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A simple randomised algorithm for 

convex optimisation 

Application to two-stage stochastic programming 

M. DYER, 1 R.. KANNAN 2 AND L. STOUGIE 3 

Abstract 

We consider maximising a concave function over a convex set by a 
simple randomised algorithm. The strength of the algorithm is that it 
requires only approximate function evaluations for the concave function 
and a weak membership oracle for the convex set. Under smoothness 
conditions on the function and the feasible set, we show that our algo
rithm computes a near-optimal point in a number of operations which 
is bounded by a polynomial function of all relevant input parameters 

and the reciprocal of the desired precision, with high probability. 
As an application to which the features of our algorithm are par

ticularly useful we study two-stage stochastic programming problems. 

These problems have the property that evaluation of the objective 

function is #P-hard under appropriate assumptions on the models. 
Therefore, as a tool within our randomised algorithm, we devise a 
fully polynomial randomised approximation scheme for these function 

evaluations, under appropriate assumptions on the models. Moreover, 
we deal with smoothing the feasible set, which in two-stage stochastic 
programming is a polyhedron. 

1 Introduction 

In this paper we develop a randomised approximation algorithm for certain 

convex optimisation problems, defined as 

max G(x) 

subject to XES, 
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where G : lRn -t lR is a concave function and S C lRn is a convex set. 

The weak optimisation version of this problem, finding a point :r E S with 

function value within € of the optimal (d. [9]), can be solved in a polynomial 

number of basic computer operations [9, 15]. Generally, known polynomial 

time algorithms use a separation oracle for S (and level sets of G (.)). While 

this can be simulated by a membership oracle for S (and function evaluations 

for G(·)), in polynomial time, the simulation is very expensive. We wish to 

avoid altogether the use of separation oracles. 

As an alternative, we present a simple randomised algorithm based on local 

moves. At each iteration, we choose a random point in a small ball centred 

at the current feasible point. We move to it if it is feasible and the objective 

function is strictly better. Otherwise, we stay at the current point and 

repeat the random selection. 

The algorithm requires only a membership oracle for S and an approximate 

evaluation oracle for GO (which returns an approximate function value 

in the queried point). We show that with high probability our algorithm 

outputs a solution that is within € of the optimal solution value. Under 

reasonable smoothness conditions on the feasible region and the function to 

be optimised, the number of oracle calls required is bounded by a polynomial 

function of the size of various input parameters. In Section 2 we present and 

analyse our randomised convex optimisation algorithm. 

An important application of our result is to stochastic programming. We 

consider randomised approximations to optimal solutions of two-stage stochal:i

tic programming problems. Problems of this type have been studied since 

they were proposed in the 1950's [2], [4], [17]. They model optimisation un

der uncertainty. In Section 3 we give a brief introduction to these problems. 

In Section 4 we review their complexity. 

In sharp contrast to ordinary linear programs, two-stage stochastic programs 

are hard to solve in a well defined sense. In fact, even a single evaluation of 

the objective function may be computationally hard for a two-stage program. 

Thus, simply assuming the existence of (even) an approximate fUIlction eval

uation oracle for these evaluations conceals the intrinsic complexity of the 

problem. Assuming higher order function information is also undesirable, 

since derivatives are numerically unstable with respect to relative approxi

mation. Therefore, an application of the usual solution methods for convex 

optimisation is problematic. 

We design an subroutine for approximate evaluations of the objective func

tion of two-stage stochastic programming problems in Section 5. This sub-
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routine is again a randomised algorithm, which, with high probability, pro

duces a function value that is within any prescribed precision. Under appro

priate assumptions on the randomness in the two-stage stochastic program

ming problem, the number of steps required is bounded by a polynomial 

function of the size of input parameters of the function to be evaluated and 

of the logarithm of the reciprocal of the desired precision, making our sub

routine a fully polynomial randomised approximation scheme. We achieve 

this result by drawing on known techniques, but to our best knowledge it is 

a llew result. 

In Section 6 we combine the subroutine of Section 5 with the randomised 

COllvex optimisation algorithm developed in Section 2 to yield an algorithm 

for solving two-stage stochastic programming problems. It turns out that 

the conditions we place on the input of the stochastic programming problem, 

in order to get approximate function values, imply the smoothness require

lllent 011 the objective function which we need for our convex optimisation 

algorithm to converge in a polynomial number of steps; 

2 Random local improvement 

III this section we consider the general problem of maximizing a twice dif

ferentiable concave real-valued function G : m:n -t lR, over a compact convex 

Het SeD. We will assume little about the function G and the set S. We 

assume S is given only by a membership oracle, which can decide, for a given 

;r; E IRTI, whether or not xES. We assume G is given by an approximation 

O'f'fLcie, which for a given error parameter f > 0, and x E IRn
, returns a num

ber in the interval [G(x) - f, G(x) + fl. In the sequel we denote the optimal 

Holllt.ion of the maximisation problem by x* . 

