
A Simple Riskiness Order Leading to the

Aumann–Serrano Index of Riskiness∗

Sergiu Hart†

August 2, 2009

Abstract

We introduce a simple “riskier than” order between gambles, from
which the index of riskiness developed by Aumann and Serrano (2008)
is directly obtained.

1 Introduction

A risky asset (or “gamble”) yields uncertain returns according to some prob-

ability distribution; these returns may be positive (gains) or negative (losses).

There are cases where one gamble is clearly more “risky” than another. How-

ever, in general it is not clear how to compare gambles; moreover, whether one

is willing to accept a certain gamble depends on the individual risk-posture

(such as the degree of “risk-aversion”).

Nevertheless, one can try to quantify the intrinsic riskiness of a gamble,

that is, assign to each gamble a real number that is a measure of its riskiness.

Most importantly, the aim is to do it in an objective way which is indepen-

dent of the specific decision-maker. Just as the “return” of the gamble—

its expectation—and the “spread” of the gamble—its standard deviation—
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depend only on the gamble itself—its outcomes and probabilities—so should

the riskiness of the gamble.

Two such recent approaches are the “economic” index of riskiness de-

veloped by Aumann and Serrano (2008),1 and the “operational” measure of

riskiness of Foster and Hart (2007).2 While different, the Aumann–Serrano

index and the Foster–Hart measure nevertheless share many useful prop-

erties, in addition to being objective; for example, they are monotonic with

respect to first-order stochastic dominance: increasing the gains and decreas-

ing the losses lowers the riskiness3 (see in particular Section 6.1 in Foster and

Hart (2007) for a detailed comparison).

The approach of Aumann and Serrano (2008) (henceforth “A&S”) is

based on their duality axiom

“that, roughly speaking, asserts that less risk-averse individuals

accept riskier gambles” [quoted from the abstract of A&S].

While on the face of it this axiom seems very reasonable, on closer in-

spection it turns out to be relatively complex and thus not entirely straight-

forward. In particular, it involves two decision-makers, two gambles, and the

index itself.

In this paper we provide an alternative approach that leads to the same

index of riskiness. What we do is define a simple “riskiness” order on gam-

bles, and then show that this order is represented by the Aumann–Serrano

index: a gamble g is riskier than another gamble h (according to our order)

if and only if the riskiness index of g is higher than the riskiness index of h.

Moreover, this representation is unique, in the sense that an index represents

this order if and only if it is a strictly increasing function of the Aumann–

Serrano index. We thus follow the standard route of decision theory and

consumer theory, which starts with an order on outcomes—a “preference”

order—and then represents it by a numerical index—a “utility function.”

1This index was used in the technical report of Palacios-Huerta, Serrano, and Volij
(2004); see the footnote on page 810 of Aumann and Serrano (2008).

2For a discussion of some of the earlier work, see Section VIII in Aumann and Serrano
(2008) and Section 6 in Foster and Hart (2007).

3The standard deviation, often used to measure riskiness, is easily seen to violate this
condition.
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There are two main advantages to our approach. First, our basic postulate

is more transparent: the riskiness order is simpler than the duality axiom.

And second, in contrast to A&S, no further assumptions are needed to obtain

the index in our setup: neither homogeneity (cf. Theorem A in A&S) nor

continuity together with monotonicity (cf. Theorem D in A&S).4

Finally, there are certain cases where one gamble g is clearly less risky

than another gamble h. One is where some values of g are replaced in

h by smaller values (i.e., gains decrease and losses increase). Another is

where some values of g are replaced in h by lotteries whose expectations

are those values (“mean-preserving spreads”). These two cases correspond

to “first-order stochastic dominance” and “second-order stochastic domi-

nance,” respectively; see Hadar and Russell (1969), Hanoch and Levy (1969),

Rothschild and Stiglitz (1970, 1971). Since the Aumann–Serrano index is

monotonic with respect to stochastic dominance of either kind (see Section

V.C in A&S), it follows that our riskiness order is an extension of both sto-

chastic dominance orders5—and, in fact, a complete extension.6

In Section 2 we present the model and the Aumann–Serrano index. In

Section 3 we introduce the riskiness order on gambles and state our main

result. A comparison with the A&S approach and their duality axiom is

provided in Section 4. The proofs and additional comments are relegated to

Section 5.

