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Abstract. Random sampling is an efficient method to deal with constrained optimization
problems in computational geometry. In a first step, one finds the optimal solution subject to
a random subset of the constraints; in many cases, the expected number of constraints still
violated by that solution is then significantly smaller than the overall number of constraints
that remain. This phenomenon can be exploited in several ways, and typically results in
simple and asymptotically fast algorithms.

Very often the analysis of random sampling in this context boils down to a simple identity
(thesampling lemma) which holds in a general framework, yet has not been stated explicitly
in the literature.

In the more restricted but still general setting ofLP-type problems, we prove tail estimates
for the sampling lemma, giving Chernoff-type bounds for the number of constraints violated
by the solution of a random subset. As an application, we provide the first theoretical analysis
of multiple pricing, a heuristic used in the simplex method for linear programming in order
to reduce a large problem to few small ones. This follows from our analysis of a reduction
scheme for general LP-type problems, which can be considered as a simplification of an
algorithm due to Clarkson. The simplified version needs less random resources and allows
a Chernoff-type tail estimate.

1. Introduction

Random sampling and randomized incremental construction have become well-estab-
lished, by now even classical, design paradigms in the field of computational geometry,
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see [27]. Many algorithms following that paradigm have been simplified to a point
where they can easily be taught in introductory CS courses, with almost no technical
difficulties. This was not always the case; pioneering papers, notably the ones by Clarkson
and Shor [6], [9], Mulmuley [26], and by Guibas et al. [18], still required more technical
derivations.

This changed when Seidel popularized thebackwards analysisparadigm for random-
ized algorithms [30]. Together with the abstract framework ofconfiguration spaces, this
technique allows us to treat many different algorithms in a simple and unified way [11].

The goal of this paper is to popularize and prove results around a simple identity (the
sampling lemma) which underlies the analysis of randomized algorithms for manygeo-
metric optimizationproblems. By that we mean problems defined in a low-dimensional
space, which usually implies that they have few constraints or few variables when written
as mathematical programs.

As we show below, special cases of the identity, or inequalities implied by it, are used
in many places, including the analysis of the general configuration space framework. To
the knowledge of the authors, the identity itself, however, has not been noticed explicitly.

The Sampling Lemma

Let S be a set of sizen and letϕ be a function that maps any setR ⊆ S to some value
ϕ(R).1 Define

V(R) := {s ∈ S\R | ϕ(R∪ {s}) 6= ϕ(R)},
X(R) := {s ∈ R | ϕ(R\{s}) 6= ϕ(R)}.

V(R) is the set ofviolators of R, while X(R) is the set ofextremeelements inR.
Obviously,

s violatesR ⇔ s is extreme inR∪ {s}. (1)

For a random sampleR of sizer , i.e. a setR chosen uniformly at random from the
set
(S

r

)
of all r -element subsets ofS, we define random variablesVr : R 7→ |V(R)| and

Xr : R 7→ |X(R)|, and we consider the expected values

vr := E(Vr ),

xr := E(Xr ).

Lemma 1.1(Sampling Lemma). For 0≤ r < n,

vr

n− r
= xr+1

r + 1
.

1 Here, the only purpose ofϕ is to partition 2S into equivalence classes; later, the function-notation becomes
clear.
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Proof. Using the definitions ofvr andxr+1 as well as (1), we can argue as follows:(
n

r

)
vr =

∑
R∈(S

r)

∑
s∈S\R

[s violatesR]

=
∑

R∈(S
r)

∑
s∈S\R

[s is extreme inR∪ {s}]

=
∑

Q∈( S
r+1)

∑
s∈Q

[s is extreme inQ]

=
(

n

r + 1

)
xr+1.

Here, [·] is the indicator variable for the event in brackets. Finally,
( n
r+1

)
/
(n

r

) = (n −
r )/(r + 1).

To appreciate the simplicity (if not triviality) of the lemma, one should consider it as
a special case of the following observation: given a bipartite graph, the average vertex
degree in one color class times the size of that class equals the average vertex degree in
the other color class times its size.

In our case, the two color classes are the subsets ofSof sizesr andr +1, respectively,
and two setsR and R ∪ {s} share an edge if and only ifs violatesR (equivalently, if
s is extreme inR ∪ {s}). This means, the sampling lemma still holds if “violation” is
individually defined for every pair(R, s).

A situation of quite similar flavor, where a simple bipartite graph underlies a proba-
bilistic scenario, has been studied by Dubhashi and Ranjan [12].

We can also establish a version of the sampling lemma in the model ofBernoulli
sampling, whereR is chosen by picking each element ofS independently with some
fixed probabilityp ∈ [0,1] (we sayR is a randomp-sample). Let V (p) andX(p) denote
the random variables for the number of violators and extreme elements, respectively, in
a p-sample, and letv(p) andx(p) be the corresponding expectations.

Lemma 1.2(p-Sampling Lemma). For 0≤ p ≤ 1,

pv(p) = (1− p)x(p).

Proof. Eachr -element setR occurs as ap-sample with probability(
n

r

)
pr (1− p)n−r .

Using the Sampling Lemma 1.1 it follows that

pv(p) = p
n∑

r=0

(
n

r

)
pr (1− p)n−r vr = p

n−1∑
r=0

(
n

r

)
pr (1− p)n−r vr

= p
n−1∑
r=0

(
n

r + 1

)
pr (1− p)n−r xr+1 = p

n∑
r=1

(
n

r

)
pr−1(1− p)n−r+1xr
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= (1− p)
n∑

r=1

(
n

r

)
pr (1− p)n−r xr = (1− p)

n∑
r=0

(
n

r

)
pr (1− p)n−r xr

= (1− p)x(p).