We propose a very simple solution strategy. Starting from a given initial 

feasible point Xo E S, we successively generate points in S as follows. At x E 

S, we generate a point in a ball of a certain radius r and centre x uniformly 

at random. If this point is feasible (i.e. in S) and has a significantly better 

objective function value than x, we move to it and iterate. Otherwise, we 

repeat the random generation. We stop the algorithm if a certain number 

of successive trials have not given a significantly better point. Thus we look 

simply fiJI' a local random move which improves the objective function. We 

Gall this the "Ball Walk algorithm" . 

This strategy does not lead to an efficient method for general concave func

tions and Gonvex sets. For example, if S = lR+, and our current point is 
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the origin, we have an exponentially small probability of hitting S. This ex

ample illustrates one problem ~ poor local conductance in the terminology 

of [14]. However, we will show that, under mild smoothness conditions, the 

method converges rapidly. 

In the sequel we denote the volume of a set S by vol(S), and B(:r:, r) denoteli 

a ball with radius r and centre x. A cap of B(x, r) is the subset cut off by a 

half-space which excludes x. We denote the unit n-ball by Bn. We use oS to 

denote the boundary of a set S. We denot.e the first and second directional 

derivatives of a function F : :rn:.n --t lR in direct.ion w by F' (w; x) and F" (w; x), 

respectively. The gradient of a function F at. a point x E 1) will be denoted 

by \7F (x), and its Hessian by \72 F (x). We denote the Euclidean norm of 

a vector x by Ilxll, and t.he L2-norm of a matrix A by IIAII, Le., IIAII = 

maxx:llxll=lIIAxll· Thus IF'(WiX)1 :::; IIV'F(x) II and IPIl(W;x)1 :::; 11V'2F(x))11 
for all x and w E oEn ) and equality holds in both cases for every x and some 

w{x) E oBn . We now list the assumptions that we make. 

Assumptions A: 

1. G is concave and S c m:n is convex and and has diameter bounded 

above by a constant D; 

2. t.here exists T > 0 such that, for aU xES, IIV'G(x) II :::; T; 

3. there exist.s v > 0, such that, for all xES, 11\72G(x)11 :::; IJ; 

4. there exist 0', ro > 0, such that, for aUT' :::; ro, xES, 

vol(E(x, r) n S) 1 
-~-...:-..:........;:...----:.. > - - O'r' 

vol(B(x, r)) - 2 ' 

5. Some point Xo E S is given. 

The Ball Walk algorithm aims at finding a point. x for which G(;r;) ~ G(;J:*)

ET D with probability at least 1 - fl. It is described in Figure 1, where we 

choose r = min { ro, $z, 90(TT~3I1vn}' The improvement. we get in one step of 

Ball Walk willbe examined below in Theorem 2.1. But first we give some 

elementary estimates which will prove useful. 

Lemma 2.1 For n ~ 2, Vri/3 :::; vol(Bn _ 1)/vol(Bn ) :::; 2Vri/'J· 
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Procedure Ball Walk 
begin x +- Xo and counter +- 1; 

end; 

while counter < 120 In (60iDln(1/€)). 
" - crT 'l/T' 

generate x' E B (x) r) uniformly at random; 

if x, E Sand G(x' ) > G(x) + 6€Jr:, 
then x +- x' and counter +- 1; 

else set counter +- counter + 1; 

return x as the approximate solution. 

Figure 1: The Ball Walk Algorithm 

PROOF. Since vol(Bn) = 1fn/2/(n/2}!, 

vol(Bn-d _ (n/2)! 

vol(Bn) - ySr((n - 1)/2)!' 

Stirling's approximation to the factorial (in the inequality form) gives the 

conclusion after some calculation. 0 

Lemma 2.2 For n;:: 2, let U {x (XI, ... ,Xn ) E B(O,r)IO:::; Xl < 
CT/ fo} he a slice of B(O, r) c ]Rn, where ° < c < 1. Then c/5 < 
vol(U)/vol(B) S; 2c/3. 

PROOF. Since c S; 1, elementary estimates give 

n-l 

~ (1 _ ~) -2 vol(Bn-l) < vol(U) < ~ vol(Bn- 1). 

fo n vol(Bn} - vol(B) - fo vol(Bn) 

Using Lemma 2.1 and (1 - 1/n)n-l ;:: e-1 now gives the conclusion. 0 

Theorem 2.1 Let n ;:: 3, and xES be such that G(x) :::; G(x*) - ETD. 

With probability at least crr /120 a point z is found in one step with 

ETr 

G(z) ;:: G(x) + 2fo' 

PROOF. First shrink B(x, r} to B(x, r ' ), with r' = (1 - fJ)r, and fJ = ~. 

We write Band B' shortly for B(x, r) and B(x, r'), respectively. Notice 

that 

vol(B' ) = (1 - fJ)nvol(B). 
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Define g(x) = lI~g~~~II' and v = II~:=~II' Consider the set 

with Cl = 30-r' and C2 = ~ o-r', Note that the bound on r' implies that 

Cl < t/2 :s; ~, and clearly C2 < ~. Now Tl is obtained from B' by cutting off 

the union of two caps and therefore, using Lemma 2.2, 

vol(Td 2:: vol(B' n S) (~ - c2)vol(B') - (~ cl)vol(B'). 
2 2 

Thus, using Assumption AA and the definition of Cl and C2, 

Let a = 

vol(Tt} 1 , 
vol(B') 2:: 2 - o-r 

and define the set 

I 1 I I 
0-'[' - 2 + 30-r = o-T . 

