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Abstract. Random sampling is an efficient method to deal with constrained optimization
problems in computational geometry. In a first step, one finds the optimal solution subject to
a random subset of the constraints; in many cases, the expected number of constraints still
violated by that solution is then significantly smaller than the overall number of constraints
that remain. This phenomenon can be exploited in several ways, and typically results in
simple and asymptotically fast algorithms.

Very often the analysis of random sampling in this context boils down to a simple identity
(thesampling lemmpwhich holds in a general framework, yet has not been stated explicitly
in the literature.

Inthe more restricted but still general settind 8ftype problemswe prove tail estimates
for the sampling lemma, giving Chernoff-type bounds for the number of constraints violated
by the solution of arandom subset. As an application, we provide the first theoretical analysis
of multiple pricing a heuristic used in the simplex method for linear programming in order
to reduce a large problem to few small ones. This follows from our analysis of a reduction
scheme for general LP-type problems, which can be considered as a simplification of an
algorithm due to Clarkson. The simplified version needs less random resources and allows
a Chernoff-type tail estimate.

1. Introduction

Random sampling and randomized incremental construction have become well-estab-
lished, by now even classical, design paradigms in the field of computational geometry,

* The first author acknowledges support from the Swiss Science Foundation (SNF), Project No. 21-
50647.97. A preliminary version of this paper appeared ifPtioeeedings of th&6éth Annual ACM Symposium
on Computational Geomet(CQG, 2000, pp. 91-99.
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see [27]. Many algorithms following that paradigm have been simplified to a point
where they can easily be taught in introductory CS courses, with almost no technical
difficulties. This was not always the case; pioneering papers, notably the ones by Clarkson
and Shor [6], [9], Mulmuley [26], and by Guibas et al. [18], still required more technical
derivations.

This changed when Seidel popularizedlaekwards analysigaradigm for random-
ized algorithms [30]. Together with the abstract framewor&asffiguration spaceshis
technique allows us to treat many different algorithms in a simple and unified way [11].

The goal of this paper is to popularize and prove results around a simple identity (the
sampling lemmpwhich underlies the analysis of randomized algorithms for mgeoy
metric optimizatiorproblems. By that we mean problems defined in a low-dimensional
space, which usually implies that they have few constraints or few variables when written
as mathematical programs.

As we show below, special cases of the identity, or inequalities implied by it, are used
in many places, including the analysis of the general configuration space framework. To
the knowledge of the authors, the identity itself, however, has not been noticed explicitly.

The Sampling Lemma

Let Sbe a set of size and lety be a function that maps any setC Sto some value
¢(R).! Define

V(R) := {se€ S\R|p(RU{s}) # ¢(R)},
X(R) = {se R ¢(R\{s}) # ¢(R)}.

V(R) is the set ofviolators of R, while X(R) is the set ofextremeelements inR.
Obviously,

sviolatesR <« sisextremeinRU {s}. D

For a random samplR of sizer, i.e. a sefR chosen uniformly at random from the
set(ﬂ of all r-element subsets @&, we define random variablé4é: R+— |V (R)| and
Xr: R~ |X(R)|, and we consider the expected values

v = EM),
Xr = E(Xr).

Lemma 1.1(Sampling Lemma). ForO<r < n,

Ur Xyl

n—r r+1

1 Here, the only purpose gfis to partition 2 into equivalence classes; later, the function-notation becomes
clear.
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Proof. Using the definitions of, andx; 1 as well as (1), we can argue as follows:

<?>vr = > Y [sviolatesR]

RE(D seS\R

= > ) [sisextremeinRU {s}]

Re(®) SeS\R

= Z Z[sisextremeinQ]

Qe(rfl) s€Q

=y )+

Here, [] is the indicator variable for the event in brackets. Finally,,)/(7) = (n —
r/e+1.

To appreciate the simplicity (if not triviality) of the lemma, one should consider it as
a special case of the following observation: given a bipartite graph, the average vertex
degree in one color class times the size of that class equals the average vertex degree in
the other color class times its size.

In our case, the two color classes are the subs&obéizes andr + 1, respectively,
and two setR and R U {s} share an edge if and only $fviolatesR (equivalently, if
s is extreme inR U {s}). This means, the sampling lemma still holds if “violation” is
individually defined for every paifR, s).

A situation of quite similar flavor, where a simple bipartite graph underlies a proba-
bilistic scenario, has been studied by Dubhashi and Ranjan [12].

We can also establish a version of the sampling lemma in the mod&émioulli
sampling, whereR is chosen by picking each element $findependently with some
fixed probabilityp € [0, 1] (we sayR is a randonp-samplg. Let VP and X(® denote
the random variables for the number of violators and extreme elements, respectively, in
a p-sample, and let® andxP be the corresponding expectations.

