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The use of flanking marker methods has proved to be a powerful tool for the mapping of
quantitative trait loci (QTL) in the segregating generations derived from crosses between inbred
lines. Methods to analyse these data, based on maximum-likelihood, have been developed and
provide good estimates of QTL effects in some situations. Maximum-likelihood methods are,
however, relatively complex and can be computationally slow. In this paper we develop methods for

mapping QTL based on multiple regression which can be applied using any general statistical
package. We use the example of mapping in an F2 population and show that these regression
methods produce very similar results to those obtained using maximum likelihood. The relative
simplicity of the regression methods means that models with more than a single QTL can be

explored and we give examples of two linked loci and of two interacting loci. Other models, for

example with more than two QTL, with environmental fixed effects, with between familyvariance

or for threshold traits, could be fitted in a similar way. The ease, speed of application and generality

of regression methods for flanking marker analyses, and the good estimates they obtain, suggestthat

they should provide the method of choice for the analysis of QTL mappingdata from inbred line

crosses.
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Introduction

The development of genetic maps of markers based

upon DNA polymorphisms is beginning to providethe

experimental geneticist and the plant and animal
breeder with powerful tools for the study of quantita-
tive genetic variation. The use of markers to detect

individual loci responsible for quantitative genetic
variation (quantitative trait loci or QTL) provides
much greater power than segregation analysis without
marker information (Knott & Haley, 1992). The use of
pairs of flanking markers for 'interval mapping' with
maximum-likelihood analysis of the data (Lander &
Botstein, 1989) provides little extra power for the
detection of QTL close to a marker but gives much
more accurate parameter estimates than analyses using

only a single marker (Knott & Haley, 1992).
There have been several publications detailing

maximum-likelihood methods for the analysis of flank-
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ing marker data from one or other of the segregating
generations derived from a cross between inbred lines
(e.g. Weller, 1987; Lander & Botstein, 1989; Knapp

et a!., 1990; Knapp, 1991; Paterson et a!., 1991).

Although these methods can provide accurate esti-
mates of parameters and allow hypothesis testing,
custom-written software is required for their imple-
mentation. Furthermore, iterative numerical methods
are required to maximize the likelihood and thus maxi-

mum-likelihood becomes increasingly intractable as
the model becomes more complex, for example when it
is desired to analyse the data for the presence of two or

more linked or interacting QTL. Methods based on
least squares lack some of the attractive properties of
maximum-likelihood, but have been shown to have
similar power for the detection of QTL in single
marker analyses (Lander & Botstein, 1989; Haley,
1991). Least squares methods can also be readily
implemented using one of the many computer statisti-
cal packages available. Here we develop regression
methods which can be implemented in a standard com-
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puter statistical package to perform flanking marker
analyses for the detection of QTL. We show that these
methods can be used in the same way as maximum-
likelihood methods and give very similar estimates. We

also show how the regression method can be used to
analyse data in which two linked or interacting QTL

are present.

Methods

One QTL model

The model applied assumes a QTL (Q) lying between
two co-dominant flanking markers (A and B) and is
developed for mapping in the F2 generation of a cross
between two inbred lines which carried different alleles
for all three loci. We assume that the variance within
the three QTL genotypes is the same and is normally
distributed, or can be transformed to be so. The
genotypes of the two inbred lines crossed are
A,A1Q1Q1B1B1 and A2A2Q2Q2B2B2. The genotypic
effects of the three QTL genotypes possible in the F2
are set at m + a, m + d and m — a for Q1Q1, Q1Q2 (or,
equivalently, Q2Q1) and Q2Q2, respectively, where m is
the mid-parent (mean of the homozygotes) and a and d
are the additive and dominance deviations, respect-
ively. The recombination fraction between A and 0 is
TA and that between Q and B is r. In our methods (as
in those of Lander & Botstein, 1989 or Knapp et a!.,
1990) the recombination fraction between the flanking
markers is assumed known and fixed at r, this fraction
may be estimated from the marker data prior to QTL
analyses (e.g. Knott & Haley, 1992). For all the
analyses we assume no interference, thus we expect

r= r+ TB — 2TATB and we use Haldane's (1919) map-
ping function to convert distances in Morgans into
recombination fractions. The absence of interference is
assumed in the methods of Lander & Botstein (1989)
and Paterson et al. (1991), but Knapp et a!. (1990)
assume complete interference in applying their model.