T2 = {ax* + (1 a)yly E Td· 

We claim that T2 is a subset of B, each point of which gives the improvement 

stated in the theorem, Thus, its relative volume is a lower bound on the 

probability that such an improvement is attained in one step of the Ball Walk 

algorithm, This relative volume is in turn bounded as follows: 

vol(T2) > (1 - a)nvol(Td 

vol(B) - (1- J3)- n vol(B') 
> (1 

= (1 at(1- (3)71+l0-'t 

> (8/9)3(1/3)40- r 

> o-r/120, 

where the last but one inequality is implied by r::; , 11, 2:: 3, and the 

choices for a and (3, 

To show that T2 c B, we take z = ax* + (1 a)y for some y E T j • and 

show that liz - xii :s; r. 

liz xl1 2 
= a211x* - xl12 + (1 - a)211y - xl12 + 2a(1 - a)(x* - :I;)(Y - :I:). (1) 

To bound the first term of the right-hand side of (1), we use the definitiolJ 

of a and the fact that Ilx* xii::; D, giving 

(2) 
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Since y E B' implies that Ily - xii :S r' = (1 - fJ)r and 0 :S a, fJ :S 1 implies 

that (1 a)2(1 - fJ)2 :S (1 (3), the second term of the right-hand side is 

bounded by 

(3) 

Finally, the definitions of a, v, C2 and Tl imply 

10 r2 5r2 
2a(1 - a)(x* - x)(y x):s 3(1 - fJ)cz;::S 3n' (4) 

(2), (3), (4) inserted in (1) yields 

liz - xl12 :S (~+ 1 - 2 + ~) 1'2 :S r2. 
9n n 3n 

Next we show that z gives the desired improvement over x. By concavity of 

G 

G(z) - G(x} 2:: a(G(x*) G(x)) + (1 - a)(G(y) - G(x)). (5) 

The second order Taylor expansion of G in y around x yields 

G(y) - G(x} = "VG(x)(y - x) + ~G"(w; x')lIy - xll 2 

> _ 5c1r'II"VG(x)11 _ ~v1"2 
fo 2 

5cl1' 1 2 
> - fo IlvG(x)1I - '2vr 

15<1r2 1 2 
> - fo II"VG(x)ll- '2v1' , (6) 

where x' E [x, y], w = (y - x)/Ily - xii, and we used Assumption A.3 for the 

first inequality. Using the definition of a, (5) and (6) yield 

G(z) G(x) 2:: 3;fo(G(x*) - G(x)) - (~ II"VG(x) II + ~v) 1'2. 

Since we assumed G(x*) - G(x) 2:: €TD, using IlvG(x)11 :S T (Assumption 

A.2), leads to 

G(z) - G(x) > l' _ (15CJT/fo + V/2) 1'2. 
G(x*) - G(x) - 3Dfo €TD €TD 

Since l' :S 90lTTr-3v\l1i' a simple calculation now gives 

G(z} G(x} > _1'_ 

G(x*) - G(x) - 6Dfo 
o 
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The justification of the Ball Walk algorithm follows as a corollary. 

Theorem 2.2 The number of samplings from a ball that Ball Walk requires 

to reach, with probability at least 1 -1], a point x with G(x*) - G(:r;) S; ET D 

is bounded from above by 

720foD In(l/E) In (6foD In(l/E)) . 
~r2 1]r 

PROOF. The probability of finding an improving point given in Theo

rem 2.1 implies that, if the inner loop of the Ball Walk algorithm runs 

120 In (6.Jn
D1n

(l/€)) of times. then the probability of incorrect termination 
OT 1JT ' 

. 9T 

1S at most 6.JnDln(1/€)' 

The one step improvement in Theorem 2.1 implies 

G(x*) - G(z) < 1 _ r 

G(x*) - G(x) -

Moreover, by concavity of G and Assumption A.2, G(x*) 

for any feasible point y, hence also for the starting point. 

improvement steps we obtain a point xk with 

Therefore, 

log(l/E) < 6foDlog(1/E) 

log (6foD/(6foD - r)) - r 

G(y) ::; TD 

Thus, after k 

improvement steps are sufficient to obtain the desired precision €T D. Mul

tiplying the error probability of incorrect termination by the number of 

improvement steps yields the overall incorrect termination is bounded by 

1]. 0 

Note that the bound of Theorem 2.2 is indeed polynomial in the parameter::; 

of the problem, since r is a rational function of the problem parameters. 

3 Two-stage stochastic programming 

In this section we describe briefly stochastic linear programming problems. 

Problems of this type have been studied since they were proposed in t,lw 
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mid 1950's [2], [4], [17]. They model optimisation under uncertainty. Such 

models are useful in many practical situations. Obtaining exact information 

about all parameters in a practical optimisation problem is often impossi

ble. 