Lemma 1.2(p-Sampling Lemma). ForO0 < p <1,
pv(p) =(1- p)X(p).
Proof. Eachr-element seR occurs as g-sample with probability

n I n—r
() o

Using the Sampling Lemma 1.1 it follows that

n n n-1 n
P _ "(1— )"y = M(1— p)™"
pv pZ;(r)p( P v = p O<r>p( P)" "

r=l

L n r n—r i n r—1 n—r+1
p < )p(l—p)‘x,+1=p ()D_(l—p)_ Xr
3 r+1 = \r

r=
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(1—p>2()p<1 (1—p>Z()p<1 X

(1— p)xP. O

In the next section we discuss some well-known results obtained by random sampling
and show that all of them easily follow from the sampling (respectiyeampling)
lemma. Concentrating on the Sampling Lemma 1.1, we elaborate on its connection to
configuration spaces and backwards analysis. Section 3 deals with LP-type problems,
which can be considered as functignsvith specific properties. Section 4 establishes
Chernoff-type tail estimates for the random varia¥glei.e. for the number of violators
of a random sample. The sampling lemma and the tail estimates are finally used in
Section 5to analyze an algorithm for general LP-type problems, which can be considered
as the “practical” version of Clarkson’s reduction scheme [16]. Its specialization to linear
programming is a variant afiultiple pricing[5].

2. Incarnations of the Sampling Lemmata
Searching in a Sorted Compact List

A sorted compact listepresents a s& of n ordered keys in an array, where the order
among the keys is established by additional pointers linking each element to its prede-
cessor in the order, see Fig. 1. It is well known that the smallest key in a sorted compact
list can be found i (,/n) expected time [10, Problem 11-3].

For this, one draws a random samlef r = ®(,/n) keys, finds the smallest key
S in the sample, and finally follows the links frogg to the overall smallest key. The
efficiency comes from the fact that an expected number of @nly/n) keys is still
smaller thars. In general, setting(R) = min(R) and observing thakX; ,; = 1, the
sampling lemma yields

—r
r+1

E#{se S\R|s < min(R)}) = 2
Note thats < min(R) is equivalent to mitR U {s}) # min(R).

Property (2) was exploited by Seidel in the following observation: given a simple
d-polytopeP with n vertices, specified by its §keletor(the graph of vertices and edges
of P), one can find the vertex that minimizes some linear funcfian expected time
O(d+/n). The corresponding randomized subroutine serves as a building block of a
simple algorithm for computing the intersection of halfspaces, or, dually, the convex hull

8|5/4]2]1]6[3]7

Fig. 1. A sorted list of eight keys, compactly stored in an array.
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of points ind-dimensional space. Far > 4, this algorithm achieves optimal expected
worst-case performance [31].

Smallest Enclosing Ball

Consider the problem of computing the smallest enclosing ball of & e&h points in
d-dimensional space, for some fixddRandomized incremental algorithms do this in
expectedO(n) time [33], based on the following fact: if the points are added in random
order, the probability that theth point is outside the smallest enclosing ball of the first
n — 1 points is bounded byd + 1)/n. In general, it holds that iR € Sis a random
sample of points, and ba{lR) denotes the smallest enclosing ballRyfthen
n—r

E#p e S\R| p¢ball(R)})§(d+1)m- 3
Again, this follows from the sampling lemma, wigh(R) = ball(R), together with the
observation that any s& has at mostl + 1 extreme elements [33], and the fact that
s ¢ ball(R) < ball(RU {s}) # ball(R).

Similar results hold for the smallest enclosing ellipsoid problem. The randomized
incremental algorithm based on them was the first one to achieve an expected runtime of
O(n) for that problem, see [33]. The pioneering applications of randomized incremental
construction along these lines were Clarkson’s and Seidel’s linear-time algorithms for
linear programming with a fixed numbedrof variables [8], [29].

Planar Convex Hull

For a planar point se§, |S| = n, the randomized incremental construction adds the
points in random order, always maintaining the convex hull of the points added so far.
When a pointp is added, it has to “locate” itself, i.e. it has to know whether it is outside
the current convex hull, and in this case identify some hull exlgsible from p.

As it turns out, the amortized expected cost for doing this i thestep (after which
the points added so far form a random san®l&f sizer) is proportional te, /r, where

a = E#pe S\R| p ¢ comMR)}).
The “trick” now is to express this in terms of another quantity:
b := E#p € R| p vertex of con¥R)}).

The sampling lemma with(R) = conUR) then shows that

n—r
=b,—. 4
a r-&-lr 1 4)
For this, we need the observation that conuR) is equivalent to confR U {s}) #
conUR), which in turn means that is a vertex of congR U {s}). The expected overall
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location cost (which dominates the runtime) is then proportional to

n n
Zifnz Br 41 .
—r —rr+1

Becausdy, 1 <r + 1, this gives arD(nlogn) algorithm. However, the bound is much
better in some cases. For example, if the input points are chosen randomly from the unit
square (unit disk, respectively), we det= O(logr) (b, = O(¥/r), respectively) [28],

[20]. In both cases the algorithm actually runs in linear time. In higher dimensions, an
analysis along these lines is available, but requires substantial refinements [9], [30].

