c/3.

Proof Since c ≤ 1, elementary estimates give

c√
n

(

1 − 1

n

) n−1
2 vol(Bn−1)

vol(Bn)
≤ vol(U)

vol(B)
≤ c√

n

vol(Bn−1)

vol(Bn)
.

Using Lemma 2.1 and (1 − 1/n)n−1 ≥ e−1 now gives the conclusion. �
Theorem 2.1 Let n ≥ 3, and x ∈ S be such that G(x) ≤ G(x∗) − ετD. With
probability at least σr/120 a point z is found in one step with

G(z) ≥ G(x)+ ετr

6
√

n
,

and the Ball Walk will accept this step.

Proof First shrink B(x, r) to B(x, r ′), with r ′ = (1 − β)r , and β = 2
n . We write B

and B ′ shortly for B(x, r) and B(x, r ′), respectively. Notice that

vol(B ′) = (1 − β)nvol(B).

Define g(x) = ∇G(x)
‖∇G(x)‖ , and v = x∗−x

‖x∗−x‖ . Consider the set

T1 = B ′ ∩ S ∩
{

y|(y − x)T g(x) ≥ −5c1r ′
√

n

}

∩
{

y|(y − x)T v ≤ 5c2r ′
√

n

}

,

123

212 M. Dyer et al.

with c1 = 3σr ′ and c2 = 1
2 −σr ′. Note that the bound on r implies that c1 < ε/2 ≤ 1

2 ,
and clearly c2 <

1
2 . Now T1 is obtained from B ′ by cutting off the union of two caps

and therefore, using Lemma 2.2,

vol(T1) ≥ vol(B ′ ∩ S)−
(

1

2
− c2

)

vol(B ′)−
(

1

2
− c1

)

vol(B ′).

Thus, using Assumption A.4 and the definition of c1 and c2,

vol(T1)

vol(B ′)
≥ 1

2
− σr ′ − σr ′ − 1

2
+ 3σr ′ = σr ′.

Let α = r
3D

√
n

, and define the set

T2 = {αx∗ + (1 − α)y|y ∈ T1}.

We claim that T2 is a subset of B, each point of which gives the improvement stated in
the theorem. Thus, its relative volume is a lower bound on the probability that such an
improvement is attained in one step of the Ball Walk algorithm. This relative volume
is in turn bounded as follows:

vol(T2)

vol(B)
≥ (1 − α)nvol(T1)

(1 − β)−nvol(B ′)
≥ (1 − α)n(1 − β)nσr ′

= (1 − α)n(1 − β)n+1σr

≥ (8/9)3(1/3)4σr

≥ σr/120,

where the last but one inequality is implied by r ≤ D√
n
, n ≥ 3, and the choices for α

and β.
To show that T2 ⊂ B, we take z = αx∗ + (1 −α)y for some y ∈ T1. and show that

‖z − x‖ ≤ r .

‖z − x‖2 = α2‖x∗ − x‖2 + (1 − α)2‖y − x‖2 + 2α(1 − α)(x∗ − x)T (y − x). (1)

To bound the first term of the right-hand side of (1), we use the definition of α and the
fact that ‖x∗ − x‖ ≤ D, giving

α2‖x∗ − x‖2 ≤
(

r

3D
√

n

)2

D2 = r2

9n
. (2)

Since y ∈ B ′ implies that ‖y − x‖ ≤ r ′ = (1 − β)r and 0 ≤ α, β ≤ 1 implies that
(1 − α)2(1 − β)2 ≤ (1 − β), the second term of the right-hand side is bounded by

(1 − α)2‖y − x‖2 ≤ (1 − β)r2 = (1 − 2

n
)r2. (3)

123

A simple randomised algorithm 213

Finally, the definitions of α, v, c2 and T1 imply

2α(1 − α)(x∗ − x)T (y − x) ≤ 10

3
(1 − β)c2

r2

n
≤ 5r2

3n
. (4)

(2), (3), (4) inserted in (1) yields

‖z − x‖2 ≤
(

1

9n
+ 1 − 2

n
+ 5

3n

)

r2 ≤ r2.

Next we show that z gives the desired improvement over x . By concavity of G

G(z)− G(x) ≥ α(G(x∗)− G(x))+ (1 − α)(G(y)− G(x)). (5)

The second order Taylor expansion of G in y around x yields

G(y)− G(x) = ∇G(x)T (y − x)+ 1

2
G ′′(w; x ′)‖y − x‖2

≥ −5c1r ′
√

n
‖∇G(x)‖ − 1

2
νr ′2

≥ −5c1r√
n

‖∇G(x)‖ − 1

2
νr2

≥ −15σr2

√
n

‖∇G(x)‖ − 1

2
νr2, (6)

where x ′ ∈ [x, y], w = (y − x)/‖y − x‖, and we used Assumption A.3 for the first
inequality. Using the definition of α, (5) and (6) yield

G(z)− G(x) ≥ r

3D
√

n
(G(x∗)− G(x))−

(

15σ√
n

‖∇G(x)‖ + 1

2
ν

)

r2.

Since we assumed G(x∗) − G(x) ≥ ετD, using ‖∇G(x)‖ ≤ τ (Assumption A.2),
leads to

G(z)− G(x)

G(x∗)− G(x)
≥ r

3D
√

n
−

(

15στ/
√

n

ετD
+ ν/2

ετD

)

r2.