As an example, think of allocating funds to a variety of possible investments 

1)0 as to maximise profit under a budget restriction. Usually at the moment 

the investment decision is to be made there is no certainty at all about 

the future yields of the various investments. Neither might there be exact 

information about the amounts needed to invest in a certain given project. 

At best one might hope to have some idea of what these parameter values 

could be, and to express this in the form of probability distributions. In this 

way we arrive at stochastic programming problems. 

Suppose that we have a linear programming problem in which some param

eters are random. The random variables we indicate by putting a tilde over 

them. 

max px 

subject to Ax:S b 
- -
Tx:S ~ 

with b E l!{m, e E l!{d, and A an m x n matrix, T an d x n matrix, and 

pEl!{n. 

We a,.-;sume that probability distributions are given for the random matrix 

T and the random vector e. The above model is clearly ill-defined since 

a solution x that is optimal for one realisation of T and { may even be 

infeasible for another. 

Two main directions have been taken in the literature to arrive at sensible 

models. In the conceptually easiest, violation of the uncertain constraints is 

allowed to occur with a probability that does not exceed a prespecified level, 

giving the so-called probabilistic constraints problem. The best comprehen

sive survey of this field is [16]. The paper of Kannan and Nolte [13] takes a 

similar approach to the probabilistic constraints problem that we take here 

for the model described next. 

The other approach is the one we consider in this paper and is called the 

t'IVO-8t(J,gl? stochastic programming problem or the stochastic recourse problem. 
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Conceptually one should think of the decision process taking place in two 

stages. In the first, values for the first stage variables x are chosen. In the 

second, upon a realisation of the random parameters, a recourse action is to 

be taken in case of infeasibilities. Costs are attached to the various possible 

recourse actions leading to the second stage (or recourse) problem, to choose 

the optimal action given the infeasibilities. The expected cost of the optimal 

recourse action is then added to the objective function. For a comprehensive 

review of the extensive literature we refer to [3], [8], [16]. 

A generic mathematical programming formulation for this problem is 

max px + E[max{qy I Wy :s; Tx -(, y E ~nl}] 

subject to Ax:S; b. 
(7) 

with q E JR"'1 and W an d x nl matrix. In the literature W is sometimes 

allowed to be a random matrix. However, this may cause the feasible region 

to be non-convex in terms of x (see [18]). We concentrate 011 the so-called 

fixed recourse model in which W is fixed. Moreover, we assume that W is 

such that for any x and any realisation of T and l there exists a feasible 

solution y in the second stage problem. This property of W is called the 

complete recourse property, and the model is accordingly called t.he complete 

recourse model (see e.g. [3]). 

It is well known that the objective function of (7) is concave (see [19, 18]). 

Therefore, the two-stage stochastic programming problem boils down to 

maximising a concave function over a convex (polyhedral) set. Thus, we 

can use our Ball Walk algorithm to solve this problem if we know that 

the objective function and the convex feasible set satisfy our smoothness 

conditions. It will be clear that this is not true for the feasible set, which 

is a polyhedron. We will come to this point later, in Section 6. However, 

another serious obstruction against using Ball Walk is that this algorithm 

requires an oracle that gives function values on request. As will be clear from 

the next section, it is exactly the evaluation of the objective function which 

makes the two-stage stochastic programming problem so excessively hard to 

solve. Therefore, the assumption that a function evaluation oracle exists for 

these problems significantly hides their computational difficulty. 

Therefore, before adapting the Ball Walk algorithm to solve two-stage ::;toclms

tic programming problems in Section 6, we first devise a suita.ble fUllction 

evaluation oracle in Section 5. 
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4 Complexity 

It is shown in [7J that, even in case there is independence between the co

ordinates of the random parameters, the complexity of two-stage stochastic 

optimisation is essentially determined by the complexity of a single eval

uation of the objective function, and that this may be a very hard com

putational problem. Specifically, it is shown that exact solution of (7) is 

#P-hard in generaL Thus exact solution for such problems is apparently 

intractable for polynomial time computations; it is at least as hard as exact 

counting. 

On the other hand, although exact counting is usually hard, there are sit

uations where randomised approximate counting is possible. See, for exam

ple, [10J. Therefore we might guess that a similar type of approximation 

would be possible here. We show below that this intuition is justified. We 

will devise a fully polynomial randomised approximation scheme (fpras) for 

the case when the random parameters have a log-concave distribution. A key 

ingredient is the fact that, in this case, evaluation of the objective function 

is equivalent in complexity to the computation of the volume of a convex 

body [1]. An fpras for the objective function evaluations follows from this 

equivalence, as we show below. 