The expected mean in terms of the putative QTL for
each F2 marker genotype can readily be derived. For

example, the gamete A1Q1B1 has expected frequency
(1 — TA )( 1

— rB)/2 and the gamete A1Q2B1 has expected
frequency rArB/2. The homozygous marker genotype
A1A1B1B1 has an expected frequency of (1 — r)2/4 in

the F2 and the expected frequencies of the three
possible QTL genotypes with this marker genotype are

(1— rA)(1 — TB)214, 2(1
—

rA)(1 — rB)rATBI4 and Tr/4
for the QTL genotypes Q1Q1, Q1Q2 and Q2Q2,

respectively. Summing over QTL genotypes and scal-
ing for the expected frequency of the marker genotype,

the expected mean performance of an F2 individual of

homozygous marker genotype A1A1B1B1 is thus:

m + a[(1
—

rA) 2(1 — T11)2 — rr]/(1 — r)2

+ d[2(1 —
rA)(1 — rB)rArB]/(1 — r)2.

The coefficients of a and d in terms of recombination
fractions for each of the nine flanking marker geno-

types possible in an F2 population are given in Table 1.
The expectations for other segregating generations or
collections of inbred lines derived from an inbred line
cross could be easily derived in a similar manner.

The expectations in Table 1 can now be used to fit a
and d by multiple regression. To do this for a given
interval between two markers, numerical values for the

Table 1 Expectations for the mean genotypic effect ofa QTL for all possible flanking marker genotypes in an F2 population

Marker

genotype

Expectation in terms of:

a (additive genetic deviation) d (dominance genetic deviation)

A1AB1BJ [(1 —r )2( 1
—

rB)2
— rr]/(1 —

r)2 {2rA( 1
—

rA )r8(1 — rB)]/( 1
—

r)2

AJA1B1B2 [(1 — rA )2rB( 1 — rB) — rr5( 1 — rR)]/r( 1 — r) [rA( 1 — rA )(1
—

r5)2 + rA( 1
—

TA )r]/T( 1
— r)

AA!B2B2 [(1— rA)2r — r3(1
—

r)2J/r2 [2rA(1 — rA )r8(1 — rB)]/r2

AJA2B1B1 [rA( 1 — rA )( 1 — r8)2 — rA( 1 — TA )r)/r( 1 — r) [(1 — rA )2r( 1 — rB) + rjr(1 — rB)]/r(1 — r)

A1A2B1B2 0 [rr+ r3(1 — rB)2+(1 —
rA)2r+(1 — rA)2(1 — r8)2]J[r2 +(1 — r)2]

AIA2B2B2 [rA(1 — rA)r —
rA(1 — rA)( 1 — r8)2)/r(1 — r) [(1— rA)2r8( 1— r11) + r3rB(l —

rB)]/r(1 — r)

A7A2B1B1 [r3.( 1
—

rB)2—(1 — rA )2rJ/r2 [2rA( 1 — rA )rB( 1 —
r5)J/r

A2A2B1B2 {rIr8(1 — rR)—(1 — rA)2r8(1 — r5)]/r(1 — r) [rA(1 — rA)(1 — rB)2 + rA(1 — rA)rIIr(1 — r)

A2A2B2B2 [rjr —(1 —
rA )2(1 — r8)2}/(1 — r)2 [2rA(1 — rA )rB(1 — rB)1/(1 — r)2
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coefficients a and d for each marker genotype can be
calculated for a putative QTL at several positions (e.g.
one centiMorgan (cM) intervals) between two markers.
Multiple regression is used to fit m, a and d for each
position separately using the numerical values as
coefficients for a and d. This provides estimates of a
and d, as well as giving regression and residual sums of
squares and mean squares allowing the calculation of
the regression variance (F) ratio and thus a test for a
and d. The position which gives the best fitting model

(i.e. produces the smallest residual mean square) gives
the most likely position of a QTL and the best
estimates of its effect. These operations (calculation of
the numerical values for the coefficients of a and d for
the marker genotype of each individual, fitting the regres-

sion, iteration for different points between the flanking
marker, etc.) can all be written in the language of a

general computer statistical package. We performed all
calculations using the package GENSTAT, carrying out

regression analyses using the FIT directive (GENSTAT 5

Committee, 1989). For example, the coefficients of a

and d for each of the nine possible marker genotypes
for a putative QTL mid-way between two markers 20

cM apart (i.e. r=0.1648; rA= rB=0.0906) are shown
in Table 2. In order to fit a QTL at this position, indi-
vidual plants or animals would be given expectations in

terms of a and d according to their marker genotype
and the model fitted in GENSTAT with the command 'FIT

a + d' (a constant, equivalent to m, is fitted by default in

GENSTAT).