Since r ≤ ετ
90στ+3ν

√
n

, a simple calculation now gives

G(z)− G(x)

G(x∗)− G(x)
≥ r

6D
√

n
(7)

Hence

G(z)− G(x) ≥ r

6D
√

n

(

G(x∗)− G(x)
) ≥ ετr

6
√

n
,

123

214 M. Dyer et al.

as required. In this event,

̂G(z)− ̂G(x) ≥ G(z)− G(x)− 2ε0 ≥ ετr

6
√

n
− ετr

12
√

n
= ετr

12
√

n
,

so the Ball Walk will accept. �
If the Ball Walk accepts, then we know that

G(z)− G(x) ≥ ̂G(z)− ̂G(x)− 2ε0 ≥ ετr

12
√

n
− ετr

12
√

n
= 0, (8)

thus the Ball Walk algorithm never causes the value of G(x) to decrease.

Theorem 2.2 With probability at least 1 − η, the number of samples from a ball that
the Ball Walk algorithm requires to reach a point x with G(x∗) − G(x) ≤ ετD is
bounded from above by

4,200
√

nD ln(1/ε) ln(1/η)

σr2 .

Proof From (7) in the proof of Theorem 2.1, with probability at least 120
σr we have

G(x∗)− G(z)

G(x∗)− G(x)
= 1 − G(z)− G(x)

G(x∗)− G(x)
≤ 1 − r

6D
√

n
,

and the Ball Walk accepts the step. Moreover, the concavity of G and Assumption A.2
imply that G(x∗) − G(y) ≤ τD for all feasible y, hence also for the starting point
x0. Let us call a good step one in which the improvement is as in (7), and note that no
step results in a decrease in G(x). Then, after k good steps, we obtain a point xk with

G(x∗)− G(xk) ≤
(

1 − r

6D
√

n

)k
τD ≤ τD exp

(

− kr

6D
√

n

)

≤ ετD.

when

k ≥ 6
√

nD log(1/ε)

r
.

Let K = 700 k ln(1/η)/(σr). Then, using Chernoff’s inequality, the probability that
in K steps there are fewer than k good steps is at most

exp

(

−1

3

(

5k ln(1/η)− k

5k ln(1/η)

)2

5k ln(1/η)

)

= exp

(

−k
(

5 ln(1/η)− 1
)2

15 ln(1/η)

)

≤ exp
(− k ln(1/η)

) = ηk ≤ η,

provided η ≤ e−1 and k ≥ 1. �

123

A simple randomised algorithm 215

Note that the bound of Theorem 2.2 is indeed polynomial in the parameters of the
problem, since r is a rational function of the problem parameters.

3 Two-stage stochastic programming

In this section we describe briefly stochastic linear programming problems. Problems
of this type have been studied since they were proposed in the mid 1950s [2,5,32].
They model optimisation under uncertainty. Such models are useful in many practical
situations. Obtaining exact information about all parameters in a practical optimisation
problem is often impossible.

As an example, think of allocating funds to a variety of possible investments so as
to maximise profit under a budget restriction. Usually at the moment the investment
decision is to be made there is no certainty at all about the future yields of the various
investments. Neither might there be exact information about the amounts needed to
invest in a certain given project. At best one might hope to have some idea of what these
parameter values could be, and to express this in the form of probability distributions.
In this way we arrive at stochastic programming problems.

Suppose that we have a linear programming problem in which some parameters are
random. The random variables we indicate by putting a tilde over them.

max px

subject to Ax ≤ b

T̃ x ≤ ξ̃

with b ∈ R
m, ξ̃ ∈ R

d , and A an m × n matrix, T̃ an d × n matrix, and p ∈ R
n .

We assume that probability distributions are given for the random matrix T̃ and
the random vector ξ̃ . The above model is clearly ill-defined since a solution x that is
optimal for one realisation of T̃ and ξ̃ may even be infeasible for another.

Two main directions have been taken in the literature to arrive at sensible models. In
the conceptually easiest, violation of the uncertain constraints is allowed to occur with
a probability that does not exceed a prespecified level, giving the so-called probabilistic
constraints problem. The best comprehensive survey of this field is [27]. The paper
of Kannan and Nolte [18] takes a similar approach to the probabilistic constraints
problem that we take here for the model described next.

The other direction is the one we consider in this paper and is called the two-
stage stochastic programming problem or the stochastic recourse problem. Concep-
tually one should think of the decision process taking place in two stages. In the
first, values for the first stage variables x are chosen. In the second, upon a reali-
sation of the random parameters, a recourse action is to be taken in case of infea-
sibilities. Costs are attached to the various possible recourse actions leading to the
second stage (or recourse) problem, to choose the optimal action given the infeasibil-
ities. The expected cost of the optimal recourse action is then added to the objec-
tive function. For a comprehensive review of the extensive literature we refer to
[4,12,27].

123

216 M. Dyer et al.

A generic mathematical programming formulation for this problem is

max px + E[max{q̃ y | W y ≤ T̃ x − ξ̃ , y ∈ R
n1}]

subject to Ax ≤ b.
(9)

with q̃ ∈ R
n1 and W an d × n1 matrix. In the literature W is sometimes allowed to

be a random matrix. However, this may cause the feasible region to be non-convex in
terms of x (see [33]). We concentrate on the so-called fixed recourse model in which
W is fixed. Moreover, we assume that W is such that for any x and any realisation of
T̃ and ξ̃ there exists a feasible solution y in the second stage problem. This property
of W is called the complete recourse property, and the model is accordingly called the
complete recourse model (see e.g. [4]).

It is well known that the objective function of (9) is concave (see [33,34]). Therefore,
the two-stage stochastic programming problem boils down to maximising a concave
function over a convex (polyhedral) set. Thus, we can use our Ball Walk algorithm to
solve this problem if we know that the objective function and the convex feasible set
satisfy our smoothness conditions. It will be clear that this is not true for the feasible
set, which is a polyhedron. We will come to this point later, in Sect. 5. However,
another serious obstruction against using Ball Walk is that this algorithm requires an
oracle that gives function values on request. As will be clear from the next section,
it is exactly the evaluation of the objective function which makes the two-stage sto-
chastic programming problem so excessively hard to solve. Therefore, the assumption
that a function evaluation oracle exists for these problems significantly hides their
computational difficulty.