Minimum Spanning Forests

Let G = (V, E) be an edge-weighted graph,| = n. ForD C E, let msfD) denote
the minimum spanning forest of the graphi, D) (which we assume to be unique for
all D). An edgee € E is calledD-light if it either connects two components of niSf)

or it has smaller weight than some edge on the unique path i(Dh&fetween its two
vertices. The expected linear-time algorithm for computing(Bsfdue to Karger et
al. [21], [25] relies (among other insights) on the following factDifis a randomp-
sample, the expected numbei®flight edges is bounded lny p. Using thep-Sampling
Lemma 1.2, this fact is easily derived. Namely, it is a simple observatioe th&-light

if and only if msf(D) # msf(D U {e}). With ¢(D) = msf(D), this means that the set of
D-light edges is exactly the set of violators Bf By the p-sampling lemma, iD is a
randomp-sample, their expected number is given by

1— X(P)
o = =~ Py

p p
It remains to observe that® < n — 1, becauseX (D) contains exactly the edges in
msf(D), for all D.
Along these lines, Chan has proved a bound for the expected numbdigiit edges
in the case wher® is a random sample of size[4]. His argument uses backwards
analysis and boils down to a proof of the Sampling Lemma 1.1 in this specific scenario.

Backwards Analysis and Configuration Spaces

The Sampling Lemma 1.1 in its full generality can be easily proved using backwards
analysis, and as indicated in the previous subsection, this is usually the way its specializa-
tions are derived in the applications. For this, one considers the randomized incremental
“construction” ofp(S), via adding the elements &in random order, and analyzes the
situation in step + 1 [30].

There is also a connection to configuration spaces. In general, such a space consists
of an abstract set afonfigurationsover some se§, where each configuration has a
definingsetD(A) € Sand aconflictsetK (A) C S. A is activewith respecttadR C S
if and only if D(A) € RandK(A) € S\R. The goal is to compute the configurations
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active with respect t&, by adding the elements in random order, always maintaining the
active configurations of the current subset. The abstract framework provides bounds for
the expected overadtructural changénumber of configurations ever becoming active)
during that construction [9], [27], [11].

In our case, every subsithas exactly one active configuration= ¢(R) associated
with it, where D(A) = X(R) andK(A) = V(R).? In this case the sampling lemma
provides a bound for the expected structural changén — r) that occurs in step+ 1.

For example, it specializes to Theorem 9.14 of [11if; is bounded by a constadt

Inthe following we are interested not only in the expectation but also in the distribution
ofthe random variabl¥; , something the configuration space framework does not handle.
For this, we concentrate on the case in whiy) has the structure of an LP-type
problem. This situation covers many important optimization problems, including linear
programming and all motivating examples discussed above.

3. LP-Type Problems

If ¢ maps subsets to some ordered@gtve can consider functiogsthat arenonotone

i.e. p(F) < ¢(G) for F C G. In this situation, we can regard a pafB, ¢) as an
optimization problem ove®, as follows:Sis an abstract set of constraints, and for any
R C S, ¢(R) represents the minimum value @ subject to the constraints iR. The
examples above are all of this type, if we define appropriate orderings gatakies.
Fore(R) = min(R) in the case of keys, we simply take the decreasing order on the keys.
For S a point set ang(R) = ball(R), we can order the balls according to their radii,
while for ¢(R) = conR), we may use the area of caiiR).

Moreover, in all these examplgg has another special property which we refer to as
thelocality. We say thap is local if R € Q andg(R) = ¢(Q) impliesV (R) = V(Q),
for all R, Q c S. An example for a nonlocal problem is tliéameter for a setS of
points andR C S, we definep(R) to be the euclidean diameter Bf In Fig. 2 we have
9(R) = ¢(Q) for R={q, s} andQ = {p, g, s}, buty = V(R) # V(Q) = {r}.

Still, locality is present in many problems of practical relevance, the most prominent
one beindinear programmingLP). In a geometric formulation of linear programming,
Sis a set of halfspaces @rdimensional space, apdR) is the lexicographically smallest
point among all the ones that minimize some fixed linear function over the intersection

Fig. 2. The diameter problem: locality fails.

2 Some care is in order here; in degenerate situatifsn define several configurationswith different
setsD(A), in which caseX(R) is the intersection of all those sets.
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of all halfspaces irR. If that intersection is empty, we setR) = oo, with the under-
standing that this value dominates all other values. If the function is unbounded over the
intersection, we set(R) = L, standing for “undefined.”

Linear programming is also the motivating example for the following definition [32].

Definition 3.1. Let S be a finite set(? some ordered set, and 25 — O U {L} a
function, wherel is assumed to be the minimum valuenU {_L}. The pair(S, ¢) is
called anLP-type problemif ¢ is monotone and local, i.e. if for aR € Q C Swith
p(R) # 1,

(i) ¢(R) <¢(Q),and
(i) ¢(R) = ¢(Q) impliesV(R) = V(Q).

The concept of LP-type problems has proved useful in the understanding of geometric
optimization, see for example [2]. For many problems (including linear programming
and smallest enclosing ball), the currently best theoretical runtime bounds in the unit
cost model can be obtained by an algorithm that works for general LP-type problems
[16], [23].

We recall the following further notations only briefly and refer to the above literature
for details.

Definition 3.2. Let £ = (S, ¢) be an LP-type problem.