Comparison of regression and maximum-likelihood

methods

In maximum-likelihood analyses, a combined test for
the presence of p parameters can be obtained from the

Table 2 The coefficients of a and d for each of the nine

possible marker genotypes for a putative QTL mid-way
between two markers 20 cM apart (i.e. r =0.1648;

,A= rH
= 0.0906)

Marker

genotype

Expectation in terms of:

a d

A1A1B1B1

A1A1B1B2

A1A1B2B2

AA2BBI
A1A,B1B,
ALA2B2B2

A2A2B1B1

A2A2B1B2

A2A2B2B2

0.9803
0.4902
0.0
0.4902
0.0

—0.4902

0.0
—0.4902

—0.9803

0.0195
0.5
0.5
0.5

0.9625
0.5
0.5

0.5
0.0195

maximized likelihood (L1) of the model in which the p
parameters are estimated compared with the maxi-
mised likelihood (L0) from which the parameters are
omitted (or set at some value). Then 2log(L1/L0)
provides a test statistic (the likelihood ratio test)
which should be asymptotically distributed as a

with p degrees of freedom (Wilks, 1938). (N.B.
Lander & Botstein, (1989) employ the equivalent test

log1 (L1 /L) — the LOD score.) Regression is maxi-
mum likelihood when errors are independent and nor-

mally distributed (e.g. Draper and Smith, 1966). In this
case the likelihood ratio test can be written in terms of
the residual sum of squares of the full model (fitting the
regression), and the reduced model (omitting the
regression, and the number of observations (RSSfUII,

RSSreduced and n, respectively):

likelihood ratio test n

(Aitkin eta!., 1989).
Equating the sums of squares to products of mean

squares and their degrees of freedom in the full model

and approximating using the Taylor expansion:

likelihood ratio test PMSregression/MSresidual

or p Frcgrcssjon

where p parameters are fitted. In the methods outlined
above segregation of the QTL within marker genotype
classes causes failure of the assumptions that the resi-
dual errors are normally distributed within marker
genotype classes and are the same across classes. Non-
etheless, as we show below, the value of [n loge (RSSre

duced/RSS1,1)] provides a very close approximation to
the likelihood ratio test and, furthermore, the parame-
ter estimates from the two methods are very similar.

In order to explore the properties of the regression
method we have compared its performance in the
analysis of simulated data directly with the maximum
likelihood method. The data analysed were a subset of

those analysed by Knott & Haley (1992). Briefly, data
were simulated for 50 replicates of 1000 F2 individuals
from a cross between two inbred lines. The genome of
each individual consisted of a pair of chromosomes
100 cM in length carrying marker loci at the ends and

at 10-cM intervals (i.e. 11 markers in total). Intervening
markers were omitted in some analyses giving more
widely spaced markers. In the first analyses a single
QTL at 25 cM from one end of the chromosome was
used, with additive deviation (a) of 0.0, 0.125, 0.25, or
0.5 residual phenotypic standard deviations (d was set
at 0). A QTL of this magnitude would explain, respect-
ively, approximately 0.0, 0.8, 3.0 or 11.1 per cent of the

total phenotypic variance in the F2.
Analyses of the data were by regression as described

above or by maximum likelihood using flanking
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Fig. 1 Curves produced by the analysis of a single set of data
using the regression or maximum likelihood methods to fit a

model for a single QTL. The data were generated with a

single QTL with additive deviation a =0.25 (one half the F2
residual standard deviation between homozygotes) 25 cM

along the chromosome. This QTL explains approximately
3 per cent of the phenotypic variance in the F2. Eleven
markers on a 100 cM chromosome were simulated and in

the analyses either all 11 markers (at 10-cM intervals, —)
or three markers (at 50-cm intervals, — — —) were used. In both

analytical methods the putative QTL is positioned sequen-
tially at 1-cM intervals along the chromosome and the model
fitted at each point. The height of the curves is given by the
test statistic which for the maximum-likelihood method is

2 loge of the ratio of the likelihoods (QTL in that position/no

QTL) and for the regression method is [n logc(RSSda,/

RSS11)]. On the scale used the curves produced by the two
methods are indistinguishable.