5 Computation of the objective function 

As we pointed out in the last section, the main difficulty in solving the two

stage stochastic programming problem is the computation of the objective 

function. We concentrate in the rest of the paper on the version of (7) in 

which only the right hand side coefficients €are random. Thus, q and T 

a.re fixed. We also suppress the tilde on ~. We use the notation G for the 

objective function, i.e. 

max G(x} = px + Q(x), 
xES 

(8) 

with 

Q(x) = Edmax{qyIWy:S Tx - Cy E ]Rnl }]. 

and 

s = {x E ]RnlAx :S b} 

In this section we describe afpras for evaluating Q(x) and therefore for eval

uating the objective function G(x). It is based on a Markov chain approach, 
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where we sample approximately according to the known density function of 

~, compute the value of the linear program and take the average over the 

values obtained from the sample. 

The only source ofrandomness is~, which we assume is described by a given 

density function f : ]Rd -+ R Thus, 

Q(x) = J v(Tx - Of(Od~ 

with 

v(Tx -~) = max{qYIWy ::; Tx -~, Y E ]Rnl}. 

We require some mild conditions on f. We cannot expect to approximate 

Q efficiently for arbitrary f, since it is known that there exist counting 

functions which are NP-hard to approximate [10]. Therefore we assume the 

following conditions, borrowed from volume computation [1]. 

Assumptions B: 

1. f is log-concave, i.e. log f is concave on its support supp f; 

2. f has a negligible measure outside B(O, R), i.e. there exists R ~ 4d 

such that ~I~II~R f(Od~ ::; <p, for some <Pi 

3. log f is Lipschitz-continuous, i.e. there exists () > ° such that I log f (e)

logf(e)1 ::; Bile - ell for all e,e E suppf; 

4. We are given a eo E B(O, R) with f(eo) ~ R-"Id for some absolute 

constant T. This implies that we know a good starting point for the 

Markov chain, a so called "warm start,,;4 

5. v is uniformly bounded, i.e. there exists L such that for all ~ E supp f 
and xES, Iv(Tx - ~) I ::; L; 

6. The rows of T are scaled to have unit norm. Thus IITII ::;Jd. 

7. There exist Xo E ]RTL, Rin, Rout E ll4 such that B(xo, Rill) ~ S c 
B(xo, Rout). 

4If necessary, such a point can be found with a preliminary convex optimisation. 
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These conditions do not severely restrict the instances, since (with minor 

technical changes) all the most important distributions, for example those 

from the exponential family, meet the requirements. 

Condition B.5 is a little more restrictive than the usual assumption in two

stage stochastic programming that the function v is bounded. Boundedness 

only is already assured if E[e] is finite (see e.g. [18]). Condition B.6 is 

clearly not restrictive, and B.7 is discussed in the next section. We don't 

use either of B.6 or B. 7 until the following section, but give them here to 

have a complete overview of all our conditions. 

To sample according to f, we define a Metropolis random walk that has 

f restricted to B(O, R) as its steady state density function. Note that, by 

Assumption B.2, the restricted density j satisfies f s: j s: f /(1- ~). If ~ is 

assumed negligible, we can suppose that this simply contributes a negligible 

amount to the approximation error for Q(x). Thus we will not need to draw 

a distinction between f and j in what follows and we will use the notation 

f, though it should read j. 

To sample from f we define a random walk that has f as its steady state 

density. One step of the random walk is defined as follows. Suppose the 

walk is at x E B(O, R). We choose uniformly at random a point y in a ball 

with center x and radius 6, to be specified later. If y is not in B(O, R), 

we stay at x. Otherwise, if f(y) :2: f(x), we move to y, else we move to y 

with probability f (y) / f (x). Formally, the transition kernel p( x, y) (x i= y) 

for moving from x to y in one step of the random walk is given by 

p(x,y) 
{ 

VOl(B~O, 0)) min {I, ~~~~} if y E B(O, R), 0 < Ilx - yll s: 0, 

o otherwise. 

Not.e that p(x, x) is an atom 1 fy:;i:x p(x, y) dy. It is easy to see, by time re

versibility, that the steady state distribution of this random walk has density 

proportional to f (x). 

In the following we will use techniques and results from volume estimation [6, 
12] to prove that this chain mixes rapidly, i.e. converges fast to the steady 

state. We first introduce some notation and state the relevant results from 

the literature. 

Theorem 5.1 Dyer and Frieze [5} 

Let S C ~d be a convex body with diameter D and f be a log-concave 

function deEned on S with 'IT the induced measure. Let 8 1,82 C S, t s: 
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dist (8I, 82) = minx ESbYES2 Ilx - yll· If 80 = S \ (81 U 82)), tilen 

min{ 1r(81 ), 1r(8z)} S ~ 1r(80). 

2/d is called tile isoperimetric constant 180(S) of S. o 

Given a random walk with stationary distribution 1r defined on a set S, its 

conductance is defined as 

<P = inf 
{scslo<w(S):::;1/2} 

Is Pu(8)d1r(u) 

1r(8) 

where Ptt (8) is the probability of moving in one step from point u in 8 C S 

to a point in 8, the complement of 8 in S. 

The local conductance of a Markov chain at a point x is defined as the 

probability of moving to any point y #- x in one step. 