In the next section we discuss some well-known results obtained by random sampling
and show that all of them easily follow from the sampling (respectivelyp-sampling)
lemma. Concentrating on the Sampling Lemma 1.1, we elaborate on its connection to
configuration spaces and backwards analysis. Section 3 deals with LP-type problems,
which can be considered as functionsϕ with specific properties. Section 4 establishes
Chernoff-type tail estimates for the random variableVr , i.e. for the number of violators
of a random sample. The sampling lemma and the tail estimates are finally used in
Section 5 to analyze an algorithm for general LP-type problems, which can be considered
as the “practical” version of Clarkson’s reduction scheme [16]. Its specialization to linear
programming is a variant ofmultiple pricing[5].

2. Incarnations of the Sampling Lemmata

Searching in a Sorted Compact List

A sorted compact listrepresents a setS of n ordered keys in an array, where the order
among the keys is established by additional pointers linking each element to its prede-
cessor in the order, see Fig. 1. It is well known that the smallest key in a sorted compact
list can be found inO(

√
n) expected time [10, Problem 11-3].

For this, one draws a random sampleR of r = 2(√n) keys, finds the smallest key
s0 in the sample, and finally follows the links froms0 to the overall smallest key. The
efficiency comes from the fact that an expected number of only2(

√
n) keys is still

smaller thans0. In general, settingϕ(R) = min(R) and observing thatXr+1 ≡ 1, the
sampling lemma yields

E(#{s ∈ S\R | s< min(R)}) = n− r

r + 1
. (2)

Note thats< min(R) is equivalent to min(R∪ {s}) 6= min(R).
Property (2) was exploited by Seidel in the following observation: given a simple

d-polytopeP with n vertices, specified by its 1-skeleton(the graph of vertices and edges
of P), one can find the vertex that minimizes some linear functionf in expected time
O(d
√

n). The corresponding randomized subroutine serves as a building block of a
simple algorithm for computing the intersection of halfspaces, or, dually, the convex hull

12 345 6 78

Fig. 1. A sorted list of eight keys, compactly stored in an array.
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of points ind-dimensional space. Ford ≥ 4, this algorithm achieves optimal expected
worst-case performance [31].

Smallest Enclosing Ball

Consider the problem of computing the smallest enclosing ball of a setSof n points in
d-dimensional space, for some fixedd. Randomized incremental algorithms do this in
expectedO(n) time [33], based on the following fact: if the points are added in random
order, the probability that thenth point is outside the smallest enclosing ball of the first
n − 1 points is bounded by(d + 1)/n. In general, it holds that ifR ⊆ S is a random
sample ofr points, and ball(R) denotes the smallest enclosing ball ofR, then

E(#{p ∈ S\R | p 6∈ ball(R)}) ≤ (d + 1)
n− r

r + 1
. (3)

Again, this follows from the sampling lemma, withϕ(R) = ball(R), together with the
observation that any setR has at mostd + 1 extreme elements [33], and the fact that
s 6∈ ball(R)⇔ ball(R∪ {s}) 6= ball(R).

Similar results hold for the smallest enclosing ellipsoid problem. The randomized
incremental algorithm based on them was the first one to achieve an expected runtime of
O(n) for that problem, see [33]. The pioneering applications of randomized incremental
construction along these lines were Clarkson’s and Seidel’s linear-time algorithms for
linear programming with a fixed numberd of variables [8], [29].

Planar Convex Hull

For a planar point setS, |S| = n, the randomized incremental construction adds the
points in random order, always maintaining the convex hull of the points added so far.
When a pointp is added, it has to “locate” itself, i.e. it has to know whether it is outside
the current convex hull, and in this case identify some hull edgee visible from p.

As it turns out, the amortized expected cost for doing this in ther th step (after which
the points added so far form a random sampleR of sizer ) is proportional toar /r , where

ar := E(#{p ∈ S\R | p 6∈ conv(R)}).

The “trick” now is to express this in terms of another quantity:

br := E(#{p ∈ R | p vertex of conv(R)}).

The sampling lemma withϕ(R) = conv(R) then shows that

ar = br+1
n− r

r + 1
. (4)

For this, we need the observation thatp 6∈ conv(R) is equivalent to conv(R∪ {s}) 6=
conv(R), which in turn means thatp is a vertex of conv(R∪ {s}). The expected overall



574 B. Gärtner and E. Welzl

location cost (which dominates the runtime) is then proportional to

n∑
r=1

ar

r
≤ n

n∑
r=1

br+1

r (r + 1)
.

Becausebr+1 ≤ r + 1, this gives anO(n logn) algorithm. However, the bound is much
better in some cases. For example, if the input points are chosen randomly from the unit
square (unit disk, respectively), we getbr = O(logr ) (br = O( 3

√
r ), respectively) [28],

[20]. In both cases the algorithm actually runs in linear time. In higher dimensions, an
analysis along these lines is available, but requires substantial refinements [9], [30].

Minimum Spanning Forests

Let G = (V, E) be an edge-weighted graph,|V | = n. For D ⊆ E, let msf(D) denote
the minimum spanning forest of the graph(V, D) (which we assume to be unique for
all D). An edgee∈ E is calledD-light if it either connects two components of msf(D)
or it has smaller weight than some edge on the unique path in msf(D) between its two
vertices. The expected linear-time algorithm for computing msf(E) due to Karger et
al. [21], [25] relies (among other insights) on the following fact: ifD is a randomp-
sample, the expected number ofD-light edges is bounded byn/p. Using thep-Sampling
Lemma 1.2, this fact is easily derived. Namely, it is a simple observation thate is D-light
if and only if msf(D) 6= msf(D ∪ {e}). With ϕ(D) = msf(D), this means that the set of
D-light edges is exactly the set of violators ofD. By the p-sampling lemma, ifD is a
randomp-sample, their expected number is given by

v(p) = 1− p

p
x(p) ≤ x(p)

p
.

It remains to observe thatx(p) ≤ n − 1, becauseX(D) contains exactly the edges in
msf(D), for all D.