2 The Model

The model is as in A&S.

A gamble g is a real-valued random variable with positive expectation

4Section X.N of A&S shows that these additional requirements are indeed necessary in
their approach.

5I.e., if g is stochastically dominated by h, either first-order or second-order, then g is
riskier than h.

6See Corollary 2 below. Stochastic dominance (of either kind) provides only a partial

order between gambles: given two gambles g and h, in general neither one stochastically
dominates the other. In contrast, the riskiness order turns out to be complete: for any
two gambles g and h, either g is riskier than h, or h is riskier than g.
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and some negative values (i.e.,7 E [g] > 0 and P [g < 0] > 0); for simplicity,

assume that g takes finitely many values. Let G denote the collection of all

such gambles.

An agent (or decision-maker) is characterized by a von Neumann and

Morgenstern utility function8 u : R → R that is assumed to be strictly in-

creasing, strictly concave, and twice continuously differentiable (i.e., of class

C2); let U denote the collection of all such agents.9 An agent u ∈ U accepts

a gamble g at wealth level w if E [u(w + g)] > u(w),and rejects g otherwise;

i.e, u accepts g at w if and only if the expected utility from accepting is

higher than from rejecting.

We restrict ourselves to agents u ∈ U whose decisions are monotonic

relative to wealth (“monotonic” agents for short): if u accepts the gamble

g at wealth w then u accepts g also at any higher wealth w′ > w. Letting

ρu(w) := −u′′(w)/u′(w) denote the coefficient of absolute risk aversion of

u at w (cf. Arrow 1965, 1971, and Pratt 1964), u is a monotonic agent if

and only if ρu is a nonincreasing function of the wealth: ρu(w
′) ≤ ρu(w) for

all w′ > w (cf. Pratt 1964, Yaari 1969, Dybvig and Lippman 1983). Let

UD ⊂ U denote the collection of all monotonic agents; this class of utilities is

known as DARA, which stands for “Decreasing Absolute Risk Aversion.” A

subclass of UD that turns out to be particularly relevant here consists of the

CARA (for “Constant Absolute Risk Aversion”) utilities vα for all α > 0,

where vα(w) := − exp(−αw) for all w (and thus ρvα

(w) = α for all w); let

UC := {vα : α > 0} ⊂ UD denote this class of utilities.

For any gamble g ∈ G, the equation E [exp (−αg)] = 1 has a unique

solution α > 0, which we denote α∗(g); the index of riskiness R of Aumann–

Serrano is then given by

R(g) :=
1

α∗(g)
(1)

(see A&S, Theorems A and B). Thus among the CARA agents vα ∈ UC , the

one with coefficient α = α∗(g) is always indifferent between accepting and

7
E and P denote expectation and probability, respectively.

8R denotes the real line.
9We do not distinguish between an “agent” and its “utility function” u; the two terms

are used interchangeably.
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rejecting g, whereas all those with α > α∗(g) always reject g, and all those

with α < α∗(g) always accept g; here “always” stands for “at all wealth levels

w.”

3 The Riskiness Order

Our approach follows the standard route of decision theory and consumer

theory: we start with an “order,” and then represent it by an “index” (just

as a preference order is represented by a utility function). Specifically, we

introduce a “riskiness” order on gambles, and show that it is uniquely repre-

sented (up to monotonic transformations) by the Aumann–Serrano index of

riskiness.

The order10 on gambles is defined as follows. We say that an agent u ∈ U

totally rejects a gamble g ∈ G if u rejects g at all wealth levels11 w. For

two gambles g, h ∈ G, we say that12 g is riskier than h, written g % h, if

any monotonic agent u ∈ UD that totally rejects h also totally rejects g.

The intuition is that a riskier gamble is rejected more often. However, only

when the rejection of h is “total”—a strong premise—do we require that the

same hold for g; the definition of % may thus be viewed as a sort of minimal

requirement on riskiness.

Our main result is:

Theorem 1 The riskiness order is represented by the Aumann–Serrano in-

dex of riskiness: for any g, h ∈ G,

g % h if and only if R(g) ≥ R(h).

Immediate consequences are:

10An order (sometimes called “preorder”) % is a binary relation that is reflexive (i.e.,
g % g for any g) and transitive (i.e., g % h and h % k imply g % k, for any g, h, k). It is a
complete order if any pair g, h can be compared (i.e., either g % h or h % g holds for any
g, h).