markers as outlined by Paterson et al. (1991) and
detailed by Knott & Haley (1992). For a single set of
data, evidence for a QTL can be plotted graphically as
shown by Lander & Botstein (1989). In these graphs
the likelihood ratio test statistic is plotted at regular
(e.g. 1 -cM) intervals along the chromosome, with the
peak value representing the most likely position of a
QTL. (N.B. Lander & Botstein (1989) chose to plot
log10 of the ratio, whereas we prefer to plot 2 loge of the
ratio in order to facilitate comparison with the x2 distri-
bution and with the regression method). The analogous

graph for the regression method is to plot the value of
[n or of (PFregression) for each

point along the chromosome. An example of the curves
produced by the two methods for a single set of data
analysed with two marker densities is shown in Fig. 1.
Inspection of Fig. 1 shows that the values of the likeli-
hood ratio test from the maximum-likelihood method

and of [n from the regression
method are so similar that the two curves cannot be
distinguished. The curve for (pFregressjon) would be very

similar to those for the other two test statistics, with the
greatest deviation between the curves being at higher
values.

For the purposes of summarizing the analyses over
the 50 replicates simulated for each combination of
parameters, only the interval in which the QTL was
placed was analysed. In the maximum likelihood
analyses the distance in centiMorgans of the QTL from
the first marker (cMA) was estimated along with the
other parameters (i.e. a, d and 0esiduaI). In the regres-
sion analyses the model was fitted at 1 -cM intervals
and the best fitting model selected to provide estimates
of cMA, a, d and MSresidual. In order to compare the two

types of analysis, the correlation and the regression of
cMA and a estimated in the regression model, on the

same parameters estimated by maximum-likelihood,
were calculated_as were the correlation and the regres-
sion of jMSresiduai Ofl 0re,idua! and of [n

RSSfUII)1 on the likelihood ratio test. These statistics are

shown together with the mean values of the estimated
parameters in Table 3. With both types of analysis the
estimates of d were close to 0 and no more were signifi-

cant than would be expected due to chance; therefore
statistics for this parameter are not given.

Table 3 shows that the estimates from the two
methods are very similar overall and estimates for the
same set of data are very closely related, with both
correlations and regressions often close to unity. The
lowest correlations and regressions were for the esti-
mated position when no QTL was simulated or its
effect was small, even here the lowest correlations and
regressions between estimates were about 0.72. The
correlation and regression between test statistics from
the two methods never fell below 0.96. Inspection of
the results showed that the lower correlations for esti-

mated position, when the simulated QTL was of small
or no effect, were due to a few of the replicates (at most
three out of 50) for which the two methods gave very
different estimates of position (at opposite ends of
the interval) for a QTL of small estimated effect. Re-
analysis of these datasets by maximum-likelihood,
using the regression estimates as initial values, resulted
in maximum-likelihood estimates close to those from
regression and a slightly increased test statistic, indicat-
ing that the maximum-likelihood method had reached a
local maximum in the initial analyses. With these new
estimates correlations between the two methods were

greatly improved, for example, increasing from 0.721
to 0.996 for position for the datasets simulated with
a=0.125 and 50-cM spaced markers. Note that the
correlations between estimated parameters and test

20 40 60 80

Position on chromosome (cM)

100
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Table 3 Comparison of regression and maximum-likelihood analyses of simulated data. For each combination of simulated
parameters 50 replicates were analysed with either 10 or 50 cM spaced markers (QTL 5 or 25 cM from first marker,
respectively). The table shows mean estimates of the additive genetic deviation (a) of the QTL and its distance from the first

marker (cMA ), the residual standard deviation and the test statistic (with the standard deviation of the estimates over replicates in
parentheses). The correlation between parameter estimates from the two methods and the slope of the regression of the estimate
from the regression method on that from the maximum-likelihood method are also shown

Simulated

10cM spaced markers 50cM spaced markers

Residual Test Residual Test

QTL effect a CMA s.d. statistic a CMA sd. statistic

a=0.0 Mean(MLmethod) —0.010 4.81 1.002 2.87 0.002 29.67 1.001 3.06

Mean(regressionmethod)