(i) A basis of RC Sis an inclusion-minimal subs& C R with ¢(B) = ¢(R). A
basis inL is a basis of some s&® C S. A basis in Ris a basis inC contained
in R.
(i) The combinatorial dimensioonf £, denoted by = §(L), is the size of a largest
basis inL.
(iii) L isregularif all bases of set®, |R| > § (regular bases), have size exactly
(iv) £ isnondegeneraté every setR, |R| > §, has a unique basB(R).

The following implications can easily be derived.

Fact 3.3. LetL = (S, ¢) be an LP-type problem and R S with¢(R) # L. Then

() (R =¢(S\V(R)), and
(i) the set XR) of extreme elements of R is the intersection of all bases of R

If £ has combinatorial dimensiah it follows that| X (R)| < § for all R, so that the
sampling lemma yields
n—r
r+1°
In particular, a random sample of sizez +/$n has no more thanviolators on average,
and this is the “balancing” that will prove useful below.
In the next section we derive bounds for regular, nondegenerate LP-type problems

that apply to the general case only in a weaker form. While regularity can be enforced in
the nondegenerate case (we describe a well-behaved “regularizing” construction below),

v <6
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nondegeneracy is a more subtle issue. It is not known how to make a general LP-
type problem nondegenerate without substantially changing its structure [22]. For most
geometric LP-type problems, however, a slight perturbation of the input will entail a
nondegenerate problem, essentially equivalent to the original one. Most notably, this is
the case for linear programming.

Enforcing Regularity

Given a nondegenerate LP-type problé&¢) of combinatorial dimensios, the idea
is to make it regular by “pumping up” bases which are too small. For this, we define an
arbitrary linear order oi%, and consider the function

¢'(R) = (¢(R), E(R)),

where E(R) consists of the vector of the largest elements ilR\B(R), for m =
min(s, |R]) —|B(R)|. ¢’-values are compared lexicographically, i.e. bygheomponent
first. If thep-values are equal, the lexicographic order offreomponents (well defined
with respect to the chosen order 8pdecides the comparison. can be considered as
a “refinement” ofyp.

Lemma 3.4[22]. If £L = (S, ¢) is nondegenerat¢hen(S, ¢’) is a regular nondegen-
erate LP-type problem of combinatorial dimensqzt).

Moreover, ifV(R) andV’'(R) denote the violating sets & C S with respect tap
and¢’, we have the following simple but important fact:

V(R) € V'(R). )

This holds becausg(RU{s}) > ¢(R) implies¢’(RU{s}) > ¢'(R). Itfollows that when

we develop tail estimates for the expected siz€¢'¢R) (more generally, foanyregular

and nondegenerate LP-type problem), those estimates then also apply to nonregular
problems.

4, Tail Estimates

In the following we consider regular and nondegenerate LP-type proki8ms with
|S| = nands(S, ¢) = d, where we assunmeandd to be fixed for the rest of this section.
For given parameters> d andk, we want to bound

prob(V; > k).

The most important observation is that this quantity does not depend on the LP-type
problem, but is merely a function of the parameterd, r, andk.

This follows from a result first proved by Clarkson [7] in the context of linear pro-
gramming, and later generalized to LP-type problems by Msgh(22]. We rederive
the statement here.
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Theorem 4.1. Let (S, ¢) be a regularnondegenerate LP-type problem wjt§ = n
ands(S, ¢) = d. Then

k+d—1\ (n—d—k
(G ()
()
Proof. A basisB is the basis of a sk if and only if B € R € S\V(B). This means,

for any regular basi8 with k violators, there aré”r‘f;k) setsR of sizer which haveB
as their (unique) basis. It follows that

("%
(.

whereby is the number of regular bases wiklviolators in(S, ¢). By summing over all

k, we get
n—d
—d-k
(”>:Zbk<” d ) r=d,...n ®)
r — r—d

This system of linear equations can be written in the form

n n n
(0,7 ) (1) = oo

whereT is an upper-triangular matrix with all diagonal entries equal to 1, therefore
invertible. This means thigi’s are uniquely determined by the system (6), from which

k+d-1
by =
‘ ( d-1 )
follows via a standard binomial coefficient identity [17, equation (5.26)]. This proves
the statement of the theorem. O

prob(V; = k) =

prob(V; = k) = by r=d,...,n,

This result leads to an explicit formula for prah > k), but useful tail estimates do
not yet follow from that. By severe grinding it might be possible to extract good bounds
directly from the formula (we did not succeed), but there is another approach: as we
know that the quantity in question does not depend on the particular LP-type problem,
we might as well use our favorite LP-type problem in the analysis. In fact, for any given
parameters andd, there is a “canonical” LP-type problem from which statements about
the distribution ofV; can be extracted without pain.

Thed-Smallest Number Problem
Let N be the sefl,...,n}. For R € N, define mip(R) as thed-smallest number

in R (equivalently, the element of rard in R). If |R| < d, this is undefined, and
ming(R) := L. We have the following easy facts (proofs omitted).
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Lemma 4.2.