Therefore, before adapting the Ball Walk algorithm to solve two-stage stochastic
programming problems in Sect. 5, we first devise a suitable function evaluation oracle
in Sect. 4.

Our Ball Walk algorithm is certainly not among the first randomised approaches to
solving two-stage stochastic programming problems. There is an extensive literature
on sampling based methods, see a.o. [6,14,19,21,28]. In all these papers statistical
convergence of the methods is analysed, but none considers complexity issues. The
first one in that sense was the work by Kleiwegt, Shapiro and Honem-de-Mello, [20]
in a version of the so-called sample average method, in which scenarios of the random
parameters are sampled and then an approximate problem is solved, the so-called
deterministic equivalent problem, with discrete distributions estimated by the samples.
They give a bound on the number of samples needed to find a near-optimal solution
that is polynomial in the dimension of the problem. The running time is however also
a function of a parameter based on the distribution of the scenarios. It was in [29] and
the aforementioned papers of [31] and [25] that running times became independent of
distribution functions.

4 Computation of the objective function

As we pointed out in the Introduction, the main difficulty in solving the two-
stage stochastic programming problem is the computation of the objective function.

123

A simple randomised algorithm 217

We concentrate in the rest of the paper on the version of (9) in which only the right
hand side coefficients ξ̃ are random. Thus, q and T are fixed. We also suppress the
tilde on ξ . We use the notation G for the objective function, i.e.

max
x∈S

G(x) = px + Q(x), (10)

with

Q(x) = Eξ [max{qy|W y ≤ T x − ξ, y ∈ R
n1}].

and

S = {x ∈ R
n|Ax ≤ b}

In this section we describe a fpras for evaluating Q(x) and therefore for evaluating the
objective function G(x). It is based on a Markov chain approach, where we sample
approximately according to the known density function of ξ , compute the value of the
linear program and take the average over the values obtained from the sample.

The only source of randomness is ξ , which we assume is described by a given
density function f : R

d → R. Thus,

Q(x) =
∫

v(T x − ξ) f (ξ)dξ

with

v(T x − ξ) = max{qy|W y ≤ T x − ξ, y ∈ R
n1}.

We require some mild conditions on f . We cannot expect to approximate Q efficiently
for arbitrary f , since it is known that there exist counting functions which are NP-hard
to approximate, even in the relative sense [15]. Therefore we assume the following
conditions, borrowed from volume computation [1].

Assumption B 1. f is log-concave, i.e. log f is concave on its support supp f ;
2. f has a negligible measure outside B(0, R), i.e. for all ϕ > 0, there exists R ≥ 4d

such that
∫

‖ξ‖≥R f (ξ)dξ ≤ ϕ;
3. log f is Lipschitz-continuous, i.e. there exists θ > 0 such that | log f (ξ) −

log f (ξ ′)| ≤ θ‖ξ − ξ ′‖ for all ξ, ξ ′ ∈ supp f ;
4. We are given a ξ0 ∈ B(0, R) with f (ξ0) ≥ R−γ d for some absolute constant γ ,

where R is as chosen in B.2 above. This implies that we know a good starting
point for the Markov chain, a so called “warm start”;1

5. the directional derivative v′(w; T x − ξ) is uniformly bounded for all unit vectors
w ∈ R

d , i.e. there existsλ > 0 such that for all ξ ∈ supp f and x ∈ S, |v′(w; T x−
ξ)| ≤ λ;

1 If necessary, such a point can be found with a preliminary convex optimisation.

123

218 M. Dyer et al.

6. The rows of T are scaled to have unit norm. Thus ‖T ‖ ≤ √
d .

7. There exist x0 ∈ R
n, Rin, Rout ∈ R+ such that B(x0, Rin) ⊆ S ⊆ B(x0, Rout).

Let κ = Rout/Rin be the rounding number or aspect ratio of the polytope S.

Conditions B.1–B.4 do not severely restrict the instances, since (with minor technical
changes) all the most important distributions, for example those from the exponential
family, meet the requirements.

Condition B.5 requires that the function v(·) does not vary too rapidly. Condition
B.6 is clearly not restrictive, and B.7 is discussed in the next section. We don’t use
either of B.6 or B.7 until the following section, but give them here to have a complete
overview of all our conditions.

To sample according to f , we define a Metropolis random walk that has f restricted
to B(0, R) as its steady state density function. Note that, by Assumption B.2, the
restricted density f̂ satisfies f ≤ f̂ ≤ f/(1 − ϕ). If ϕ is assumed negligible, then by
B.1 and B.5 we can suppose that this simply contributes a negligible amount to the
approximation error for Q(x). Thus we will not need to draw a distinction between f
and f̂ in what follows and we will use the notation f , though it should read f̂ .

To sample from f we define a random walk that has f as its steady state density.
One step of the random walk is defined as follows. Suppose the walk is at x ∈ B(0, R).
We choose uniformly at random a point y in a ball with center x and radius δ, to be
specified later. If y is not in B(0, R), we stay at x . Otherwise, if f (y) ≥ f (x), we
move to y, else we move to y with probability f (y)/ f (x). Formally, the transition
kernel p(x, y) (x �= y) for moving from x to y in one step of the random walk is given
by

p(x, y) =
⎧

⎨

⎩

1

vol(B(0, δ))
min

{

1,
f (y)

f (x)

}

if y ∈ B(0, R), 0 < ‖x − y‖ ≤ δ,

0 otherwise.