Along these lines, Chan has proved a bound for the expected number ofD-light edges
in the case whereD is a random sample of sizer [4]. His argument uses backwards
analysis and boils down to a proof of the Sampling Lemma 1.1 in this specific scenario.

Backwards Analysis and Configuration Spaces

The Sampling Lemma 1.1 in its full generality can be easily proved using backwards
analysis, and as indicated in the previous subsection, this is usually the way its specializa-
tions are derived in the applications. For this, one considers the randomized incremental
“construction” ofϕ(S), via adding the elements ofS in random order, and analyzes the
situation in stepr + 1 [30].

There is also a connection to configuration spaces. In general, such a space consists
of an abstract set ofconfigurationsover some setS, where each configuration1 has a
definingsetD(1) ⊆ Sand aconflictsetK (1) ⊆ S.1 is activewith respect toR⊆ S
if and only if D(1) ⊆ R andK (1) ⊆ S\R. The goal is to compute the configurations
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active with respect toS, by adding the elements in random order, always maintaining the
active configurations of the current subset. The abstract framework provides bounds for
the expected overallstructural change(number of configurations ever becoming active)
during that construction [9], [27], [11].

In our case, every subsetRhas exactly one active configuration1 = ϕ(R) associated
with it, where D(1) = X(R) and K (1) = V(R).2 In this case the sampling lemma
provides a bound for the expected structural changevr /(n− r ) that occurs in stepr +1.
For example, it specializes to Theorem 9.14 of [11] ifxr+1 is bounded by a constantd.

In the following we are interested not only in the expectation but also in the distribution
of the random variableVr , something the configuration space framework does not handle.
For this, we concentrate on the case in which(S, ϕ) has the structure of an LP-type
problem. This situation covers many important optimization problems, including linear
programming and all motivating examples discussed above.

3. LP-Type Problems

If ϕ maps subsets to some ordered setO, we can consider functionsϕ that aremonotone,
i.e. ϕ(F) ≤ ϕ(G) for F ⊆ G. In this situation, we can regard a pair(S, ϕ) as an
optimization problem overO, as follows:S is an abstract set of constraints, and for any
R ⊆ S, ϕ(R) represents the minimum value inO subject to the constraints inR. The
examples above are all of this type, if we define appropriate orderings on theϕ-values.
Forϕ(R) = min(R) in the case of keys, we simply take the decreasing order on the keys.
For S a point set andϕ(R) = ball(R), we can order the balls according to their radii,
while for ϕ(R) = conv(R), we may use the area of conv(R).

Moreover, in all these examples,ϕ has another special property which we refer to as
the locality. We say thatϕ is local if R⊆ Q andϕ(R) = ϕ(Q) impliesV(R) = V(Q),
for all R, Q ⊂ S. An example for a nonlocal problem is thediameter: for a setS of
points andR⊆ S, we defineϕ(R) to be the euclidean diameter ofR. In Fig. 2 we have
ϕ(R) = ϕ(Q) for R= {q, s} andQ = {p,q, s}, but∅ = V(R) 6= V(Q) = {r }.

Still, locality is present in many problems of practical relevance, the most prominent
one beinglinear programming(LP). In a geometric formulation of linear programming,
Sis a set of halfspaces ind-dimensional space, andϕ(R) is the lexicographically smallest
point among all the ones that minimize some fixed linear function over the intersection

q

s

p r
D

>D

Fig. 2. The diameter problem: locality fails.

2 Some care is in order here; in degenerate situations,R can define several configurations1 with different
setsD(1), in which caseX(R) is the intersection of all those sets.
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of all halfspaces inR. If that intersection is empty, we setϕ(R) = ∞, with the under-
standing that this value dominates all other values. If the function is unbounded over the
intersection, we setϕ(R) = ⊥, standing for “undefined.”

Linear programming is also the motivating example for the following definition [32].

Definition 3.1. Let S be a finite set,O some ordered set, andϕ: 2S → O ∪ {⊥} a
function, where⊥ is assumed to be the minimum value inO ∪ {⊥}. The pair(S, ϕ) is
called anLP-type problemif ϕ is monotone and local, i.e. if for allR ⊆ Q ⊆ S with
ϕ(R) 6= ⊥,

(i) ϕ(R) ≤ ϕ(Q), and
(ii) ϕ(R) = ϕ(Q) impliesV(R) = V(Q).

The concept of LP-type problems has proved useful in the understanding of geometric
optimization, see for example [2]. For many problems (including linear programming
and smallest enclosing ball), the currently best theoretical runtime bounds in the unit
cost model can be obtained by an algorithm that works for general LP-type problems
[16], [23].

We recall the following further notations only briefly and refer to the above literature
for details.

Definition 3.2. LetL = (S, ϕ) be an LP-type problem.

(i) A basis of R⊆ S is an inclusion-minimal subsetB ⊆ R with ϕ(B) = ϕ(R). A
basis inL is a basis of some setR ⊆ S. A basis in Ris a basis inL contained
in R.

(ii) The combinatorial dimensionof L, denoted byδ = δ(L), is the size of a largest
basis inL.

(iii) L is regular if all bases of setsR, |R| ≥ δ (regular bases), have size exactlyδ.
(iv) L is nondegenerateif every setR, |R| ≥ δ, has a unique basisB(R).

The following implications can easily be derived.

Fact 3.3. LetL = (S, ϕ) be an LP-type problem and R⊆ S withϕ(R) 6= ⊥. Then

(i) ϕ(R) = ϕ(S\V(R)), and
(ii) the set X(R) of extreme elements of R is the intersection of all bases of R.

If L has combinatorial dimensionδ, it follows that|X(R)| ≤ δ for all R, so that the
sampling lemma yields

vr ≤ δn− r

r + 1
.

In particular, a random sample of sizer ≈ √δn has no more thanr violators on average,
and this is the “balancing” that will prove useful below.