(0.055)
—0.010

(4.59)
4,90

(0.025)
1.003

(2.43)
2.88

(0.061)
—0,001

(20.66)
27.80

(0.025)
1.003

(1.77)
3.12

Correlation
(0.055)
0.998

(4.60)
0.900

(0.025)
1.000

(2.42)
1.000

(0.061)
0.977

(20.89)
0.766

(0.025)
0.971

(1.72)
0.991

Slope 0.993 0.902 1.002 0.994 0.987 0.775 0.983 0.962

a=0.125 Mean(MLmethod) 0.130 4.22 1.003 10.10 0.123 24.75 1.002 7.42

Mean(regressionmethod)

(0.044)
0.130

(0.042)

(3.97)
4.74

(4.04)

(0.022)
1.005

(0.022)

(4.75)
10.15

(4.69)

(0.061)
0.121

(0.063)

(15.36)
25.42

(15.49)

(0.021)
1.006

(0.021)

(4.65)
7.41

(4.62)

Correlation 0.987 0,836 1.000 0.998 0.970 0.721 0.992 0.998

Slope 0.943 0.845 0.997 0.986 0.987 0.727 0.988 0.991

a=0.25 Mean(MLmethod) 0.258 5.56 0.997 33.14 0.247 24.18 0.996 20.53

Mean (regression method)

Correlation

(0.047)
0.258

(0.048)
0.999

(3.04)
5.58

(3.06)
0.990

(0.020)
0.999

(0.020)
0.999

(11.85)
33.18

(11.95)
1.000

(0.069)
0.247

(0.068)
0.997

(10.56)
24.02

(10.58)
0.997

(0.020)
1.001

(0.020)
0.976

(8.83)
20.49

(8.80)
0.999

Slope 1.022 0.999 0.999 1.008 0.990 1.008 0.938 0.996

a=0.5 Mean(MLmethod) 0.500

(0.047)

5.00

(1.74)

0.995

(0,022)

110.00

(19.59)

0.497

(0.061)

25.57

(4.76)

0.994

(0.025)

64.76

(15.28)

Mean(regressionmethod) 0.500

(0.047)

5.04

(1.75)

1.002

(0.021)

109.8

(19.44)

0.496

(0.062)

25.52

(4.80)

1.025

(0.022)

64.34

(15.23)
0.997

Correlation 0.994 0.984 0.995 0.998 0.990 0.996 0.950

Slope 0.997 0.987 0.980 0.99 1 1.000 1.004 0.866 0.994

statistics from the two methods are likely to be under-
estimated. This is because the regression was fitted at
fixed 1-cM points along the chromosome and so
accuracy in this dimension is restricted to the nearest
centiMorgan, whereas the recombination fraction was
estimated along with other parameters in the
maximum-likelihood analyses.

Two QTL model

The extension for the analysis of two or more linked

QTL is trivial and simply consists of replicating the
method used for a single QTL in two or more dimen-
sions. Thus, for example, the regression model now fits
a putative QTL between the third and fourth markers
on a chromosome at the same time as fitting one

between the first and second markers. The chromo-
some of interest is searched in two dimensions (each
representing one QTL) to the desired precision to find

the positions for the two QTL that give the best fitting
model. This process can be visualized graphically by
extension of the method for one QTL into an addi-
tional dimension. Figure 2 shows the curve produced

by regression analysis fitting only a single QTL to a set
of data produced with two linked QTL, 25 and 75 cM
from one end of the chromosome (heights given by
n Figure 3 shows the surface
produced fitting two QTL to the same set of data.
Inspection of Fig. 2 might lead to the conclusion that a
single QTL is located at the centre of the chromosome.

Lander & Botstein (1989) suggest that, if two QTL are
suspected on a chromosome, the position and effect of
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one should be fixed whilst estimating the position and
effect of a second. This strategy would be ineffective
for the data used here, because the obvious place to fix
the first QTL would be at the centre of the chromo-
some. Figure 3 reflects more accurately the data gener-

0
•1
(I)

1-

(I
0I-

Fig. 2 Curve produced by the analysis of a single set of data

using the regression method to fit a model for a single QTL.

The data were generated with two QTL each with additive

deviation a = 0.25 (one half of the F2 residual standard devia-

tion between homozygotes) positioned 25 and 75 cM along
the chromosome. The QTL were in association in the

parental lines. Six markers on a 100-cM chromosome were

simulated and used in the analyses.

ated, with the maximum suggesting two QTL located
approximately 30 and 90 cM from one end of the
chromosome. Note that Fig. 2 is effectively a slice
through the three-dimensional surface shown in Fig. 3
down the leading diagonal and this is equivalent to
placing the two QTL in the same position.