Theorem 5.2 Kannan [11] 

Consider a Metropolis random walk using balls of radius c5 ill a convex set 

S C ]Rd wilich has local conductance at least X at every point. Tilell tile 

conductance q> of the walk is at least 

o 

Theorem 5.3 Lovasz and Simonovits [14] 

Let io be the initial density of a Markov chain on lRd with statiollary density 

i. Define 

MUo, f)= sup 
{SClll:dlo<fs f-5:1/2} 

I Isi - Isiol 

Jisi 
Let ik be the density of the Markov chain after k steps. Then 

o 
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Procedure Estimate 
begin 

Q t- 0; 

K t- i8L21;PIP) l ; 
for 1; t- 1, ... , K do; 

run the Metropolis walk for K' steps, 
starting from eo; 
compute v(Tx - 0 for the resulting sample e; 
Q t- Q + v(Tx - e); 

endfor; 

Q t- 9.. 
K' 

Figure 2: The approximation algorithm for Q(x) 

Theorem 5.4 Using the Metropolis random walk, we can sample in B(O, R) C 

lRd according to a density f' with sUPSClRd 1 Is f - Is /,1 < E in K' steps, 

where 

PROOF. Theorem 5.1 gives an isoperimetric constant of -h for a random 

walk on B(O, R). The Lipschitz continuity (Assumption B.3) implies that 

the acceptance function varies only by a constant factor over B(x, (5). Thus, 

choosing 6 Ja implies a constant local conductance, since vol(B(x, 6) n 
B(O, R)) ::: O.4B(x, (5), if x E B(O, R). To see this note that the intersection 

contains a cap of B(x, 6) of distance at most 62 /(2R), by elementary geom

etry. Lemma 2.2 with c = 1/(2R) now implies the volume of the cap is at 

least 1/2 1/(3R) > 0.4, by Assumption B.2. 

Applying these results, Theorem 5.2 implies a lower bound on the conduc

tance .;p of the walk of 2oJRd' Theorem 5.3 then yields 

We choose the uniform distribution on B(eo,6) as the initial density fo, 

where eo is the point guaranteed by Assumption BA. Assumption B.3 again 

implies that the acceptance function varies over B(eo, (5) only by a factor 

eo. These, together with Assumption B.2, imply MUo, 1) ORC-y+l)d, after 

some calculation. 0 

In Figure 2 we define the procedure Estimate based on the Markov chain 

described above to compute an approximation of the value of Q( x). 
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Theorem 5.5 With probabilityl-p, Procedure Estimate computes QJdx) E 

[Q(x) - €,Q(x) + €] in KK' = a (,R2€13L21og Of logRIog~) steps. 

PROOF. Let QK(X) = k 2:~1 v(Tx - ~i)' with 6,'" ,eK independent 

samples generated by the Metropolis random walk. Thus, E[QK(X)] = 

f v(Tx ~)fK'(e)de, where fK' is the density produced by the Metropolis 

random walk when run with error parameter f.' = €/4L. Since v is bounded 

by L by Assumption B.5, Hoeffding's inequality implies 

Pr{IQK(x) - E[QK(X)]I > !f.} :$ 2exp ( - ~:5) , 
since K 2:: 8L2 ln(21 p)c2

. Theorem 5.4 yields 

IE[QK(X)] - Q(x)1 II v(Tx OfK'(Od~ - I v(Tx Of (Ode I 
< L I If(e) - fK'(~)lde 

- 2L r (jK,(e) - f(O)de 
} f:5:fK' 

< 2Lf.' = ~f., 

Combining these, we see that Pr{IQK(x) - Q(x)1 > f.} :$ p. o 

Using the approximation algorithm for the objective function G and apply

ing the ellipsoid algorithm in [9] to our problem, under our assumptions 

we would have a fpras for the stochastic recourse problem. The following 

theorem follows easily from taking p (IN in Theorem 5.5, where N is the 

required number of steps of the ellipsoid algorithm. 

Theorem 5.6 Under Assumptions B.I-B.5, with probability at least 1- (, 

the ellipsoid algorithm, using procedure Estimate to approximately evaluate 

G, will solve the two-stage stochastic programming problem (8) to within 

additive error €, in a number of arithmetic operations bounded polynomially 

in the input parameters, 1/f. and log 1/(. 0 

The ellipsoid algorithm is complicated to apply and can be very ~low. There

fore we combine the method for approximate function evaluations with the 

method of Section 2 to obtain a simple randomized local improvement al

gorithm. Our earlier results will then imply that, with high probability, a 

solution is obtained that is close to the optimaL 
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6 Random directions for the recourse problem 

In this section we will extend the Ball Walk approach to solve the two stage 

stochastic programming problem. Recall the formulation (8) in Section 5. 

We assume conditions 8.1-8.5, which we required previously for the ran* 

domized approximate computation of Q(x), and now we also assume that 

condition 8.6 is satisfied. 

It turns out that these conditions on the density function also imply smooth

ness of the objective function, required for the Ball Walk algorithm of Sec

tion 2, as we will show. 

Lemma 6.1 Suppose xES. Under Assumptions B.l-B.6, we have 

II\7G(x)II ~ Ilpll + BLVd, and 11\72G(x)11 ~ 0
2 
Ld. 