In the next section we derive bounds for regular, nondegenerate LP-type problems
that apply to the general case only in a weaker form. While regularity can be enforced in
the nondegenerate case (we describe a well-behaved “regularizing” construction below),
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nondegeneracy is a more subtle issue. It is not known how to make a general LP-
type problem nondegenerate without substantially changing its structure [22]. For most
geometric LP-type problems, however, a slight perturbation of the input will entail a
nondegenerate problem, essentially equivalent to the original one. Most notably, this is
the case for linear programming.

Enforcing Regularity

Given a nondegenerate LP-type problem(S, ϕ) of combinatorial dimensionδ, the idea
is to make it regular by “pumping up” bases which are too small. For this, we define an
arbitrary linear order onS, and consider the function

ϕ′(R) := (ϕ(R), E(R)),

where E(R) consists of the vector of them largest elements inR\B(R), for m =
min(δ, |R|)−|B(R)|.ϕ′-values are compared lexicographically, i.e. by theϕ-component
first. If theϕ-values are equal, the lexicographic order of theE-components (well defined
with respect to the chosen order onS) decides the comparison.ϕ′ can be considered as
a “refinement” ofϕ.

Lemma 3.4[22]. If L = (S, ϕ) is nondegenerate, then(S, ϕ′) is a regular, nondegen-
erate LP-type problem of combinatorial dimensionδ(L).

Moreover, ifV(R) andV ′(R) denote the violating sets ofR ⊆ S with respect toϕ
andϕ′, we have the following simple but important fact:

V(R) ⊆ V ′(R). (5)

This holds becauseϕ(R∪{s}) > ϕ(R) impliesϕ′(R∪{s}) > ϕ′(R). It follows that when
we develop tail estimates for the expected size ofV ′(R) (more generally, foranyregular
and nondegenerate LP-type problem), those estimates then also apply to nonregular
problems.

4. Tail Estimates

In the following we consider regular and nondegenerate LP-type problems(S, ϕ) with
|S| = n andδ(S, ϕ) = d, where we assumen andd to be fixed for the rest of this section.

For given parametersr ≥ d andk, we want to bound

prob(Vr ≥ k).

The most important observation is that this quantity does not depend on the LP-type
problem, but is merely a function of the parametersn,d, r , andk.

This follows from a result first proved by Clarkson [7] in the context of linear pro-
gramming, and later generalized to LP-type problems by Matouˇsek [22]. We rederive
the statement here.
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Theorem 4.1. Let (S, ϕ) be a regular, nondegenerate LP-type problem with|S| = n
andδ(S, ϕ) = d. Then

prob(Vr = k) =
(k+d−1

d−1

)(n−d−k
r−d

)(n
r

) .

Proof. A basisB is the basis of a setR if and only if B ⊆ R⊆ S\V(B). This means,
for any regular basisB with k violators, there are

(n−d−k
r−d

)
setsR of sizer which haveB

as their (unique) basis. It follows that

prob(Vr = k) = bk

(n−d−k
r−d

)(n
r

) , r = d, . . . ,n,

wherebk is the number of regular bases withk violators in(S, ϕ). By summing over all
k, we get (

n

r

)
=

n−d∑
k=0

bk

(
n− d − k

r − d

)
, r = d, . . . ,n. (6)

This system of linear equations can be written in the form((
n

d

)
,

(
n

d + 1

)
, . . . ,

(
n

n

))
= (bn−d,bn−d−1, . . . ,b0) T,

whereT is an upper-triangular matrix with all diagonal entries equal to 1, therefore
invertible. This means thebk’s are uniquely determined by the system (6), from which

bk =
(

k+ d − 1

d − 1

)
follows via a standard binomial coefficient identity [17, equation (5.26)]. This proves
the statement of the theorem.

This result leads to an explicit formula for prob(Vr ≥ k), but useful tail estimates do
not yet follow from that. By severe grinding it might be possible to extract good bounds
directly from the formula (we did not succeed), but there is another approach: as we
know that the quantity in question does not depend on the particular LP-type problem,
we might as well use our favorite LP-type problem in the analysis. In fact, for any given
parametersn andd, there is a “canonical” LP-type problem from which statements about
the distribution ofVr can be extracted without pain.

Thed-Smallest Number Problem

Let N be the set{1, . . . ,n}. For R ⊆ N, define mind(R) as thed-smallest number
in R (equivalently, the element of rankd in R). If |R| < d, this is undefined, and
mind(R) := ⊥. We have the following easy facts (proofs omitted).
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Lemma 4.2.

(i) (N, ϕ) with ϕ(R) := mind(R) is a regular, nondegenerate LP-type problem of
combinatorial dimension d, if ϕ-values are compared according to decreasing
order in N.

(ii) The basis of any set R, |R| ≥ d, consists of the d smallest numbers in R.
(iii) s ∈ S\R violates R if and only if s is smaller than the d-smallest number in R.

Ford = 1, we have mind(R) = min(R), thus we recover the LP-type problem under-
lying the efficient minimum search in a sorted compact list described in the Introduction.

As a warm-up exercise, we rederive the formula for the number of bases with exactly
k violators in a regular and nondegenerate LP-type problem, by using the fact that this
number does not depend on the actual LP-type problem, see Theorem 4.1.

Observation 4.3. The d-smallest number problem has

bk =
(

k+ d − 1

d − 1

)
regular bases with exactly k violators.

Proof. Any setB with d elements is a regular basis.B hask violators if and only if the
d-smallest numberx in B is the (k+ d)-smallest number inN. The elements inB\{x}
can be anyd − 1 among thek+ d − 1 smaller numbers inN.

The proof of this observation might be somewhat simpler than the one we had in
the general case, but it does not lead to new insights. However, the next theorem about
higher moments ofVr is an example of a statement which we think is not immediate to
prove (let alone discover) without making use of thed-smallest number problem.