11Unlike the approach of Foster and Hart (2007) which is based on critical wealth levels
that distinguish between rejection and acceptance, the A&S setup hinges on decisions that
are uniform in wealth; see Section 6.1 in Foster and Hart (2007).

12“g is at least as risky as h” would be more precise, but cumbersome.
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Corollary 2 (i) The riskiness order is a complete order on G.

(ii) A real-valued function Q represents the riskiness order if and only if

Q is ordinally equivalent to R.

(iii) A real-valued function Q that is positively homogeneous of degree one

represents the riskiness order if and only if Q is a positive multiple of R.

Thus, while the riskiness order appears by definition to be only a partial

order (i.e., not every pair of gambles may be compared), (i) states that it

is in fact complete: for any g, h ∈ G, either g % h or h % g. Next, a real-

valued function Q : G → R defined on the collection of gambles represents the

riskiness order 13 % if, for any g, h ∈ G, we have g % h if and only if Q(g) ≥

Q(h). What (ii) says is that each such Q is a monotonic transformation of

R; i.e., there exists a strictly increasing function φ such that Q(g) = φ(R(g))

for all gambles g ∈ G. If moreover Q is positively homogeneous of degree

one—i.e., Q(λg) = λQ(g) for every λ > 0 and g ∈ G—then (iii) says that

there exists c > 0 such that Q(g) = cR(g) for all g ∈ G.

Thus we obtain the Aumann–Serrano index of riskiness R directly from

the riskiness order, without any further postulates; in contrast, A&S have

to appeal in addition either to homogeneity, or to continuity together with

monotonicity with respect to first-order stochastic dominance (see Theorems

A and D in A&S).

The proof of Theorem 1 is relegated to Section 5.1; the proof of Corollary

2 is completely standard and thus omitted. Finally, the need for monotonic

agents is clarified in Section 5.3.

4 The Duality Axiom and the Riskiness Or-

der

The approach of A&S is based on the following duality axiom. They call an

agent i ∈ U uniformly no less risk-averse than agent j ∈ U , written i D j,

if whenever agent i accepts a gamble g at some wealth w, agent j accepts

13Just as a utility function represents a preference order.
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i ⊲ j i ⊲ j

i accepts g i accepts h

j accepts g j accepts h

Figure 1: The Duality axiom

that gamble g at any wealth w′; and i is uniformly more risk-averse than j,

written i ⊲ j, if i D j and j 4 i. The duality requirement on a real-valued

function Q defined on gambles is that, for any two gambles g, h ∈ G, any two

agents i, j ∈ U , and any wealth w:

Duality.











i ⊲ j,

Q(g) > Q(h), and

i accepts g at w











implies

{

j accepts h at w

}

.

While the duality axiom seems appealing, it is relatively complex, and

its rationale is not entirely straightforward. It says that if a more risk-averse

agent i accepts g, then a less risk-averse agent j should accept a less risky

gamble, where “less risky” is taken according to the yet-to-be-determined

index Q. Thus one deduces something about the pair (j, h) (namely, that

j accepts h) from an assumption on the pair (i, g) (namely, that i accepts

g); see Figure 1. This requires replacing one agent with another, and at the

same time also one gamble with another (represented by the diagonal arrow

in Figure 1). Now the premise that i ⊲ j allows one to replace the agents

while keeping the gamble fixed (these are the vertical arrows): from (i, g)

to (j, g), or, alternatively, from (i, h) to (j, h) (indeed, if i accepts g then j

accepts g, and the same holds for h). What is missing is a reason to replace
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the gambles while keeping the agent fixed (i.e., the horizontal arrows): from

(i, g) to (i, h), or from (j, g) to (j, h); this is where the premise Q(g) > Q(h)

comes in.

This suggests that one try to deal directly with these “horizontal” implica-

tions and dispense with the rest—which is precisely what our riskiness-order

approach does.

To see this formally we define another order on gambles: g %AS h if and

only if for any two agents i, j ∈ U with i ⊲ j and any wealth w, if i accepts

g at w then j accepts h at w. The duality axiom can then be restated as:

for any gambles g, h ∈ G,

Duality (restated). Q(g) > Q(h) implies g %AS h. (2)

We have

Proposition 3 For any two gambles g, h ∈ G,

g % h if and only if g %AS h.