() (N, @) with ¢(R) := ming(R) is a regular nondegenerate LP-type problem of
combinatorial dimension df ¢-values are compared according to decreasing
order in N.

(i) The basis of any set,RR| > d, consists of the d smallest numbers in R

(i) s e S\R violates R if and only if s is smaller than the d-smallest number.in R

Ford = 1, we have mig(R) = min(R), thus we recover the LP-type problem under-
lying the efficient minimum search in a sorted compact list described in the Introduction.

As a warm-up exercise, we rederive the formula for the number of bases with exactly
k violators in a regular and nondegenerate LP-type problem, by using the fact that this
number does not depend on the actual LP-type problem, see Theorem 4.1.

Observation 4.3. The d-smallest number problem has

k+d-1
o= (321
regular bases with exactly k violators

Proof. Any setB with d elements is a regular basB hask violators if and only if the
d-smallest numbex in B is the k + d)-smallest number itN. The elements ifB\ {x}
can be any — 1 among thé& + d — 1 smaller numbers if. O

The proof of this observation might be somewhat simpler than the one we had in
the general case, but it does not lead to new insights. However, the next theorem about
higher moments o¥/; is an example of a statement which we think is not immediate to
prove (let alone discover) without making use of themallest number problem.

Theorem 4.4. Let(S, ¢) be aregularnondegenerate LP-type probleand let R be a
random sample of size For j € {0,...,n —r}, we have

(1) -—

Proof. We evaluate the expectation for thesmallest number problem and then use
Theorem 4.1. For this, we need to count the expected number o gets= j with

J C V(R). Observe that this inclusion holds if and only if all elementg @re smaller
than thed-smallest number irR, equivalently, ifJ is among thej + d — 1 smallest
numbers irRU J. For any set. of sizer + j, there are(‘“j"l) pairs(R, J), RUJ =L,
with this property. Thus we get

Oe() - g e

|R|=r JSS\R
1JI=]
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m ()

[L|=r+]j
O A
r—+] J

When appliedtg = 2,the theorem can be used to compute the variandg tdfading
to a Chebyshev-type tail estimate. The higher moments give still better bounds. We are
going for Chernoff-type bounds, by exploiting the special structure ofitsenallest
number problem.

A Chernoff-Type Tail Estimate

To choose a random subdetC N of sizer, one can proceed mrounds, where rounid
selects an elemegtuniformly at random among the ones not chosen so far. Equivalently,
one may choose a “ranlk uniformly at randomin{1,...,n+1—i}and lets be the
element of rank; among the ones not chosen so far.

Fix some positive integek and letUy be the random variable for the number of
indicesi with ¢; < k. We have the following relation to the random variakje

Lemma 4.5. Let R= R(¢) denote the set determined by= (¢4, ..., ¢;). Then

U@ >d = V(R <k-1

Proof. We claim thatU, > d implies miny(R) < k + d — 1. Because the latter is
equivalent tov, < k — 1, the lemma follows.
To prove the claim, we first note that

s=4+#j<i|s <s}h (7)
Consider some sétof d indicesi suchthat; < kfori € |.Such a set existsif, > d.
Ifs <k+d-—21foralli €1, wegetmi(R) < k+d — 1, as required. Otherwise,
there is someé € | such tha =k + e, e > d. Then we get

#j<ils <k+ef=k+e—¥( >e¢

which implies #j < i | 5 < k+d} > d. As before, this means that naifR) < k
+d-1. O

Corollary 4.6. prob(V; > k) < prob(Ux <d —1).

Chernoff-type bounds fddy are easy to obtain nowlk can be expressed as the sum
of independent random variableg;,i = 1,...,r, where

oL ek
ki == 1o, otherwise
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and it holds that
k
probiU; = 1) = ——— = p

The following is one of the basic Chernoff bounds [19].

Lemma4.7. With E(Uy) = (p1+---+ pr)/randt> 0,

t2
prob(Uy < E(Uy) —1t) < exp(—ZE(Uk)> :

Usingt = E(Uy) — d + 1 (which is nonnegative for the values fwe will be
interested in below), we obtain

— 2
prob(Uy <d — 1) < exp<_(E(Uk) d+1) ) |

2E(Uy)
Fix some value. > 0 and choosk in such a way thak (Uy) = (1 + A)d. Then we get
(Ad +1)?
probUy <d -1) < eXp<—m

)\2
< eo(g59)
The value ok that entailsE (Uy) = (1 + 1)d satisfies
k= DD gy e,
Yisol/(n—1i) r

and we obtain our result.

Theorem 4.8. LetL = (S, ¢) be a nhondegenerate LP-type problem wish= n and
dim(S, ¢) =d. Forr > d and anyx > 0,

n A2
prob(Vr > (1+A)dF> < exp(—md> .

We have derived this bound only for regular problems, but as we have shown before,
any problem can be regularized, and, by (5), the estimate then also holds for nonregular
problems. Becausg(V;) < d(n—r)/(r +1) =~ dn/r, this bound establishes estimates

for the tail “to the right” of the expectation. It might seem that the bound is rather weak, in
particular because it does not dependi@mdr . However, it is essentially best possible,

as the following lower bound shows (the actual formulation has been chosen in order to
minimize computational effort).