As a result we may choose the smoothness parameters 'T and lJ of G (As

sumptions A.2, A.3) to be Ilpll + BLVd and B2 Ld, respectively. 

PROOF. Let w be a unit vector and u = Tw/IITwll. Then 

.. J v(Tx - Of(O de) 
Q'(w;x) = lim "---'-------'-'-'---'--'-at - ., 

t-tO t t 

= lim (J v(Tx e)f(e + tTw) d~ _ J v(Tx - ~)f(~) d~) 
t-tO t t 

= !V(TX e)limf(~+tTw)-f(Ode 
t-tO t 

= IITwll! v(Tx - e)i'(u;e)de. 

Analogously, 

Q"(W; x) = IITwl12 / v(Tx - Oi"(u; Ode. 

Assumption B.1 (log f is concave) implies f 2': 0 and 1" f ~ (f')2 for the 

first and second derivatives in any direction at any point. Assumption B.3 

(the Lipschitz continuity of log f) implies I (In f)'1 ~ 0 for the first directional 

derivative, i.e. If'l ~ Of, and hence also 1" ~ 02f. Thus, using also 8.6, 

IQ'(w;x)1 ~ OllTwl1 / v(Tx - e)f(~)de ~ OLVd, 
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and 

QfI(W;X) ~ e2 11Twl12 J v(Tw Of(~)d~ ~ (PLd. 

Therefore we have, for all x, w, 

IG'(w;x)1 ~ Ilpll +811TIIL and GI/(w;x) = Q"(w;x) ~ e2 11T11 2
L. 

The lemma follows. o 

Thus, Assumptions A.2 and A.3 in Section 2 are satisfied. We know that Gis 

concave, satisfying also Assumption A.I. Therefore, we need to be concerned 

now with smoothing the underlying feasible set 8 = {x E JRn lAx:::; b}. Sino-; 

8 is a polyhedron, it is not smooth. Therefore we use the "roundedness" 

Assumption B.7 on 8. This allows us to consider a slightly larger (non

polyhedral) set, which is indeed smooth, and apply the Ball Walk to this 

larger set. 

Let K, = Rout! Rin, where Rin and Rout are the constants from Assumption 

B.7. We call K, the rounding number of the polytope. Note that K, resembles 

a "condition number": it is small if the polytope is "well-rounded" and large 

if it is not. Thus we will assume K, is not too large. In fact any polytope can 

be "rounded" to have K, = O( In), but here this may be undesirable since it 

can adversely affect the parameters of G. From now on we astlume that 8 
satisfies the above assumption. 

To facilitate the exposition, let A(i} denote the ith row of A, and tlUPP0tl€ 

A is normalised so that IIA(i) II = 1 (i = 1, ... , m). Then, for x E JRn , 

let 
bi if A(i)x > bi, 

otherwise, 

be the distance from x to the halfspace A(i)y ~ bi. Consider the function 

F(x) = L:~l ((A(i)x - bi)+)2, and, for a given I-" > 0, define the set 8 11. = 
{x E JRn IF (x) :::; I-"}. Note that 8 ~ 8 J1. and 8 J.t is convex. The following 

lemmas establish the required smoothness condition for 8 J.t' 

Lemma 6.2 For all x,z E JRn , Ilzll = 1, 0 ~ F"(z;x) ~ 2m. 

PROOF. We have 

"VF(x) = 2 I.: (A(i)x - bi)A(i) , 

iEI(x) 

18 
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where I(x) = {i : A(i)x > bd. Hence 

V 2F(x) = 2 L A(i) A(i)T, 

iE/ex) 

(10) 

and so F"(z;x) = 2 LiEI(x)(A(i)z)2. Clearly F"(z;x} 2: 0, and the upper 

bound follows from the Cauchy-Schwarz inequality and II(x)1 ~ m. 0 

In particular, it follows that F is a convex function. 

Lemma 6.3 Let 8 have rounding number K, and ° < /-L ~ 1. Then, for all 

:c E 8/1., 

PROOF. Assume without loss that Xo = o and Rin = 1, so Rout = K,. Also 

bi 2: 1 (i = 1, ... ,m), by considering the points A(i) E 8B(O, 1). Fix x E 8 ILl 

let 

and let £ be the minimizing i. Let x = Ax/llxll, so A = Ilxll. Clearly A ~ K" 
Hiuce otherwise A(i)x ~ bi (i = 1, ... ,m), but x ~ B(O, K,). Now 

-Jii. 2: -Jii./bl 2: (A(l)x - be)/bl = Ilxll/A - 1 = Ilxll/llxll - 1. 