Note that p(x, x) is an atom 1−∫

y �=x p(x, y) dy. It is easy to see, by time reversibility,
that the steady state distribution of this random walk has density proportional to f (x).

In the following we will use techniques and results from volume estimation [8,16]
to prove that this chain mixes rapidly, i.e. converges fast to the steady state. We first
introduce some notation and state the relevant results from the literature.

Theorem 4.1 Dyer and Frieze [7] Let S ⊂ R
d be a convex body with diameter D

and f be a log-concave function defined on S with π the induced probability measure
on S. Let S1, S2 ⊂ S, dist (S1, S2) = minx∈S1,y∈S2 ‖x − y‖. If S0 = S \ (S1 ∪ S2)),
then

min{π(S1), π(S2)} ≤ D

2dist (S1, S2)
π(S0).

�
The quantity 2/D is called the isoperimetric constant Iso(S) of S.

Given a random walk with stationary distribution π defined on a set S, its conduc-
tance is defined as

123

A simple randomised algorithm 219

� = inf
{S⊂S|0<π(S)≤1/2}

∫

S Pu(S̄)dπ(u)

π(S)
,

where Pu(S̄) is the probability of moving in one step from point u in S ⊂ S to a point
in S̄, the complement of S in S.

The local conductance of a Markov chain at a point x is defined as the probability
of moving to any point y �= x in one step.

Theorem 4.2 [22] Consider a Metropolis random walk using balls of radius δ in a
convex set S ⊂ R

d which has local conductance at least χ at every point. Then the
conductance � of the walk is at least

Iso(S)χ2δ

32
√

d
.

�
Theorem 4.3 [22] Let f0 be the initial density of a Metropolis random walk on R

d

with stationary density f . Define

M(f0, f) = sup
{S⊂Rd |0<∫

S f ≤1/2}

| ∫S f − ∫

S f0|
√

∫

S f
.

Let fk be the density of the Markov chain after k steps. Then

sup
S⊂Rd

∣

∣

∣

∣

∣

∣

∫

S

f −
∫

S

fk

∣

∣

∣

∣

∣

∣

< M(f0, f)

(

1 − �2

2

)k

.

�
Theorem 4.4 Using the Metropolis random walk, we can sample in B(0, R) ⊂ R

d

according to a density f ′ satisfying supS⊂Rd | ∫S f − ∫

S f ′| < ε in K ′ steps, where

K ′ = 8 · 104 R2d3e4θ
(

ln
1

ε
+ (γ + 1)d ln R

)

.

Proof Theorem 4.1 gives an isoperimetric constant of 1
R for a random walk on B(0, R).

The Lipschitz continuity (Assumption B.3) implies that the acceptance function varies
only by a factor e−θδ ≥ e−θ δ, for δ ≤ 1, over B(x, δ). Moreover, vol(B(x, δ) ∩
B(0, R)) ≥ 0.4B(x, δ), if x ∈ B(0, R). To see this note that the intersection contains a
cap of B(x, δ) at distance at most δ2/(2R) from x , by elementary geometry. Lemma 2.2
with c = 1/(2R) now implies the volume of the cap is at least 1/2 − 1/(3R) > 0.4,
by Assumption B.2. Thus, choosing δ = 1√

d
implies a constant local conductance

χ ≥ 0.4e−θ√
d

.
Applying these results, Theorem 4.2 implies a lower bound on the conductance �

of the walk of 1
200Rd

√
de2θ . Theorem 4.3 then yields

123

220 M. Dyer et al.

Fig. 2 The approximation algorithm for Q(x)

sup
S⊂Rd

∣

∣

∣

∣

∣

∣

∫

S

f −
∫

S

f ′
∣

∣

∣

∣

∣

∣

< M(f0, f)

(

1 − �2

2

)K ′

.

We choose the uniform distribution on B(ξ0, δ) as the initial density f0, where ξ0
is the point guaranteed by Assumption B.4. Assumption B.3 again implies that the
acceptance function varies over B(ξ0, δ) only by a factor θδ. These, together with
Assumption B.2, imply M(f0, f) = e−θ R(γ+1)d , after some calculation. �

In Fig. 2 we define the procedure Estimate based on the Markov chain described
above to compute an approximation of the value of Q(x).

Theorem 4.5 With probability 1−ρ, procedure Estimate computes QK (x) ∈ [Q(x)−
ε, Q(x)+ ε] in K =

⌈

8L2 ln(2/ρ)
ε2

⌉

samples.

Proof Let QK (x) = 1
K

∑K
i=1 v(T x − ξi), with ξ1, . . . , ξK independent samples gen-

erated by the Metropolis random walk. Thus, E[QK (x)] = ∫

v(T x − ξ) fK ′(ξ)dξ ,
where fK ′ is the density produced by the Metropolis random walk when run with error
parameter ε′ = ε/4λ. Since we assume that the directional derivative of v is uniformly
bounded by λ by Assumption B.5, Hoeffding’s inequality implies

Pr
{|QK (x)− E[QK (x)]| > 1

2ε
} ≤ 2 exp

(

− ε2 K

8(λR)2

)

,

since K ≥ 8λ2 R2 ln(2/ρ)ε−2. Theorem 4.4 yields

|E[QK (x)] − Q(x)| =
∣

∣

∣

∣

∫

v(T x − ξ) fK ′(ξ)dξ −
∫

v(T x − ξ) f (ξ)dξ

∣

∣

∣

∣

≤ λR
∫

| f (ξ)− fK ′(ξ)|dξ

123

A simple randomised algorithm 221

= 2λR
∫

f ≤ fK ′

(fK ′(ξ)− f (ξ))dξ

≤ 2λRε′ = 1
2ε,

Combining these, we see that Pr{|QK (x)− Q(x)| > ε} ≤ ρ. �

Corollary 4.1 In K · K ′ = O
(

γ R4d3λ2e4θ

ε2 log 1
ε

log R log 1
ρ

)

steps, procedure Esti-

mate computes QK (x) ∈ [Q(x)− ε, Q(x)+ ε]. �

Using the approximation algorithm for the objective function G and applying the
ellipsoid algorithm in [13] to our problem, under our assumptions we would have a
fpras for the stochastic recourse problem. The following theorem follows easily from
taking ρ = ζ/N in Theorem 4.5, where N is the required number of steps of the
ellipsoid algorithm.