Theorem 4.9. LetL = (S, ¢) be a nondegenerate LP-type problem wish= n and
dim(S, ¢) =d. Forr > d and anyA > Osuch that1+ 1)d <r/2,

1- 14 3)2d2
pr°b<Vr >+ k)dn+r7r - d) > eXp<—(1+ Ad— %) :
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Proof. With Uy as defined above arid = R(¢), relation (7) immediately entails
Vi(Rh<k—-d < ming(R) <k = Ux® >d,
so that we get praty; > k —d) > prob(Ux < d — 1). Furthermore,
r K K r
prob(Uy < d — 1) > prob(Uy = 0) =i11<1— m) > (1— m) .
Withk = (1+2)d(n+1—r)/r, it follows that
(1 B (1 +r Ad

’

242
probUy =d — 1) > w>

r
) > exp(—(1+ Ad —
using the inequality I x > exp(—x — x?) for x < % O

An open question is whether the statement of Theorem 4.8 also holds in the degenerate
case. It is tempting to conjecture that pgp > k) is maximized for nondegenerate
problems—this would yield Theorem 4.8 for the general case. Moreover, while the
bound is tight in the regular case, one might be able to improve it for a given nonregular
problem.

We conclude this section by proving a weaker tail estimate which applies to the
general case. Using this, we can show that the number of violators exceeds the expected
value by no more than a logarithmic factor, with high probability.

Theorem 4.10. LetL = (S, ¢) be an LP-type problem wittg] = n anddim(S, ¢) =
d.Forr > d and anyrx > 0,
n

prob(Vr > (In %e + A) dF> < exp(—ad).

Proof. Let Bk denote the set of regular bases with exagtlyiolators (recall that a
regular basis is a basis of some Batvith |R| > d). Any fixed B € By is a basis of all
the setsR satisfyingB € R € S\V(B). It follows thatB is a basis of a random sample
R of sizer with probability

—|B|-k _
(nr—\B\ ) (", k)
()
We have|V (R)| = k if and only if R has some basis (equivalently, all its basespin
which gives

"
W

prob(V; = k) =< by

bk = |Bkl.

Consequently,

n—r n—¢
prob(V; > k) < sz( ! )
=k (r)
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where we know that

n—r n d n
= (L0) =5 (0)
because all bases have size at ntbdthen we can further argue that

prob(V, > k) < (:X_; bg> (ZZT%Xr (2:;;)) - (;d) (2:;:)
Since (see [24])
(fnd> = (%e)d
("

) :<1_§> (1_n51)”'(1‘%+1> 5<1—§)r,

we finally get, by substituting = (In(ne/d) + A)d(n/r),

and

proty; = ky < (29’ <1_ w>
r = < d :
= (%e)d ex"(‘ ('” %e + A) d) = exp(—id) . O

5. Multiple Pricing and Clarkson’s Reduction Scheme

The simplex method [5] is usually the most efficient algorithm to solve linear program-
ming problems in practice. Even in the theoretical setting, all known algorithms to solve
general LP-type problems boil down to variants of the (dual) simplex method, when they
are applied to linear programming [13]. In this section we introduce and analyze an algo-
rithm in the general framework, which—although being new in its precise formulation—
follows a well-known design paradigm, whose simplex counterpart is knowruéiple
pricing [5]. The idea of multiple pricing is to reduce a large problem to a (hopefully)
small number of small problems. This can be useful in case the whole problem does
not fit into main memory, but it also helps in general to reduce the cost of a single
simplex iteration. Taking a slightly different approagartial pricing [5] is a related
technique following the same paradigm. Applications have been found in the context of
very large-scale linear programming [3], but also in geometric optimization [14], [15].

We do not elaborate on those simplex techniques here; the reader may verify that
the algorithm we are going to present is actually a variant of multiple pricing, when
translated into simplex terminology.

Consider an LP-type proble(, ¢) (not necessarily nondegenerate) of combinatorial
dimensiond, and assume we are given an algoritibmtype (G, B) to compute for any
subselG of S some basi8g of G, given a candidate basi C G. Of course, one can
directly solve the problem of findin8s by callinglp _type with the large se6 and



584 B. Gartner and E. Welzl

some basiB C S. As we will see, an efficient alternative is provided by the following
method, parameterized with a sample siz8Ve assume the initial basi to be fixed
for the rest of this section.

Algorithm 5.1.
Ip _type _sampling (S, B):

(* returns some basis 8of S *)
choose R withR| =r, R € S\B at random

G:=RUB
REPEAT
B :=Ip _type (G, B)
G:=GuUV(B)
UNTILV(B) =@
RETURNB

Ip _type _sampling reduces the problemto several call§oftype ,and Fact3.3(i)
shows thatifthe procedure terminatésB) = @ implies thatB is a basis o6. Moreover,
it must eventually terminate, because every round adds at least one eler@erftie
algorithm captures the spirit of Clarkson’s linear programming algorithm [8] (and its
generalizations [1], [16]), but is simpler and more practical. To guarantee its theoretical
complexity, Clarkson’s algorithm draws a random sample in every round, and it restarts a
round whenevelV (B)| turns outto be too large. Thus, Algorithm 5.1 can be interpreted as
the canonical simplification of Clarkson’s algorithm for practical use, where one observes
that resampling and restarting are not necessary (and even decrease the efficiency).