Theorem 4.4. Let(S, ϕ) be a regular, nondegenerate LP-type problem, and let R be a
random sample of size r. For j ∈ {0, . . . ,n− r }, we have

E

((
Vr

j

))
=
( n
r+ j

)( j+d−1
j

)(n
r

) .

Proof. We evaluate the expectation for thed-smallest number problem and then use
Theorem 4.1. For this, we need to count the expected number of setsJ, |J| = j with
J ⊆ V(R). Observe that this inclusion holds if and only if all elements ofJ are smaller
than thed-smallest number inR, equivalently, if J is among thej + d − 1 smallest
numbers inR∪ J. For any setL of sizer + j , there are

( j+d−1
j

)
pairs(R, J), R∪ J = L,

with this property. Thus we get(
n

r

)
E

((
Vr

j

))
=

∑
|R|=r

∑
J⊆S\R
|J|= j

[ J ⊆ V(R)]
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=
∑
|L|=r+ j

(
j + d − 1

j

)
=
(

n

r + j

)(
j + d − 1

j

)
.

When applied toj = 2, the theorem can be used to compute the variance ofVr , leading
to a Chebyshev-type tail estimate. The higher moments give still better bounds. We are
going for Chernoff-type bounds, by exploiting the special structure of thed-smallest
number problem.

A Chernoff-Type Tail Estimate

To choose a random subsetR⊆ N of sizer , one can proceed inr rounds, where roundi
selects an elementsi uniformly at random among the ones not chosen so far. Equivalently,
one may choose a “rank”̀i uniformly at random in{1, . . . ,n+ 1− i } and letsi be the
element of rank̀ i among the ones not chosen so far.

Fix some positive integerk and letUk be the random variable for the number of
indicesi with `i ≤ k. We have the following relation to the random variableVr .

Lemma 4.5. Let R= R(`) denote the set determined by` = (`1, . . . , `r ). Then

Uk(`) ≥ d ⇒ Vr (R) ≤ k− 1.

Proof. We claim thatUk ≥ d implies mind(R) ≤ k + d − 1. Because the latter is
equivalent toVr ≤ k− 1, the lemma follows.

To prove the claim, we first note that

si = `i + #{ j < i | sj < si }. (7)

Consider some setI of d indicesi such that̀ i ≤ k for i ∈ I . Such a set exists ifUk ≥ d.
If si ≤ k + d − 1 for all i ∈ I , we get mind(R) ≤ k + d − 1, as required. Otherwise,
there is somei ∈ I such thatsi = k+ e,e≥ d. Then we get

#{ j < i | sj < k+ e} = k+ e− `i ≥ e,

which implies #{ j < i | sj < k + d} ≥ d. As before, this means that mind(R) ≤ k
+ d − 1.

Corollary 4.6. prob(Vr ≥ k) ≤ prob(Uk ≤ d − 1).

Chernoff-type bounds forUk are easy to obtain now.Uk can be expressed as the sum
of independent random variablesUk,i , i = 1, . . . , r , where

Uk,i :=
{

1, if `i ≤ k,
0, otherwise,
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and it holds that

prob(Uk,i = 1) = k

n+ 1− i
=: pi .

The following is one of the basic Chernoff bounds [19].

Lemma 4.7. With E(Uk) = (p1+ · · · + pr )/r and t ≥ 0,

prob(Uk ≤ E(Uk)− t) ≤ exp

(
− t2

2E(Uk)

)
.

Using t = E(Uk) − d + 1 (which is nonnegative for the values ofk we will be
interested in below), we obtain

prob(Uk ≤ d − 1) ≤ exp

(
− (E(Uk)− d + 1)2

2E(Uk)

)
.

Fix some valueλ ≥ 0 and choosek in such a way thatE(Uk) = (1+ λ)d. Then we get

prob(Uk ≤ d − 1) ≤ exp

(
− (λd + 1)2

2(1+ λ)d
)

≤ exp

(
− λ2

2(1+ λ)d
)
.

The value ofk that entailsE(Uk) = (1+ λ)d satisfies

k = (1+ λ)d∑r−1
i=0 1/(n− i )

≤ (1+ λ)dn

r
,

and we obtain our result.

Theorem 4.8. LetL = (S, ϕ) be a nondegenerate LP-type problem with|S| = n and
dim(S, ϕ) = d. For r ≥ d and anyλ ≥ 0,

prob
(

Vr ≥ (1+ λ)dn

r

)
≤ exp

(
− λ2

2(1+ λ)d
)
.

We have derived this bound only for regular problems, but as we have shown before,
any problem can be regularized, and, by (5), the estimate then also holds for nonregular
problems. BecauseE(Vr ) ≤ d(n− r )/(r +1) ≈ dn/r , this bound establishes estimates
for the tail “to the right” of the expectation. It might seem that the bound is rather weak, in
particular because it does not depend onn andr . However, it is essentially best possible,
as the following lower bound shows (the actual formulation has been chosen in order to
minimize computational effort).

Theorem 4.9. LetL = (S, ϕ) be a nondegenerate LP-type problem with|S| = n and
dim(S, ϕ) = d. For r ≥ d and anyλ ≥ 0 such that(1+ λ)d ≤ r/2,

prob

(
Vr > (1+ λ)dn+ 1− r

r
− d

)
≥ exp

(
−(1+ λ)d − (1+ λ)

2d2

r

)
.
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Proof. With Uk as defined above andR= R(`), relation (7) immediately entails

Vr (R) ≤ k− d ⇔ mind(R) ≤ k ⇒ Uk(`) ≥ d,

so that we get prob(Vr > k− d) ≥ prob(Uk ≤ d − 1). Furthermore,

prob(Uk ≤ d − 1) ≥ prob(Uk = 0) =
r∏

i=1

(
1− k

n+ 1− i

)
≥
(

1− k

n+ 1− r

)r

.