Theorem 4.6 Under Assumptions B.1–B.5, with probability at least 1−ζ , the ellipsoid
algorithm, using procedure Estimate to approximately evaluate G, will solve the two-
stage stochastic programming problem (10) to within additive error ε, in a number of
arithmetic operations bounded polynomially in the input parameters, 1/ε and log 1/ζ .

�

The ellipsoid algorithm is complicated to apply and can be very slow. Therefore we
combine the method for approximate function evaluations with the method of Sect. 2
to obtain a simple randomized local improvement algorithm. Our earlier results will
then imply that, with high probability, a solution is obtained that is close to optimal.

5 Random directions for two-stage stochastic programming

In this section we will extend the Ball Walk approach to solve the two stage stochastic
programming problem. Recall the formulation (10) in Sect. 4. We assume conditions
B.1–B.5, which we required previously for the randomized approximate computation
of Q(x), and now we also assume that condition B.6 is satisfied.

It turns out that these conditions on the density function also imply smoothness
of the objective function, required for the Ball Walk algorithm of Sect. 2, as we will
show.

Lemma 5.1 Suppose x ∈ S. Under Assumptions B.1–B.6, we have

‖∇G(x)‖ ≤ ‖p‖ + λ
√

d, and ‖∇2G(x)‖ ≤ λθd.

As a result we may choose the smoothness parameters τ and ν of G (Assumptions A.2,
A.3) to be ‖p‖ + λ

√
d and λθd, respectively.

123

222 M. Dyer et al.

Proof Let w be a unit vector and u = Tw/‖Tw‖. Then

|Q′(w; x)| =
∣

∣

∣

∣

lim
t→0

∫

v(T x + tTw − ξ) f (ξ)− v(T x − ξ) f (ξ)

t
dξ

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

lim
t→0

v(T x + tTw − ξ)− v(T x − ξ)

t
f (ξ)dξ

∣

∣

∣

∣

= ‖Tw‖
∣

∣

∣

∣

∫

v′(u; T x − ξ) f (ξ)dξ

∣

∣

∣

∣

≤ ‖Tw‖
∫

|v′(u; T x − ξ)| f (ξ)dξ

≤ λ‖Tw‖
∫

f (ξ)dξ

≤ λ
√

d,

where we have used B.6 to give ‖Tw‖ ≤ √
d . Also

|Q′′(w; x)| = ‖Tw‖
∣

∣

∣

∣

lim
t→0

∫

v′(u; T x + tTw − ξ) f (ξ)− v′(u; T x − ξ) f (ξ)

t
dξ

∣

∣

∣

∣

= ‖Tw‖
∣

∣

∣

∣

lim
t→0

∫

v′(u; T x − ξ) f (ξ + tTw)− v′(u; T x − ξ) f (ξ)

t
dξ

∣

∣

∣

∣

= ‖Tw‖2
∣

∣

∣

∣

∫

v′(u; T x − ξ) f ′(u; ξ)dξ
∣

∣

∣

∣

≤ ‖Tw‖2
∫

|v′(u; T x − ξ)| · | f ′(u; ξ)|dξ

≤ θ‖Tw‖2
∫

|v′(u; T x − ξ)| f (ξ)dξ

≤ λθ‖Tw‖2
∫

f (ξ)dξ

≤ λθd,

where we have used that Assumption B.3 implies | f ′| ≤ θ f . The lemma follows. �
Thus, Assumptions A.2 and A.3 in Sect. 2 are satisfied. We know that G is con-

cave, satisfying also Assumption A.1. Therefore, we need to be concerned now with
smoothing the underlying feasible set S = {x ∈ R

n|Ax ≤ b}. Since S is a polyhe-
dron, it is not smooth. Therefore we use the “roundedness” Assumption B.7 on S. This
allows us to consider a slightly larger (non-polyhedral) set, which is indeed smooth,
and apply the Ball Walk to this larger set.

Recall κ = Rout/Rin. Note that κ resembles a “condition number”: it is small if
the polytope is “well-rounded” and large if it is not. Thus we will assume κ is not
too large. In fact any polytope can be “rounded” to have κ = O(

√
n), but here this

may be undesirable since it can adversely affect the parameters of G. From now on
we assume that S satisfies the above assumption.

123

A simple randomised algorithm 223

To facilitate the exposition, let A(i) denote the i th row of A, and suppose A is
normalised so that ‖A(i)‖ = 1 (i = 1, . . . ,m). Then, for x ∈ R

n , let

(A(i)x − bi)
+ =

{

A(i)x − bi if A(i)x > bi ,

0 otherwise,

be the distance from x to the halfspace A(i)y ≤ bi . Consider the function F(x) =
∑m

i=1((A
(i)x − bi)

+)2, and, for a given μ > 0, define the set Sμ = {x ∈ R
n|F(x) ≤

μ}. Note that S ⊆ Sμ and Sμ is convex. The following lemmas establish the required
smoothness condition for Sμ.

Lemma 5.2 For all x, z ∈ R
n, ‖z‖ = 1, 0 ≤ F ′′(z; x) ≤ 2m.