To evaluate the fitting of two QTL by regression the
analysis of simulated data was again employed. Data
were generated for a chromosome 100 cM in length
with markers at 20-cM intervals and two QTL each
with additive deviation a = 0.25. Three situations were
explored. First, where the two QTL were placed 25
and 75 cM from one end of the chromosome and the
parental inbred lines were in association (i.e. one
carried both increasing alleles and the other both
decreasing alleles). Secondly, with the QTL also placed
at 25 and 75 cM but where the parental lines were in

dispersion (i.e. each carried one increasing and one
decreasing allele). Thirdly, where the two QTL were
placed 25 and 45 cM from one end of the chromosome
and the parental lines were in association. For each
situation 20 replicates were generated and analysed.
Analysis consisted of initially fitting a single QTL and
selecting the best fitting regression followed by fitting
two QTL and selecting the best fitting regression, in
both cases additive effects only were fitted and resolu-
tion was to 1 cM. The computational costs of fitting
two QTL were eased by finding an initial maximum
using resolution to 5 cM then using a resolution of 1
cM around this point.

Table 4 gives the mean estimates of the QTL effects

and positions from the 20 replicate analyses for each

Fig. 3 A three-dimensional surface

produced by regression analysis fitting
two QTL to the same data as used to

produce Fig. 2. Each QTL was moved
5 cM at a time to cover the whole area

and at each point [n

RSSfUIj)] gives the height of the surface.

0 20 40 60 80

Position on chromosome (cM)
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Table 4 Results from regression analyses of simulated data containing two linked QTL. For each combination of simulated
parameters 20 replicates of 1000 F2 individuals were analysed. The genome consisted of a 100 cM chromosome with 20 cM

spaced markers. Simulated QTL were with additive deviation a =0.25 at 25 and 75 cM in association in model 1, at 25 and

75 cM in dispersion in model 2 and at 25 and 45 cM in association in model 3. Model 4 was the same as model1 except for
the presence of interaction between the two QTL (aa =0.5). The table shows mean parameter estimates and test statistics

[n for the presence of one versus no QTL, two versus one QTL and two locus interaction. The standard

deviations of the estimates over replicates are given in parentheses

Test First QTL Second QTL

Model 1 versus 0 QTL 2 versus 1 QTL Interaction Position Effect Position Effect Interaction

1

2

3

4

4

62.21

(14.27)
16.76

(5.92)
83.07

(21.92)
58.44

(17.74)
—

—

15.89

(4.80)
20.01

(6.70)
5.67

(5.58)
13.05

(6.24)
—

—

—

—

—

—

—

—

—

—

47.09

(15.59)

22.35

(5.13)
22.30

(5.10)
25.65

(7.51)
25.10

(5.66)
24.90

(4.20)

0.263

(0.061)
0.260

(0.060)
0.325

(0.183)
0.256

(0.060)
0.248

(0.048)

78.90

(8.16)
76.80

(6.86)
65.10

(16.75)
76.50

(6.31)
74.85

(4.07)

0.249

(0.045)
—0.262

(0.039)
0.173

(0.188)
0.245

(0.062)
0.246

(0.055)

—

—

—

—

—

—

—

—

0.522

(0.090)

Table 5 Model for two locus epistasis in terms of the additive and dominance

deviations of each QTL (a and d, respectively) and additive—additive (aa),

additive—dominance (ad and da)and dominance-dominance(dd) components (e.g.

Mather & Jinks, 1982)

Genotype for second QTL

0101 QQ2 Q2Q2

Genotype for first QTL

Q1Q1

QQ2

m + a1 + a-, + aa

m+d1 +a,+ da
m + a1 + d-, + ad

m+d1 +d2+dd

in + ai — a2— aa

m+d,—a2—da

Q2Q2 m — ai + a-, — aa m — ai + a', — ad in — — a2 + aa

situation. Table 4 also gives the mean test statistic

[n showing the improvement in
fitting a single QTL over fitting no QTL and the test
statistic showing the improvement in fitting two QTL

over fitting a single QTL (here RSSIUII and RSSreduced are

the values from the two models being compared). The
mean statistic for the test of one versus no QTL suggests

the presence of a QTL in all models, although, com-
pared to data with a single QTL of effect a = 0.25, test

statistics where QTL in association were simulated
were inflated and those with QTL in dispersion were
deflated due to the covariance between linked QTL.
Including a second QTL in the model gives a marked
improvement in fit for the two models where the QTL

were 50 cM apart and on average the estimates of
parameters were very good. QTL which are only 20

cM apart were difficult to separate, with some repli-
cates showing no improvement in fit when a second

QTL was included in the model, and in consequence
the parameters were poorly estimated.