Thus, the two orders % and %AS in fact turn out to be identical; after

all, our riskiness order % essentially provides the “missing” horizontal impli-

cations in Figure 1 (see Section 5.2 for a precise proof). In view of Theorem

1, it follows that

Corollary 4 A real-valued function Q on gambles represents the %AS order

if and only if Q is ordinally equivalent to R.

However, Corollary 4 does not yet yield the result of A&S, since the

duality axiom is weaker than the requirement that Q represents the %AS

order (i.e., that Q(g) ≥ Q(h) if and only if g %AS h; compare (2))—which

explains why A&S need to appeal to additional axioms: homogeneity (in

their Theorem A), or continuity together with monotonicity with respect to

first-order stochastic dominance (in their Theorem D; see also Section X.N

there for counterexamples without the additional conditions). In Section 5.2

below we will also provide simple alternative proofs for these two results of
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A&S, based on Proposition 3 (whose proof is also simple). Finally, Remark

(3) in Section 5.3 further clarifies the need for two agents in the duality

axiom, and the role of monotonic agents.

In summary, what we have shown is that at the basis of the duality

axiom lies our riskiness order, and that using it simplifies and streamlines

the Aumann–Serrano approach.

5 Proofs

5.1 The Riskiness Order

Here we prove Theorem 1 of Section 3.

Following Pratt (1964), the risk premium πu(w, g) of agent u ∈ U for the

gamble g ∈ G at wealth w is uniquely determined by the equation

E [u(w + g)] = u(w + E [g] − πu(w, g)). (3)

Since u is strictly increasing, we get

Lemma 5 u rejects g at w if and only if πu(w, g) ≥ E [g] .

The basic result we will use is

Proposition 6 Let u1, u2 ∈ U be two utility functions with absolute risk

aversion coefficients ρ1 and ρ2 and risk premium functions π1 and π2, re-

spectively, and let −∞ ≤ a < b ≤ ∞. Then:

(i) ρ1(w) ≥ ρ2(w) for every w ∈ [a, b] if and only if π1(w, g) ≥ π2(w, g)

for every w and g ∈ G with w + g ∈ [a, b].

(ii) ρ1(w) > ρ2(w) for every w ∈ [a, b] if and only if π1(w, g) > π2(w, g)

for every w and g ∈ G with w + g ∈ [a, b].

Proof. Pratt (1964, Theorem 1). ¤

Recall that, for α > 0, the CARA agent vα ∈ UC satisfies ρvα

(w) = α for

every w. The definition of α∗ ≡ α∗(g) implies that E [vα∗(w + g)] = vα∗(w),

or πv
α
∗
(w, g) = E [g] (for any w). Therefore
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Lemma 7 Let g ∈ G. If β ≥ α∗(g) then vβ rejects g at all w, and if β < α∗(g)

then vβ accepts g at all w.

Proof. Lemma 5 and Proposition 6. ¤

Proposition 8 A monotonic agent u ∈ UD rejects a gamble g at all wealths

w if and only if ρu(w) ≥ α∗(g) for all w.

Proof. Let α∗ ≡ α∗(g). If ρu(w) ≥ α∗ for all w, then Proposition 6 with

u1 = u and u2 = vα∗ yields π1(w, g) ≥ π2(w, g). Lemmata 5 and 7 imply that

π2(w, g) ≥ E [g] , and so π1(w, g) ≥ E [g]; thus u rejects g at w (by Lemma

5).

Conversely, if ρu(w0) < α∗ for some w0 then ρu(w) ≤ β for all w ≥ w0,

where β := ρu(w0) < α∗ (since ρu is a decreasing function). Proposition

6 with u1 = vβ and u2 = u yields π1(w, g) ≥ π2(w, g) for all w ≥ w0.

Lemmata 5 and 7 (recall that β < α∗) imply that π1(w, g) < E [g] , and so

π2(w, g) < E [g] , for all w ≥ w0; therefore (by Lemma 5) u accepts g at all

w with w + g ≥ w0. ¤

We can now complete the proof of Theorem 1.