The general phenomenon behind this is that often the theoretically best algorithms
are not competitive in practice, while the algorithms one actually chooses in an imple-
mentation cannot be analyzed. On the one hand this is due to the fact that the worst-case
complexity is an inappropriate measure in many practical situations; on the other hand,
sometimes algorithms used in practice are simply not understood, although they might
allow a worst-case analysis.

Inthe case of Algorithm 5.1 we have the fortunate situation that it combines efficiency
in practice with provable time bounds (developed below). With the procéplutgpe
replaced by a callto a standard simpleximplementation, the method has been successfully
used in a linear programming code for geometric optimization [14], [15], without any
further changes. Inits original version, due to Clarkson, Algorithm 5.1 is a building-block
of an ingenious linear-time algorithm for linear programming in constant dimemsion
(8], [16].

The theoretical analysis starts with a bound on the number of rounds.

Observation 5.2[8]. Fix some basis Bof S Then in every round except the last pne
V (B) contains an element of BIn particular, there are at most & 1 rounds

Proof. Assume thaBsis disjoint fromV (B). From Fact 3.3 and monotonicity we then
getp(B) = ¢(S\V(B)) > ¢(Bs) = ¢(S), from which¢(B) = ¢(S) follows. Locality
then impliesV (B) = V (S) = ¢, which means that we are already in the last round.
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The critical parameter we are interested in is the siz8 of the last round. If this is
small, then all calls tdp _type (G, B) are cheap.

We fix some notation for that. We defir® := S\B, B being the initial candidate
basis plugged intp _type _sampling . By

BY, VY, andGY

we denote the set8, V(B), andG computed in round. Furthermore, we sag¥ =
RU B, while BY andV are undefined. This means we have

BY isabasisoGL Y, VI =VvGE™P).

If the algorithm performs exactly rounds, sets with indicés> ¢ are defined to be the
corresponding sets in rourtd
We will need a generalization of Observation 5.2.

Lemma5.3. Forj <i <¢ BYNVY £0.

Proof. Assume on the contrary tth) DVF?) = {J. Asinthe proof of Observation 5.2,
Fact 3.3 and monotonicity then imply

9(GE™) = o(S\V) = (BY) = (GL ™),
a contradiction to the fact that(G) strictly increases in every round but the last. O
The following lemma is the crucial result. It interprets Algorithm 5.1 as an LP-type
problem itself! Under this interpretation, the §€&in the last round is essentially the set
of violators of the initial sampldR. Then the techniques of the previous sections (the

sampling lemma and the tail estimates) can be applied to bound the expectedGigze of
and even get Chernoff-type bounds for the distributiofGyf

Lemma5.4. For RC S := S\B define

¢'(R) = (9(G), ¢GR). ... ¢(GE™)).
Then the following holds

(i) (S, ¢’)is an LP-type problem of combinatorial dimension at n(8§f), under
the lexicographic order of the d-tuples(R).

(i) The set V(R) := {s € S\R | ¢'(R) # ¢'(RU {s})} of violators of R with
respect tap’ is given by

VR =VP U Vv =G9P\(RUB).
(iii) If (S, @) is nondegenerateso is(S, ¢').
Before we go into the technical (although not difficult) proof, we derive the main

result of this section, namely the analysis of Algorithm 5.1. This analysis is now merely
a consequence of previous results.
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Theorem 5.5. For R C S, arandom sample of sizer

d+1>n—d

) 4.

E(GY —
(] R|)§< P

Choosing r= d./n/2yields
E(GYD) < 2(d + 1)[2.

Proof. The first inequality directly follows from the sampling lemma, applied to the
LP-type problem(S, ¢’), together with part (ii) of the previous lemma. The second
inequality is routine. O

The theorem shows that Algorithim _type _sampling reduces a problem of size
to at most problems of expected size no more tt@(./n). This explains the practical
efficiency of multiple pricing and similar reduction schemes ik n.

If (S, ¢) is nondegenerate, we get the following tail estimate, using part (iii) of
Lemma 5.4 and Theorem 4.8. Again, routine computations yield

Theorem 5.6. If (S, ¢) isanondegenerate LP-type problgimen for RC S,arandom
sample of size = d/n/2,andx > 0,

0 <exp( 5 (41
pr0b<|GR | > (2+/\)(d+1)\/;) = eXp( 2(1+x)( 2 ))

In the degenerate case, Theorem 4.10 can be used to derive the following weaker (but
still useful) result.

Theorem 5.7. If (S, ¢) is a general LP-type problenthen for RC S, a random
sample of size = d/(nlnn)/2,andx > 0,

prob<|G(§)| > B+1)d+ 1),/Lgn) < exp(—/\(d ;L 1)) .

We conclude this section with the proof of Lemma 5.4.