Proof We have

∇F(x) = 2
∑

i∈I (x)

(

A(i)x − bi

)

A(i), (11)

where I (x) = {i : A(i)x > bi }. Since F ′(z; x) = ∇F(x).z,

F ′′(z; x) = 2
∑

i∈I (x)

(

A(i)z
)2
. (12)

Clearly F ′′(z; x) ≥ 0, and the upper bound follows from |I (x)| ≤ m and the Cauchy-
Schwarz inequality. �
In particular, it follows that F is a convex function.

Lemma 5.3 Let S have rounding number κ and 0 < μ ≤ 1. Then, for all x ∈ Sμ,

κ‖∇F(x)‖ ≥ √

F(x).

Proof Assume without loss that x0 = 0 and Rin = 1, so Rout = κ . Also bi ≥ 1 (i =
1, . . . ,m), by considering the points A(i) ∈ ∂B(0, 1). Fix x ∈ Sμ, let

ψ = min
1≤i≤m

{‖x‖bi

A(i)x
: A(i)x > 0

}

,

and let � be the minimizing i . Let x̃ = ψx/‖x‖, so ψ = ‖x̃‖. Clearly ψ ≤ κ , since
otherwise A(i) x̃ ≤ bi (i = 1, . . . ,m), but x̃ /∈ B(0, κ). Now

√
μ ≥ √

μ/b� ≥ (A(�)x − b�)/b� = ‖x‖/ψ − 1 = ‖x‖/‖x̃‖ − 1.

Thus ‖x‖ ≤ (1 + √
μ)‖x̃‖ ≤ 2κ . Thus, from (11),

∇F(x).x = 2
∑

i∈I (x)

(

A(i)x − bi

)

A(i)x ≥ 2
∑

i∈I (x)

(A(i)x − bi) ≥ 2
√

F(x),

123

224 M. Dyer et al.

since A(i)x > bi ≥ 1 for i ∈ I (x) and F(x) = ∑

i∈I (x)(A
(i)x − bi)

2. Therefore,
using Cauchy–Schwarz,

‖∇F(x)‖ ≥ 2
√

F(x)/‖x‖ ≥ √

F(x)/κ,

and the result follows. �
Lemma 5.4 Let 0 < μ ≤ 1, and σ = (2mκ/3)

√
n/μ. Then, for all x ∈ Sμ,

vol(B(x, r) ∩ Sμ)/vol(B(x, r)) ≥ 1
2 − σr.

Proof Assume without loss that x is on the boundary of Sμ. Using Taylor’s theorem
and Lemma 5.2, for any displacement z,

F(x + z) ≤ F(x)+ ∇F(x) · z + mz2 = μ+ ∇F(x) · z + mz2,

and the subgradient inequality gives

F(x + z) ≥ F(x)+ ∇F(x) · z = μ+ ∇F(x) · z.

Thus, if F(x + z) = μ, −mz2 ≤ ∇F(x) · z ≤ 0. Let H denote the half-space
∇F(x) · z ≤ 0, and ∂H its boundary. Then, using Lemma 5.3,

dist (z, ∂H) = −∇F(x).z

‖∇F(x)‖ ≤ mz2

‖∇F(x)‖ ≤ mκz2

√
F(x)

= mκz2

√
μ
.

Letting B denote B(x, r), we see that B ∩ Sμ contains a cap of B at distance at most
mκr2/

√
μ from x . Thus, by Lemma 2.2,

vol(B ∩ Sμ)

vol(B)
≥ 1

2
− 2mκ

√
n

3
√
μ

r.

�
Using the last two lemmas we can now apply the Ball Walk to optimize G over Sμ.
But, we are of course interested in optimizing G over the set S ⊂ Sμ. Thus, we will
use Procedure Near (see Fig. 3), which finds a point arbitrarily close to S after we
have optimized over the larger set Sμ. The idea is to go repeatedly along the gradient
of F , which is easy to compute, until we are exponentially close to S. We will show
that this procedure yields a point that is not much worse than the point resulting from
the Ball Walk Algorithm, for an appropriate choice of μ.

Theorem 5.1 Let x ∈ Sμ. Then, for any β < μ, procedure Near finds a y ∈ Sβ such
that ‖x − y‖ ≤ 2

√
μ/β ln(μ/β). The running time is O(κ2m2n ln(μ/β)).

123

A simple randomised algorithm 225

Fig. 3 The procedure near

Proof The claim on the running time is easy to verify. Without loss, we will prove the
lemma for a point x on the boundary of Sμ, i.e. F(x) = μ. We start the procedure at
x with F(x) = μ and

x̂ = x −
√

F(x)

2κm

∇F(x)

‖∇F(x)‖ .

Using Lemma 5.2, the Taylor expansion yields

F(x̂) ≤ F(x)−
√

F(x)

2κm
‖∇F(x)‖ + m

(√
F(x)

2κm

)2

.

Now, using Lemma 5.3, this implies

F(x̂) ≤ F(x)− (
√

F(x))2

2κ2m
+ F(x)

4κ2m
= F(x)

(

1 − 1

4κ2m

)

.

We repeat this process k = 4κ2m log(μ/β) times to get a point y with

F(y) ≤ F(x)

(

1 − 1

4κ2m

)k

≤ μ

(

1 − 1

4κ2m

)k

≤ β.

Furthermore, letting y be the final point returned by Near,

‖y − x‖ ≤ k
√
μ

2κm
≤ 2κ

√
μ ln(μ/β).

Hence, using the subgradient inequality,

G(y) ≥ G(x)− τ‖y − x‖ ≥ G(x)− 2τκ
√
μ ln(μ/β).