With k = (1+ λ)d(n+ 1− r )/r , it follows that

prob(Uk ≤ d − 1) ≥
(

1− (1+ λ)d
r

)r

≥ exp

(
−(1+ λ)d − (1+ λ)

2d2

r

)
,

using the inequality 1− x ≥ exp(−x − x2) for x ≤ 1
2.

An open question is whether the statement of Theorem 4.8 also holds in the degenerate
case. It is tempting to conjecture that prob(Vr ≥ k) is maximized for nondegenerate
problems—this would yield Theorem 4.8 for the general case. Moreover, while the
bound is tight in the regular case, one might be able to improve it for a given nonregular
problem.

We conclude this section by proving a weaker tail estimate which applies to the
general case. Using this, we can show that the number of violators exceeds the expected
value by no more than a logarithmic factor, with high probability.

Theorem 4.10. LetL = (S, ϕ) be an LP-type problem with|S| = n anddim(S, ϕ) =
d. For r ≥ d and anyλ ≥ 0,

prob
(

Vr ≥
(
ln

ne

d
+ λ

)
d

n

r

)
≤ exp(−λd) .

Proof. Let Bk denote the set of regular bases with exactlyk violators (recall that a
regular basis is a basis of some setR with |R| ≥ d). Any fixed B ∈ Bk is a basis of all
the setsR satisfyingB ⊆ R⊆ S\V(B). It follows thatB is a basis of a random sample
R of sizer with probability (n−|B|−k

r−|B|
)(n

r

) ≤
(n−k

r

)(n
r

) .
We have|V(R)| = k if and only if R has some basis (equivalently, all its bases) inBk,
which gives

prob(Vr = k) ≤ bk

(n−k
r

)(n
r

) , bk = |Bk|.

Consequently,

prob(Vr ≥ k) ≤
n−r∑
`=k

b`

(n−`
r

)(n
r

) ,
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where we know that
n−r∑
`=k

b` ≤
(

n

≤ d

)
:=

d∑
i=0

(
n

i

)
,

because all bases have size at mostd. Then we can further argue that

prob(Vr ≥ k) ≤
(

n−r∑
`=k

b`

)(
max

`=k···n−r

(n−`
r

)(n
r

) ) ≤ ( n

≤ d

)(n−k
r

)(n
r

) .
Since (see [24]) (

n

≤ d

)
≤
(ne

d

)d

and (n−k
r

)(n
r

) = (1− k

n

)(
1− k

n− 1

)
· · ·
(

1− k

n− r + 1

)
≤
(

1− k

n

)r

,

we finally get, by substitutingk = (ln(ne/d)+ λ)d(n/r ),

prob(Vr ≥ k) ≤
(ne

d

)d
(

1− (ln(ne/d)+ λ)d

r

)r

≤
(ne

d

)d
exp

(
−
(
ln

ne

d
+ λ

)
d
)
= exp(−λd) .

5. Multiple Pricing and Clarkson’s Reduction Scheme

The simplex method [5] is usually the most efficient algorithm to solve linear program-
ming problems in practice. Even in the theoretical setting, all known algorithms to solve
general LP-type problems boil down to variants of the (dual) simplex method, when they
are applied to linear programming [13]. In this section we introduce and analyze an algo-
rithm in the general framework, which—although being new in its precise formulation—
follows a well-known design paradigm, whose simplex counterpart is known asmultiple
pricing [5]. The idea of multiple pricing is to reduce a large problem to a (hopefully)
small number of small problems. This can be useful in case the whole problem does
not fit into main memory, but it also helps in general to reduce the cost of a single
simplex iteration. Taking a slightly different approach,partial pricing [5] is a related
technique following the same paradigm. Applications have been found in the context of
very large-scale linear programming [3], but also in geometric optimization [14], [15].

We do not elaborate on those simplex techniques here; the reader may verify that
the algorithm we are going to present is actually a variant of multiple pricing, when
translated into simplex terminology.

Consider an LP-type problem(S, ϕ) (not necessarily nondegenerate) of combinatorial
dimensiond, and assume we are given an algorithmlp type (G, B) to compute for any
subsetG of Ssome basisBG of G, given a candidate basisB ⊆ G. Of course, one can
directly solve the problem of findingBS by calling lp type with the large setS and
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some basisB ⊆ S. As we will see, an efficient alternative is provided by the following
method, parameterized with a sample sizer . We assume the initial basisB to be fixed
for the rest of this section.

Algorithm 5.1.

lp type sampling r (S, B):
(* returns some basis BS of S *)
choose R with|R| = r, R⊆ S\B at random
G := R∪ B
REPEAT

B :=lp type (G, B)
G := G ∪ V(B)

UNTILV(B) = ∅
RETURNB

lp type sampling reduces the problem to several calls oflp type , and Fact 3.3(i)
shows that if the procedure terminates,V(B) = ∅ implies thatB is a basis ofS. Moreover,
it must eventually terminate, because every round adds at least one element toG. The
algorithm captures the spirit of Clarkson’s linear programming algorithm [8] (and its
generalizations [1], [16]), but is simpler and more practical. To guarantee its theoretical
complexity, Clarkson’s algorithm draws a random sample in every round, and it restarts a
round whenever|V(B)| turns out to be too large. Thus, Algorithm 5.1 can be interpreted as
the canonical simplification of Clarkson’s algorithm for practical use, where one observes
that resampling and restarting are not necessary (and even decrease the efficiency).

The general phenomenon behind this is that often the theoretically best algorithms
are not competitive in practice, while the algorithms one actually chooses in an imple-
mentation cannot be analyzed. On the one hand this is due to the fact that the worst-case
complexity is an inappropriate measure in many practical situations; on the other hand,
sometimes algorithms used in practice are simply not understood, although they might
allow a worst-case analysis.