Interactions between QTL

Regression can also be used to fit models allowing for
interactions between QTL. The principle is identical in
that genetic expectations are calculated for each
marker genotype and the model is fitted by regression.
This is somewhat more difficult to carry out with inter-
actions between loci as two or more pairs of flanking
markers must be considered simultaneously in calcu-
lating the genetic expectations for any individual.
Nonetheless, with the simple common model for two
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locus interactions (e.g. Mather & Jinks, 1982) shown in

Table 5, the epistatic expectations for each individual
can be rapidly calculated as the product of the two
single QTL expectations (given in Table 1) for an indi-
vidual of that marker genotype. For example, the
expectation for a particular marker genotype for the
coefficient of additive—additive epistasis (aa), for two
QTL at different given positions in the same marker
interval, or in two separate marker intervals, is the pro-
duct of the coefficeint of a for a QTL at the first posi-
tion and the expectation for a for a QTL at the second

position.
Analysis of simulated data was again used to eval-

uate the use of regression when epistatic interactions
were present. Data were generated for a chromosome
100 cM in length with markers at 20 cM intervals and
two QTL each with additive deviation a =0.25 and
additive—additive epistasis of aa = 0.5. The two QTL
were at 25 and 75 cM from one end of the chromo-
some and the parental inbred lines were in association.
For this situation 20 replicates were generated and

analysed. Analysis consisted of initially fitting a single
QTL and selecting the best fitting regression followed

by fitting two non-interacting QTL and selecting the
best fitting regression, followed by fitting two QTL
with additive—additive interaction.

Table 4 give the mean estimates of the QTL effects
and positions from the 20 replicates for the analyses
performed both with and without the interaction term,
as well as the mean test statistic showing the improve-

ment in fitting two QTL over fitting a single QTL and
that showing the improvement due to the inclusion of
an interaction term. On average, QTL effects were well
estimated whether or not an interaction term was
included in the model, this is probably because the
mean effect of each individual QTL was not affected by
the interaction model used in this example. Inclusion of

the interaction term improved the fit of the model
markedly and also slightly reduced the standard devia-
tion of the estimates over replicates.

Other extensions

The method has been developed for the analysis of
data from crosses between inbred lines where the F2
can be considered a single homogeneous population

(e.g. a plant population in a single randomized plot). In
other cases, although F2 families may be genetically
homogeneous there may be environmental variation
(e.g. in crosses between inbred lines of animals). Alter-

natively, the cross may be between sufficiently diverse
lines for them to be fixed for different alleles at many
or all markers and QTL, even though the lines crossed
were not inbred. In both of these cases the regression

method can be used for analysis. Between plot or site
environmental variation can be removed by the inclu-
sion of a fixed effect for each site in the model and
other factors or covariates could also be included with-
out greatly increasing the difficulty of fitting the model.

Between family variation can be removed either by the
inclusion of an effect for each family or by fitting the
regression in the context of a restricted maximum-
likelihood model (Patterson & Thompson, 1971) in
which a between family variance component is fitted.

The regression and maximum-likelihood interval
mapping methods are suitable for the analysis of nor-
mally distributed quantitative data (or data that can be
transformed to normality). In a generalized linear
model context, the principles of the regression method
could be applied to the analysis of data of other types

(McCullagh & Nelder, 1983). An example would be
threshold data where the population falls into two
classes (e.g. died/survival, susceptible/resistant) but it is
supposed that there is an underlying continuous distri-
bution which is made up of contributions from the
environment as well as a number of QTL. For analysis
of these data the expectations of individual marker
genotypes would be exactly the same as for normally
distributed data, but now these would be expectations
for the underlying distribution. Instead of fitting the
model using ordinary multiple regression with a normal
error it could be fitted using a binomial error. Again
this model could be fitted for points along the chromo-

some using a general statistical package such as
GENSTAT (GENSTAT 5 Committee, 1989) and the evidence
for the presence of a QTL displayed graphically as a
likelihood curve (or surface for two QTL).