Thus Ilxll ~ (1 + VIi) Ilxll ~ 2K,. Thus, from (9), 

xVF(:c) = 2 L (A(i)x - bi)A(i)x 2: 2 L (A(i)x - bi) 2: 2VF (x), 

iEI(x) iEl(x) 

since A(i);c > bi 2: 1 for i E I(x) and F(x) LiE/(X)(A(i)x-bi )2. Therefore, 

using Caudw-Schwarz, 

IIVF(x)11 2: 2VF(x)/llxll 2: VF(x)/K" 

and the result follows. o 

Lemma 6.4 Let 0 < /-L ~ 1, and a = (4mK,/3)Vn//-L. Then, for all x E 8 ,1.) 

vol(B(x, r) n 8p,)/vol(B(x, r)) 2: ~ - aT. 
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PROOF. Assume without loss that x is on the boundary of Sfl" Using 

Taylor's theorem and Lemma 6.2, for any displacement z, 

F(x + z) ::; F(x) + z'VF(x) + 2mz2 = J.L + z'VF(x) + 2mz2, 

and the subgradient inequaility gives 

F(x + z) ~ F(x) + z'VF(x) = J.L + z'VF(x). 

Thus, if F(x + z) = J.L, -2mz2 ::; zYF(x) ::; O. Let H denote the half-space 

z'VF(x) ::; 0, and oH its boundary. Then, using Lemma 6.3, 

. -z'VF(x) 2mz2 2mr.z2 2mr.z2 

dlst (z,oH) = II'VF(x)II ::; II'VF(x) II ::; JF(x) = Vii 

Letting B denote B(x, r), we see that BnSfJ. contains a cap of B at distance 

at most 2mr.r2/ Vii from x. Thus, by Lemma 2.2, 

vol(B n SfJ.) 1 4mr.y'n 
-~-...!::.:->-- r. 

vol(B) - 2 3Vii 

o 

Using the last two lemmas we can now apply the Ball Walk to optimize 

Gover Sp,- But, we are of course interested in optimizing G over the set 

S C Sp,- Thus, we will use Procedure Near (see Figure 6), which finds a point 

arbitrarily close to S after we have optimized over the larger set Sp,- The 

idea is to go repeatedly along the gradient of F, which is easy to compute, 

until we are exponentially close to S. We will show that thiH procedure 

yields a point that is not much worse than the point resulting from the Ball 

Walk Algorithm, for an appropriate choice of J.L. 

Theorem 6.1 Let x E SfJ.' For any (3 < J.L, Procedure Near finds y E S{'! 

with Ilx - yll ::; 2Jp,/{31n(p,/{3). The running time is O(r.2m 2n In(fl'/{3))· 

PROOF. The claim on the running time is easy to verify. Without loss, we 

will prove the lemma for a point x on the boundary of SJ.L' i.e. F(x) = fl .. 

We start the procedure at x with F(x) = J.L and 

A JF(x) 'VF(x) 
x=x- . 

2Km II'VF(x)II 
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Procedure Near(x, p) 

begin 

lend; 

For i = 1 to r 4f1:2m In(/-L/ p)l do; 

Calculate F(x), vF(x) 

x = x yF(x) 'ilF x 
21'r-m I'ilF(x I 

x =x; 
endfor; 
return x; 

Figure 3: The Procedure Near 

Using Lemma 6.2, the Taylor expansion yields 

F(x) :" F(x) _ ~11V'F(x)11 + m ( ~) 2 

Now, using Lemma 6.3, this implies 

F(x) ~ F(x) 

We repeat t.his process k 4f1:2m log(/-L/ p) times to get a point y with 

Furthermore, letting y be the final point returned by Near, 

Hence, using t.he subgradient inequality, 

G(y) ~ G(x) - Tlly - xii ~ G(x) 2Tf1:.Jii In(/-L/p). 
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Thus, since J1 ::; 1, we will have G(y) ?: G(X)-E provided 

J1 ::; (2T1d~(1/ /1)) 2 
(11) 

Note that this is polynomial in the relevant parameters, in particular the 

number of bits of accuracy required. 0 

Collecting the last results and inserting the right parameters in the general 

time bounds of the Ball Walk we get our final result. 

Theorem 6.2 Under the Assumptions B.l-B. 7; with probability at least 

(1 - (), an application of the Ball Walk combined with the procedures 

timate and Near wjJ1 find ywitll 

G(y) ?: G(x*) - E 

and 

Ay ::; b + J73, 
in time polynomial in the parameters of the problem, liE, log(l/t1) and 

log(1/()· 

PROOF. By using a small enough error probability at each step, the proba

bility of making an error can be made at most ( over any polynomial number 
2 

of steps (cf. the discussion before Theorem 5.6). Choose J1 = 

Lemmas 6.1, 6.4 and Theorems 5.5, 6.1 then imply the theorem. 0 

7 Postlude 

We have described a simple randomized approximation scheme for convex 

optimisation problems, with two-stage stochastic programming problems as 

the main application. Whether the method that we propose here is a prac

ticallyefficient method for solving two-stage stochastic programming prob

lems remains to be seen, but in any case it may provide a starting point for a 

more practical method. For example, it is likely that function evaluations do 

not have to be so precise if we are still far away from the optimum. Indeed. 

stochastic programmers have proposed methods that work with lllore awl 

more accurate function evaluations as their methods proceed. It remain . ., a 

challenge to incorporate these and other ideas that have been developed ill 

stochastic programming research into our algorithmic framework. 
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