In the case of Algorithm 5.1 we have the fortunate situation that it combines efficiency
in practice with provable time bounds (developed below). With the procedurelp type
replaced by a call to a standard simplex implementation, the method has been successfully
used in a linear programming code for geometric optimization [14], [15], without any
further changes. In its original version, due to Clarkson, Algorithm 5.1 is a building-block
of an ingenious linear-time algorithm for linear programming in constant dimensiond
[8], [16].

The theoretical analysis starts with a bound on the number of rounds.

Observation 5.2[8]. Fix some basis BS of S. Then in every round except the last one,
V(B) contains an element of BS. In particular, there are at most d+ 1 rounds.

Proof. Assume thatBS is disjoint fromV(B). From Fact 3.3 and monotonicity we then
getϕ(B) = ϕ(S\V(B)) ≥ ϕ(BS) = ϕ(S), from whichϕ(B) = ϕ(S) follows. Locality
then impliesV(B) = V(S) = ∅, which means that we are already in the last round.
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The critical parameter we are interested in is the size ofG in the last round. If this is
small, then all calls tolp type (G, B) are cheap.

We fix some notation for that. We defineS′ := S\B, B being the initial candidate
basis plugged intolp type sampling . By

B(i )R ,V (i )
R , andG(i )

R

we denote the setsB, V(B), andG computed in roundi . Furthermore, we setG(0)
R =

R∪ B, while B(0)R andV (0)
R are undefined. This means we have

B(i )R is a basis ofG(i−1)
R , V (i )

R = V(G(i−1)
R ).

If the algorithm performs exactlỳ rounds, sets with indicesi > ` are defined to be the
corresponding sets in round̀.

We will need a generalization of Observation 5.2.

Lemma 5.3. For j < i ≤ `, B(i )R ∩ V ( j )
R 6= ∅.

Proof. Assume on the contrary thatB(i )R ∩V ( j )
R = ∅. As in the proof of Observation 5.2,

Fact 3.3 and monotonicity then imply

ϕ(G( j−1)
R ) = ϕ(S\V ( j )

R ) ≥ ϕ(B(i )R ) = ϕ(G(i−1)
R ),

a contradiction to the fact thatϕ(G) strictly increases in every round but the last.

The following lemma is the crucial result. It interprets Algorithm 5.1 as an LP-type
problem itself! Under this interpretation, the setG in the last round is essentially the set
of violators of the initial sampleR. Then the techniques of the previous sections (the
sampling lemma and the tail estimates) can be applied to bound the expected size of|G|,
and even get Chernoff-type bounds for the distribution of|G|.

Lemma 5.4. For R⊆ S′ := S\B define

ϕ′(R) =
(
ϕ(G(0)

R ), ϕ(G
(1)
R ), . . . , ϕ(G

(d−1)
R )

)
.

Then the following holds:

(i) (S′, ϕ′) is an LP-type problem of combinatorial dimension at most
(d+1

2

)
, under

the lexicographic order of the d-tuplesϕ′(R).
(ii) The set V′(R) := {s ∈ S′\R | ϕ′(R) 6= ϕ′(R ∪ {s})} of violators of R with

respect toϕ′ is given by

V ′(R) = V (1)
R ∪ · · · ∪ V (d)

R = G(d)
R \(R∪ B).

(iii) If (S, ϕ) is nondegenerate, so is(S′, ϕ′).

Before we go into the technical (although not difficult) proof, we derive the main
result of this section, namely the analysis of Algorithm 5.1. This analysis is now merely
a consequence of previous results.
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Theorem 5.5. For R⊆ S′, a random sample of size r,

E(|G(d)
R |) ≤

(
d + 1

2

)
n− d − r

r + 1
+ (r + d).

Choosing r= d
√

n/2 yields

E(|G(d)
R |) ≤ 2(d + 1)

√
n

2
.

Proof. The first inequality directly follows from the sampling lemma, applied to the
LP-type problem(S′, ϕ′), together with part (ii) of the previous lemma. The second
inequality is routine.

The theorem shows that Algorithmlp type sampling reduces a problem of sizen
to at mostd problems of expected size no more thanO(d

√
n). This explains the practical

efficiency of multiple pricing and similar reduction schemes ifd ¿ n.
If (S, ϕ) is nondegenerate, we get the following tail estimate, using part (iii) of

Lemma 5.4 and Theorem 4.8. Again, routine computations yield

Theorem 5.6. If (S, ϕ) is a nondegenerate LP-type problem, then for R⊆ S′,a random
sample of size r= d

√
n/2, andλ ≥ 0,

prob

(
|G(d)

R | ≥ (2+ λ)(d + 1)

√
n

2

)
≤ exp

(
− λ2

2(1+ λ)
(

d + 1

2

))
.

In the degenerate case, Theorem 4.10 can be used to derive the following weaker (but
still useful) result.

Theorem 5.7. If (S, ϕ) is a general LP-type problem, then for R⊆ S′, a random
sample of size r= d

√
(n ln n)/2, andλ ≥ 0,

prob

(
|G(d)

R | ≥ (3+ λ) (d + 1)

√
n ln n

2

)
≤ exp

(
−λ
(

d + 1

2

))
.

We conclude this section with the proof of Lemma 5.4.

Proof. We start by establishing an auxiliary claim:

Claim. For any set Q with Q= R
·∪ T ⊆ S′ and i < d,

ϕ(G( j )
R ) = ϕ(G( j )

Q ), j ≤ i,

implies

G( j )
Q = G( j )

R

·∪ T, j ≤ i + 1,

V ( j+1)
Q = V ( j+1)

R , j ≤ i .
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To prove the claim, we proceed by induction oni , noting that the statements hold for
i = 0 by the locality ofϕ. Now assume the implications are true forj ≤ i − 1. Then we
get

G(i )
Q = G(i−1)

Q

·∪V (i )
Q

= G(i−1)
R

·∪ T
·∪V (i )

R = G(i )
R

·∪ T.