Discussion

We have shown here that it is possible to fit flanking
marker models for the detection of QTL by regression

and that the regression method gives very similar
results to the maximum-likelihood method. The regres-

sion method provides good estimates for the positions
and the effects of QTL. The use of regression not only
eases the analysis of experimental data but also allows

thorough study of the power of flanking marker
methods both through simulation and theoretically.
The latter would be possible because the expectations,
such as those in Table 1, can be used to predict the mag-

nitude of the regression (and thus the test statistic) for a
QTL of given size in a given position and this can be
used to predict the power through the use of non-
central F or x2.

Our results show that [n is a
very close approximation to the likelihood ratio test.
The close similarity between both statistics and para-
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meter estimates from the two methods indicates that
the great majority of the information is contained in
mean differences between marker genotypes with little

coming from the within genotype distribution.
Theoretically, the regression method should suffer
from the failure of the assumption of normality within
marker genotype due to the segregation of the QTL but

in practice this does not seem to be important for QTL
of realistic size.

The values of [n or of
(Fregression) provide for hypothesis testing, but some
comment is required on the degrees of freedom of the
test and on the level of significance required when
multiple tests are being performed. For a single QTL
only one (for an additive deviation) or two (for additive
and dominance deviations) effects are fitted, and the

procedure requires finding the position along the
chromosome that produces the best fit. This suggests
that the test uses the number of genetic effects fitted (p)

plus one (for the position) degrees of freedom. This is
borne out by the mean value of approximately three
found for [n for analyses where
no QTL was simulated and an additive and dominance
effect fitted, three being the expected value under the
null hypothesis for a test distributed as a x2 with 3 d.f.

Thus the divisor of SSregression should be adjusted
accordingly if (Fregression) is being used for hypothesis
testing. For each additional QTL included in the model
further degrees of freedom will be used equal to the
number of genetic effects fitted plus one for the estima-

tion of the position of the QTL.
The question of the appropriate level at which to set

the significance when testing for the presence of QTL
in many intervals is problematic. The LOD threshold
of 3, customary in analysis of human genetic linkage
(Morton, 1955), is equivalent to a likelihood ratio test
statistic of 13.8 with 1 d.f. or a significance level of
approximately 0.0002. The appropriate test statistic
for significance in the context of interval mapping has
been discussed by Lander & Botstein (1989) who
suggest a LOD threshold of between 2 and 3 (corre-
sponding to values of the likelihood ratio test of

between 9.2 and 13.8) depending upon genome size
and marker density [although it is not clear to these
authors how many degrees of freedom Lander &
Botstein (1989) consider this test to have]. Lander &
Botstein (1989) quote a LOD threshold of 2.4 as being

appropriate for the tomato genome, this is approxi-
mately a significance level of 0.00 1 for a 1 d.f. test. The

0.001 significance level is appropriate if an overall
significance level of 0.05 is required and 50 indepen-
dent tests are being performed, and this may provide a
reasonable benchmark for situations where more than

50 tests are being performed but tests for adjacent

regions are correlated due to linkage. In light of this
uncertainty, and in the absence of large scale simula-
tion studies mimicking each experimental situation, it
may be test to treat the likelihood ratio test or equiva-
lently the LOD score or the regression variance ratio as
test statistics, large values of which support the
hypothesis that a QTL is present.

In summary, the regression method we describe pro-

vides a relatively simple way of fitting flanking marker
models to data derived from inbred line crosses. We have
demonstrated the use of the methods by reference to
any segregating generation or collection of recom-
binant inbred lines derived from a cross between
inbred lines. There seems little advantage to be gained
from resort to maximum likelihood methods for the
analysis of these types of data. The relative simplicity
and computational rapidity of the regression method
makes it easier to fit models for two or more linked
and/or interacting QTL, and these can also give good
estimates of QTL effects. lit would also be possible to
extend these methods to traits which did not have a
normal error structure, such as threshold traits, by
using the same principles in a generalized linear model
context. All steps of the regression analysis can be per-
formed using one of a number of general computer
statistical packages without resort to specialist soft-
ware, putting the analyses within the grasp of any

quantitative geneticist.

Note added in proof

We have recently become aware that Martinez &

Curnow [Theor. App!. Genet., (in press)] have
developed the use of regression for mapping QTL in a
backcross experiment. Their results confirm our own

(this paper and Knott & Haley, 1992) in demonstrating
the biases that can be introduced when the possibility
of two linked loci is ignored.
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