123

226 M. Dyer et al.

Thus, since μ ≤ 1, we will have G(y) ≥ G(x)− ε provided

μ ≤
(

ε

2τκ ln(1/β)

)2

. (13)

Note that this is polynomial in the relevant parameters, in particular the number of bits
of accuracy required. �
Collecting the last results and inserting the right parameters in the general time bounds
of the Ball Walk we get our final result.

Theorem 5.2 Under the Assumptions B.1–B.7, with probability at least (1 − ζ), an
application of the Ball Walk combined with the procedures Estimate and Near will
find y with

G(y) ≥ G(x∗)− ε

and

Ay ≤ b + √

β,

in time polynomial in the parameters of the problem, 1/ε, log(1/β) and log(1/ζ).

Proof By using a small enough error probability at each step, the probability of mak-
ing an error can be made at most ζ over any polynomial number of steps (cf. the

discussion before Theorem 4.6). Choose μ =
(

ε
2τκ ln(1/β)

)2
. Lemmas 5.1, 5.4 and

Theorems 4.5, 5.1 then imply the theorem. �

6 Postlude

We have described a simple randomized approximation scheme for convex optimisa-
tion problems, with two-stage stochastic programming problems as the main applica-
tion.

There have been several proposals to use random walks for convex optimisation
since this paper was first written. The algorithm of Bertsimas and Vempala [3] uses
random walks to generate hyperplanes which “bisect” the solution space. Repeating
this sufficiently many times locates the solution to any desired precision. This is a very
different approach from the algorithm given here. The computational complexity of
Bertsimas and Vempala’s algorithm is polynomial in terms of a standard measure of
the size of the input, whereas we have worked with a different, less standard, measure
of input size.

In [23], Lovász and Vempala adapt their “hit-and-run” algorithm for sampling from
convex sets to optimise a logconcave function. The algorithm proceeds in phases,
by modifying the objective function and sampling from the associated logconcave
distribution, until an almost-optimal point is identified. The algorithm is shown to
have polynomial time complexity in the standard model.

123

A simple randomised algorithm 227

The paper of Kannan and Narayanan [17] uses random walks, similarly to the way
they are used here, to optimize over polytopes. However, their steps are adaptive—
they depend on the shape of the “Dikin ellipsoid” at the current point. These ellipsoids
depend on knowing all the linear constraints and so the method only works for poly-
topes. It is an open question whether such an adaptive method exists for general convex
sets, and hence to improve the algorithm presented here.

With respect to the application, it was as early as 1968 that Ermoliev and Shor pro-
posed a random walk, based on stochastic gradients, to solve the two-stage stochastic
programming model and analyzed global convergence [11]. As for the analysis of
randomised algorithms for two-stage stochastic programming problems from a com-
plexity theoretic point of view, some other papers close to our approach have appeared
in the literature more recently [25,29,31]. We compare our paper to the ones by Shmoys
and Swamy [31] and by Nesterov and Vial [25]. We refer to [25] for a comparison to
the results on the sample average method by Shapiro and Nemirovski [29].

In fact, the results by Nesterov and Vial were obtained already before, [26], but as
they notice, in the introduction of [25], “at that time worst-case complexity analysis in
Stochastic Programming was not a common practice.” Similarly, the work done on our
paper dates back to the turn of the millenium [9]. “It was the attention received by the
work of Shapiro and Nemirovski [29] (and Shmoys and Swamy [30]) that confirmed
that the community became ready to accept these new notions”.

Both [31] and [25] use stochastic subgradients. In [25] this is employed in a
subgradient-descent approach for optimization of the convex objective function,
whereas in [31] it is employed in an ellipsoid method. In this way expensive function
evaluations can be avoided to find the near-optimal solution. Indeed in [31] the opti-
mal solution value does not belong to the output of their method. In [25] only in the
final solution the function evaluation is made, by sampling from the distribution of
the stochastic parameters. Of course, this could be done as well in [31] but it would
reduce the strength of their complexity result (that we discuss below), which in fact it
does also in [25]. We use the simple Ball Walk algorithm, which is more stable than
the ellipsoid algorithm, and outputs both solution and its value. At this stage of their
development all three algorithms are only of academic interest.

A limitation of [31] is that their result applies only to problems in which the first
and the second stage decisions are of exactly the same quality. The second stage
cost coefficients are higher than the first stage ones. The algorithm of [25] and our
algorithm apply to any setting, including hierarchical planning models, where the
first stage concerns a longer term strategic decision and the second stage short term
operational decisions.

All three approaches yield an fpras under more or less severe assumptions. The
advantage of the limitation in [31] is that it allows a very elegant complexity result:
it suffices to assume that a bound on the maximum ratio between the second and
first stage cost coefficients is given as a fixed parameter; the running time of their
algorithm is polynomial in this parameter. They even show that essentially this cannot
be improved. In our case the fixed parameter is the uniform bound on directional
derivatives of the value function. Similarly, in [25] a uniform bound on the Euclidean
norm of the stochastic subgradients is the fixed parameter if, as in [31], only the
solution is output. In order to compute also the value of the solution the running time

123

228 M. Dyer et al.

of the algorithm becomes also a polynomial function of a bound on the variation of the
objective value over its feasible domain and over the probability space of the stochastic
parameters.

All three approaches give an fpras (under the various above restrictions) under the
“black box model” as it was called in [31]. Under this model the size of the input
needed to describe the probability distributions of the random problem parameters is
not taken into account in the running time. In [31] and in [25] an oracle is assumed to
give realisations of the random parameters. We specify how to sample form the distri-
butions. To avoid computational problems we restrict to specific classes of probability
distributions.