Becauseϕ(G(i )
R ) = ϕ(G(i )

Q ), the locality ofϕ implies

V (i+1)
Q = V (i+1)

R ,

which in turn provesG(i+1)
Q = G(i+1)

R

·∪ T . This establishes the claim.
To proceed, we first prove part (ii) of Lemma 5.4. Assumes ∈ V ′(R), setQ := R∪{s},

and consider the largest indexi < d − 1 such that

ϕ(G( j )
R ) = ϕ(G( j )

Q ), j ≤ i .

By the claim above,G(i+1)
Q = G(i+1)

R ∪ {s}, and the monotonicity ofϕ implies

ϕ(G(i+1)
R ) < ϕ(G(i+1)

Q ). (8)

This means,s ∈ V (i+2)
R .

On the other hand, ifs 6∈ V ′(R), then the precondition of the claim holds fori = d−1,
implying

V ( j+1)
R = V ( j+1)

Q 63 s, j ≤ d − 1.

This meanss 6∈ V (1)
R , . . . ,V (d)

R .
To prove (i), we need to verify the monotonicity and locality (see Definition 3.1).

Inequality (8) shows thatϕ′(R) ≤ ϕ′(R ∪ {s}) in the lexicographic order, for alls ∈
V ′(R), and this implies monotonicity.

For locality, assumeR ⊆ Q with ϕ′(R) = ϕ′(Q). From the claim and part (ii), we
get

V ′(R) =
d⋃

i=1

V (i )
R =

d⋃
i=1

V (i )
Q = V ′(Q),

and this is the required property.
It remains to bound the combinatorial dimension of(S′, ϕ′). To this end we prove

thatϕ′(BR) = ϕ′(R), for

BR := R∩
d⋃

i=1

B(i )R .

We equivalently show thatϕ(G( j )
R ) = ϕ(G( j )

BR
), for j ≤ d− 1, using induction onj . For

j = 0, we get

G( j )
R = G( j )

BR
∪ R\BR,

hence

ϕ(G( j )
R ) = ϕ(G( j )

BR
∪ R\BR) = ϕ(G( j )

BR
), (9)
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becauseR\BR is disjoint from B(1)R , the basis ofG(0)
R . Hence,R\BR can be removed

from G(0)
R without changing theϕ-value.

Now assume the statement holds forj ≤ d − 2 and consider the casej = d − 1.
By the claim, we getG( j )

R = G( j )
BR
∪ R\BR, so, as before, (9) follows, becauseR\BR is

disjoint from the basisB( j+1)
R of G( j )

R .
To bound the size ofBR, we observe that

|R∩ B(i )R | ≤ d + 1− i,

for all i ≤ ` (the number of rounds in whichV(B) 6= ∅). This follows from Lemma 5.3:
B(i ) has at least one element in each of thei − 1 setsV (1)

R , . . . ,V (i−1)
R , which are in turn

disjoint from R. Hence we get

|BR| ≤
∑̀
i=1

|R∩ B(i )R | ≤
(

d + 1

2

)
.

Proof of part (iii). Nondegeneracy of(S′, ϕ′) follows if we can show that every set
R ⊆ S′ has the setBR as its unique basis. To this end we prove that whenever we have
L ⊆ R with ϕ′(L) = ϕ′(R), thenBR ⊆ L.

Fix L ⊆ R with ϕ′(L) = ϕ′(R), i.e.

ϕ(G(i )
R ) = ϕ(G(i )

L ), i ≤ d − 1.

By the claim, this implies

G(i )
R = G(i )

L

·∪ (R\L), i ≤ d − 1,

and the nondegeneracy ofϕ yields thatG(i )
R andG(i )

L have the same unique basisB(i+1)
R ,

for all i . It follows thatG(d−1)
L contains

d⋃
i=1

B(i )R ,

soL contains

L ∩
d⋃

i=1

B(i )R = R∩
d⋃

i=1

B(i )R .

The latter equality holds becauseR\L is disjoint fromG(d−1)
L , thus in particular from

the union of theB(i )R .

6. Conclusion

The curious fact that—in the regular and nondegenerate case—the distribution ofVr

does not depend on the actual LP-type problem, deserves a word of warning: namely, this
property does not mean that all nondegenerate LP-type problems with given parameters
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n andd are equally difficult (or easy) to solve. On the contrary, because the random
variableVr does not depend on the actual problem, it does not carry any information
about the difficulty of a particular problem. There are very easy problems (liked-smallest
number), and very difficult ones (like linear programming). For example, Algorithm 5.1
never needs more than two rounds in the case of thed-smallest number, and for other
easy LP-type problems characterized by the following property: for any setsB ⊆ R
such thatϕ(B) = ϕ(R), and for any setT ,

ϕ(B ∪ T) = ϕ(R∪ T)

holds. This means elements inR\B can be “forgotten,” as they will not contribute to the
final solution. The absence of this property is what makes linear programming and other
problems difficult.

In general, it seems that the combinatorial dimension of the LP-type problem(S′, ϕ′)
derived from(S, ϕ) according to the definition in Lemma 5.4 is a more meaningful
indicator of (S, ϕ)’s difficulty than δ(S, ϕ) itself. For example, in the case of thed-
smallest number, we getδ(S′, ϕ′) = d, much less than theO(d2) upper bound. This
alternative notion of dimension needs to be further investigated.

An open problem that remains is to improve the tail estimates in the case of degenerate
LP-type problems. Here, the distribution ofVr typically depends on the concrete instance,
and so doesbk, the number of bases withk violators. Using only trivial bounds for the
numbersbk, we have obtained the weaker estimate given by Theorem 4.10, indicating
that this estimate might not be the final answer.
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[15] B. Gärtner and S. Sch¨onherr. An efficient, exact and generic quadratic programming solver for geometric

optimization. InProc. 16th ACM Symp. Comput. Geom., pages 110–118, 2000.
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