Proof of Theorem 1. By Proposition 8, u ∈ UD totally rejects g if and

only if infw ρu(w) ≥ α∗(g). Therefore the definition of g % h is equivalent to

“for every u ∈ UD, if infw ρu(w) ≥ α∗(h) then infw ρu(w) ≥ α∗(g),” which

in turn is equivalent to “α∗(h) ≥ α∗(g)” (for one direction take u = vα∗(h)).

Thus

g % h if and only if α∗(g) ≤ α∗(h),

and Theorem 1 follows from (1). ¤

5.2 The Duality Axiom

Here we provide proofs for the statements of Section 4.

Throughout this section one may work either with general agents in U ,

or only with monotonic ones in UD; all the results and proofs hold just as

well in either case. The reason is that, on the one hand, we do not use the
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property that ρ is nonincreasing, and on the other hand, all specific agents

appearing in the proofs are in fact CARA agents in UC ⊂ UD.

Proof of Proposition 3. In view of (1), we need to show that

g %AS h if and only if α∗(g) ≤ α∗(h).

We will use the following characterization of “uniformly more risk-aversion”

D (see (4.1.2) in A&S):

i D j if and only if inf
w

ρi(w) ≥ sup
w

ρj(w).

Assume that α∗(g) ≤ α∗(h), and let i ⊲ j be such that i accepts g at w.

Let β satisfy inf ρi ≥ β ≥ sup ρj; then i D vβ D j. Therefore vβ accepts g at

w (since i does so and i D vβ), and so by Lemma 7 we have β < α∗(g). From

α∗(g) ≤ α∗(h) it follows that β < α∗(h); hence vβ accepts g at w (by Lemma

7 again), and so does j (since vβ D j).

Conversely, assume that α∗(g) > α∗(h). Let β satisfy α∗(g) > β > α∗(h);

then vβ ⊲ vα∗(h), but vβ accepts g whereas vα∗(h) rejects h (at any w, by

Lemma 7), and so g %AS h does not hold. ¤

Remark. The proof of Proposition 3 shows that %AS would not be affected

if i, j were restricted to being monotonic agents (i.e., i, j ∈ UD), or if i ⊲ j

were replaced with i D j; the same therefore applies to the duality axiom

(recall its “restated” version (2)).

Based on Proposition 3 we can provide simple proofs for the main results—

Theorems A and D—of A&S (2008).

Proposition 9 (i) A continuous and first-order monotonic function Q :

G → R satisfies duality if and only if Q is ordinally equivalent to R.

(ii) A positively homogeneous of degree one function Q : G → R satisfies

duality if and only if Q is a positive multiple of R.

Proof. Theorem 1 and Proposition 3 show that the duality axiom (see (2))
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is equivalent to

Q(g) > Q(h) implies R(g) ≥ R(h), (4)

or

R(g) > R(h) implies Q(g) ≥ Q(h) (5)

(take the negation of (4) and interchange g and h). Thus R satisfies duality;

since it is clearly homogeneous, continuous, and first-order monotonic (cf.

Section V in A&S), it remains to prove its uniqueness—“ordinal” and “car-

dinal,” respectively—in (i) and (ii). This will readily follow once we show

that in each case we have

Q(g) > Q(h) if and only if R(g) > R(h). (6)

To prove this in case (i), assume that Q(g) > Q(h); then Q(g+ε) > Q(h)

for small enough ε > 0 (by continuity of Q), implying that R(g + ε) ≥ R(h)

(by (4)), and so R(g) > R(h) (by monotonicity of R we have R(g) > R(g+ε)).

Conversely, assume that R(g) > R(h); then R(g+ε) > R(h) for small enough

ε > 0 (by continuity of R), implying that Q(g + ε) ≥ Q(h) (by (5)), and so

Q(g) > Q(h) (by monotonicity of Q). This completes the proof of (6) in case

(i).