As it holds for the other methods, it remains to be seen whether the method that
we propose here is a practically efficient method for solving two-stage stochastic
programming problems. In any case it may provide a starting point for a more practical
method. For example, it is likely that function evaluations do not have to be so precise if
we are still far away from the optimum. Indeed, stochastic programmers have proposed
methods that work with more and more accurate function evaluations as their methods
proceed. It remains a challenge to incorporate these and other ideas that have been
developed in stochastic programming research into our algorithmic framework.

Acknowledgments We thank David Shmoys for stimulation to update and resubmit our technical report
[9] to a journal (the first submission in 2002 was apparently too early). We also thank anonymous reviewers
for valuable comments.

References

1. Applegate, D., Kannan, R.: Sampling and integration of near log-concave functions. In: Proceedings
of the 23th ACM Symposium on the Theory of Computing, pp. 156–163 (1990)

2. Beale, E.M.: On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. 17, 173–184
(1955)

3. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. JACM 51, 540–556 (2004)
4. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
5. Dantzig, G.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)
6. Dupačovà, J., Wets, R.J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of

stochastic optimization problems. Ann. Stat. 16, 1517–1549 (1988)
7. Dyer, M., Frieze, A.: Computing the volume of convex bodies: a case where randomness provably

helps. In: Probabilistic Combinatorics and its Applications. Proceedings of AMS Symposia in Applied
Mathematics, vol. 44, pp. 123–169 (1991)

8. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approximating the volume
of convex bodies. JACM 38, 1–17 (1991)

9. Dyer, M., Kannan, R., Stougie, L.A.: Simple algorithm randomised algorithm for convex optimis;
Application to two-stage stochastic programming. Technical Report SPOR-Report 2002–2005, Depart-
ment of Mathematics and Computer Science, Eindhoven Tecnical Universtiy, Eindhoven (2002)

10. Dyer, M., Stougie, L.: A note on the complexity of some stochastic optimization problems. Math.
Program. 106, 423–432 (2006)

11. Ermoliev, Y., Shor, N.Z.: Method of random walk for the two-stage problem of stochastic programming
and its generalization. Kibernetica 4, 59–60 (1968)

12. Ermoliev, Y., Wets, R.J.-B. (eds.): Numerical Techniques for Stochastic Optimization. Springer, Berlin
(1988)

13. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer, New York (1988)

14. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two stage linear programs with recourse.
Math. Oper. Res. 16, 650–699 (1991)

123

A simple randomised algorithm 229

15. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting
and integration. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 482–
520. PWS Publishing, Boston (1996)

16. Kannan, R., Lovasz, L., Simonovits, M.: Random walks and an O∗(n5) volume algorithm for convex
bodies. Random Struct. Algorithms 11, 1–50 (1997)

17. Kannan, R., Narayanan, H.: Random walks on polytopes and an affine interior point method for linear
programming. Math. Oper. Res. 37, 1–20 (2012)

18. Kannan, R., Nolte, A.: Local search in smooth convex sets. In: Proceedings of the 39th Symposium
on Foundations of Computer Science, pp. 218–226 (1998)

19. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic
optimization. Math. Oper. Res. 18, 148–162 (1993)

20. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for
stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2001)

21. Mak, W.-K., Morton, D.P., Wood, R.K.: Monte-Carlo bounding techniques for determining solution
quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

22. Lovasz, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm.
Random Struct. Algorithms 4, 359–412 (1993)

23. Lovasz, L., Vempala, S.: Fast algorithms for logconcave functions: sampling, rounding, integration
and optimization. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 57–68 (2006)

24. Nemirovski, A., Nesterov, Y.: Interior Point Polynomial Methods in Convex Programming. SIAM
Press, Philadelphia, PA (1994)

25. Nesterov, Y., Vial, J.-P.: Confidence level solutions for stochastic programming. Automatica 6, 1559–
1568 (2008)

26. Nesterov, Y., Vial, J.-P.: Confidence level solutions for stochastic programming. Technical Report Core
Discussion Papers. http://www.core.ucl.ac.be/services/psfiles/dp00/dp2000-13.pdf (2000)

27. Prekopa, A.: Stochastic Programming, Mathematics and its Applications, vol. 324. Kluwer, Dordrecht
(1995)

28. Shapiro, A., Homem-de-Mello, T.A.: simulation-based approach to two-stage stochastic programming
with recourse. Math. Program. 81, 301–325 (1998)

29. Shapiro, A., Nemerovski, A.: On complexity of stochastic programming problems. In: Jeyakumar,
V., Rubinov, A.M. (eds.) Continuous Optimization: Current Trends and Applications, pp. 111–144.
Springer, Berlin (2005)

30. Shmoys, D.B., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic optimization. In:
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 228–237
(2004)

31. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its appli-
cations to stochastic integer programs. JACM 53, 978–1012 (2006)

32. Tintner, G.: Stochastic linear programming with applications to agricultural economics. In:
Antosiewicz, H.A. (ed.) Proceedings of the Second Symposium on Linear Programming, Washington,
pp. 197–207 (1955)

33. Wets, R.: Stochastic programming: solution techniques and approximation. In: Bachem, A., Groetschel,
M., Korte, B. (eds.) Mathematical Programming: The State of the Art (Bonn, 1982), pp. 566–603.
Springer, Berlin (1983)

34. Wets, R.: Stochastic programming. In: Optimization, Handbooks of Operations Research and Man-
agement Science, vol. 1, pp. 573–629. Amsterdam, North-Holland (1989)

123

http://www.core.ucl.ac.be/services/psfiles/dp00/dp2000-13.pdf

	Application to two-stage stochastic programming
	Abstract
	1 Introduction
	2 Random local improvement
	3 Two-stage stochastic programming
	4 Computation of the objective function
	5 Random directions for two-stage stochastic programming
	6 Postlude
	Acknowledgments
	References