Proof. We start by establishing an auxiliary claim:

Claim. Forany set Q with Q= RUT C Sandi<d,
epGR) =9GP, =i,
implies

Gy = GQUT, j<i+l
1 j+1 . .
Vit = v, j<i.
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To prove the claim, we proceed by induction igmoting that the statements hold for
i = 0 by the locality ofp. Now assume the implications are true fox i — 1. Then we
get

i _ =Dy
GY = ciPuvd
= Gl PuTUuVvY =6PUT.
Becausep(G\) = w(Gg)), the locality ofy implies
(i+D) (i+D)
VQI+ :VRI+ ,

which in turn prove5 4" = Gt UT. This establishes the claim.
To proceed, we first prove part (i) of Lemma 5.4. Assise V' (R), setQ := RU{s},
and consider the largest index d — 1 such that

pG) =GP, =i
By the claim aboveGS™ = G U {s}, and the monotonicity ap implies

P(GR™) < p(GL™). ®
This meanss € V2.
Onthe otherhand, & ¢ V'(R), then the precondition of the claim holds fo= d—1,
implying
Ve =vi™ ¥s j<d-1

This means ¢ VS, ..., V.

To prove (i), we need to verify the monotonicity and locality (see Definition 3.1).
Inequality (8) shows thap’(R) < ¢'(R U {s}) in the lexicographic order, for afi €
V’(R), and this implies monotonicity.

For locality, assum& € Q with ¢'(R) = ¢'(Q). From the claim and part (ii), we
get

d d
V(R =V =JV§ =V,
i=1 i=1
and this is the required property.

It remains to bound the combinatorial dimension(8f, ¢"). To this end we prove

thaty’(Br) = ¢’'(R), for

d .
Br:=RN| JBY.

i=1
We equivalently show thazt(Gg)) = <p(Ggé), for j <d -1, using induction orj. For
j =0, we get

() 0
GR’ = Gg) UR\Bg,
hence

9(GY) = (G UR\Bg) = p(G{), )
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becauseR\ By is disjoint from Bg), the basis o’G(F?). Hence,R\ Br can be removed
from G(Fg) without changing the-value.

Now assume the statement holds fox d — 2 and consider the cage= d — 1.
By the claim, we geG’ = G} U R\Bg, s0, as before, (9) follows, becaugBr is
disjoint from the basi8{ ™ of GY’.

To bound the size oBr, we observe that

IRNBY|<d+1-i,

foralli < ¢ (the number of rounds in whict(B) # ¢). This follows from Lemma 5.3:
B®) has at least one element in each ofithel setsVél), el VF(Q"D, which are in turn
disjoint from R. Hence we get

I4
: d+1
IBrl < ) IRN BS’|5( ) )

i=1

Proof of part (iii). Nondegeneracy @B, ¢’) follows if we can show that every set
R C S has the seBg as its unique basis. To this end we prove that whenever we have
L € Rwith ¢'(L) = ¢'(R), thenBg C L.

Fix L € Rwith ¢'(L) = ¢'(R), i.e.

pGE) =¢@G), i=d-1

By the claim, this implies
GR =GUUR\L)., i=d-1
R — L ’ = )

and the nondegeneracy oields thatG? andG\’ have the same unique ba&i§ ™,

for alli.. It follows thatG\*~ contains

d
B(i),
iLZJl R

soL contains
d ) d )
LnlJBg' =Rn(JBY.
i=1 i=1

The latter equality holds becausg L is disjoint from Gf_d’l), thus in particular from
the union of theBY . O

6. Conclusion
The curious fact that—in the regular and nondegenerate case—the distributipn of

does not depend on the actual LP-type problem, deserves a word of warning: namely, this
property does not mean that all nondegenerate LP-type problems with given parameters
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n andd are equally difficult (or easy) to solve. On the contrary, because the random
variableV; does not depend on the actual problem, it does not carry any information
about the difficulty of a particular problem. There are very easy problemsidgtaallest
number), and very difficult ones (like linear programming). For example, Algorithm 5.1
never needs more than two rounds in the case ofitemallest number, and for other
easy LP-type problems characterized by the following property: for anyBets R

such thatp(B) = ¢(R), and for any seT,

o(BUT) =¢(RUT)

holds. This means elementsit\ B can be “forgotten,” as they will not contribute to the
final solution. The absence of this property is what makes linear programming and other
problems difficult.

In general, it seems that the combinatorial dimension of the LP-type prai8e)
derived from(S, ¢) according to the definition in Lemma 5.4 is a more meaningful
indicator of (S, ¢)’s difficulty than §(S, ¢) itself. For example, in the case of tlde
smallest number, we gé{(S, ¢’) = d, much less than th®(d?) upper bound. This
alternative notion of dimension needs to be further investigated.

An open problem that remains is to improve the tail estimates in the case of degenerate
LP-type problems. Here, the distribution\gftypically depends on the concrete instance,
and so doesy, the number of bases withviolators. Using only trivial bounds for the
numbergsy, we have obtained the weaker estimate given by Theorem 4.10, indicating
that this estimate might not be the final answer.
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