The proof in case (ii) is similar. Assume that Q(g) > Q(h); using the

homogeneity of Q we get Q((1− ε)g) = (1− ε)Q(g) > Q(h) for small enough

ε > 0, implying that (1 − ε)R(g) = R((1 − ε)g) ≥ R(h) (by (4) and the

homogeneity of R), and so R(g) > R(h). Conversely, assume that R(g) >

R(h); then (1−ε)R(g) = R((1−ε)g) > R(h) for small enough ε > 0, implying

that (1 − ε)Q(g) = Q((1 − ε)g) ≥ Q(h) (by (5) and the homogeneity of Q),

and so Q(g) > Q(h). This completes the proof of (6) in case (ii). ¤

The role of the additional assumptions in A&S—homogeneity, or conti-

nuity and monotonicity—becomes clear now: they are needed to go from (4)

to (6).
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5.3 Nonmonotonic Agents

In this section we show that one cannot dispense with the requirement that

only agents u with monotonic decisions (i.e., u ∈ UD) be used in the definition

of the riskiness order %. Indeed, we provide an example of a nonmonotonic

agent u ∈ U \UD and two gambles g, h ∈ G such that g is riskier than h (i.e.,

g % h), and u totally rejects h but does not totally reject g.

Example.14 Since the utility function u ∈ U is determined (up to positive

affine transformations, which do not affect decisions) by its absolute risk-

aversion function ρ(x) = −u′′(x)/u′(x) (indeed, u =
∫

exp(−
∫

ρ)), it suffices

to specify the function ρ. Thus, let ρ : R → R with ρ(x) > 0 for every x ∈ R

satisfy the following two conditions:

(a) there exists δ > 0 such that ρ(m + y) < 1 for every integer15 m ∈ Z and

every |y| ≤ δ; and

(b)
∫ x+1

x
ρ(y) dy > 1 for every x ∈ R.

Informally, (b) says that ρ is on the average larger than 1 on any unit interval,

and (a) says that it is smaller than 1 infinitely often, in small intervals around

the integers. For an explicit example, take ρ(x) = 3/2 + sin(2πx − π/2).

Next, the two gambles g and h are defined as follows. The gamble g takes

the values δ and −δ (where δ is given in (a)) with probabilities eδ/(1 + eδ)

and 1/(1+eδ), respectively, and the gamble h takes the values 1 and −1 with

probabilities e/(1 + e) and 1/(1 + e), respectively. It is easy to verify that

α∗(g) = α∗(h) = 1, and thus R(g) = R(h) = 1 and so in particular g % h

(see (1) and Theorem 1).

We will now show that u totally rejects h, but u accepts g at all integer

wealth levels.

Indeed, for any x

log
u′(x + 1)

u′(x)
= log u′(x + 1) − log u′(x) =

∫ x+1

x

u′′(y)

u′(y)
dy = −

∫ x+1

x

ρ(y) dy

14The example is more complex than needed, since we want to rule out also the possi-
bility discussed in Remark (2) below.

15Z denotes the set of integers (positive, zero, and negative).
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which is < −1 by (b). Therefore u′(x + 1) < (1/e)u′(x), and so, for any w,

u(w + 1) − u(w) =

∫ w+1

w

u′(x) dx

<
1

e

∫ w

w−1

u′(x) dx =
1

e
(u(w) − u(w − 1)) ,

which is easily seen to be equivalent to E [u(w + h)] < u(w). Therefore, as

claimed, h is rejected at all w.

Finally, consider an integer wealth level m ∈ Z. Since m+g ∈ [m−δ,m+δ]

and ρ(x) < 1 = α∗(g) for every x ∈ [m − δ,m + δ] by (a), it follows that u

rejects g at m (apply Proposition 6 with u1 = vα∗(g) and u2 = u, and Lemma

7). ¤

Remarks. (1) The example is “robust,” in the sense that it is preserved

under any small enough perturbations (this is due to the inequalities in (a)

and (b) being strict); in particular, one can take g and h so that g is strictly

riskier than h (i.e., g % h but h 6% g).

(2) The example is constructed so that g is accepted not just at a single

wealth level (which suffices for g not to be totally rejected), but also at

arbitrarily large wealth levels. This implies that, in the definition of the

riskiness order %, it would not help if one were to replace “total rejection”

with “eventual total rejection,” i.e., rejection from some wealth level on.

(3) The example clarifies the reason that two agents are needed in the dual-

ity axiom. As we have just seen, for nonmonotonic agents the “horizontal”

implications in Figure 1 do not hold. However, having two (possibly non-

monotonic) agents i, j with i ⊲ j implies the existence of CARA agents

“between” i and j, which are in particular monotonic and thus the “hori-

zontal” implications apply to them (for details see the proof of Theorem A

in A&S). Our approach, which considers only monotonic agents, allows us

to work with just one agent, and thus dispenses with the need to take two

agents i, j with i ⊲ j.
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