
A Simple Set of Test
Matrices for Eigenvalue Programs*

By C. W. Gear**

Abstract. Sets of simple matrices of order N are given, together with all of their

eigenvalues and right eigenvectors, and simple rules for generating their inverses in

the nonsingular cases. In general, these matrices are nonsymmetric. They can have

sets of double and triple roots. In each of these cases, two of the roots of the doublet

or triplet can correspond to a single eigenvector. |

The general form of the N X N matrix is :

A

0 10
1 0_ 1

±1

±1

1    0    1
0    10-

where the ± 1 is in the Jth column of the first row and in the (iV + 1 — K)th column

of the last row. The first row can be expressed as

e2T ± eA,(1)

where e< is the vector consisting of a unit in the ith position. The special case in

which the first row is simply e2T will be shown to be equivalent to taking J = 0 with

a negative sign in (1). (Notationally this does not make sense, but it will save writing

to include it in this way.) The last row can be similarly written as eTN-i ± e^+i-K-

Note that J and K and the signs may be different.

The eigenvalues and eigenvectors of these matrices may all be expressed in the

form :

Eigenvalue = 2 cos a.

Right eigenvector £ = [sin (co + a), sin (co + 2a), sin (co + Na)]T.

The values of a and co are given below. In this discussion, all roman letters represent

integers, sets, or matrices.

Define the sets of a and co values by Tables I and II.

The eigenvalues and eigenvectors are then the union of the sets of a and co values

specified in Table III. This union gives all TV eigenvalues and as many eigenvectors

as exist.
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Table I.    Sets of a Values

Set Name a Members

Al 2prr/i2N + 2 - J - K) lúp<N+l-iK + J)/2

(2p - 1)t/(27V + 2-J-K)lúpúN+l-A2 iK + J)/2

BI 2prr/J 1 Ú p < J/2

52 (2p - 1)t/J lúp^J/2

Cl 2V-k/K 1 è p < K/2

C2 (2p - l)ir/K 1 up è K/2

I) 0

E

Table II.    Sets of co Values

Set Name co Members

XI (it - Jet)/I

X2 -Ja/2

YI (at - (2N + 2 - K)a)/2

i"2 -(22V + 2 - K)a/2

r/2

These first four sets

are generated by

corresponding sets

of a values.

Proofs. The proof of each statement is trivial but tedious; therefore only the

double positive case will be explored in detail.

The ith element £,- of the eigenvector | is sin (co + ict). The t'th element of vl£ is:

sin (co 4- Oi - l)a) + sin (co + Oi + l)a) ,    if 1 < i < TV,

== 2 cos a sin iœ + ia) ,

= 2£,- cos a .

The first element of A £ is

sin (co + 2a) ± sin (co 4- Ja) .

We would like this to be equal to 2£¿ cos a. Note that

sin co 4- sin (co 4 2a) — 2t¡,- cos a

so that we want

(2) sin a = ±sin (co 4 Ja) .

Similarly, we want
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(3) sin (co + iN + l)a) = ±sin (co + (¿V + 1 - K)a) .

(2) and (3) form a pair of equations which determine a and co such that 2 cos a and £

are an eigenvalue and eigenvector of A.

Table III.    Eigenvalues

Sign of extra
one digit in a Values

row 1 row N

Corresponding
co Values

4 4 Al
BI
Cl
D

Eii K,J both even

XI
YI
XI
Z
Z

Note 1

Note 2

Note 3

+ A2
BI
C2

EU K odd, / even

ZI
Y2
XI
Z

Note 1

Note 2
Note 3

4 A2
B2
Cl

Eii K even, J odd

X2
YI
X2
Z

Note 1

Note 2
Note 3

¿1
B2
C2

E if K, J both odd

X2
Y2
X2
Z

Note 1

Note 2
Note 3

Note 1 : If A and B or A and C sets have a nonnull intersection,

each a in the intersection corresponds to a double root X with

a single eigenvector £. A solution of iA — XI)p = £ is given by:

p. = ( —l/2sina) [cos (co + a),2cos (co + a), ■ • -, N cos (co + Na)]T.

Note 2 : If the B and C sets have a nonnull intersection, each a in the intersection

corresponds to a double root with two eigenvalues. The second can be found

by adding x/2 to the co given in the table.

Note 3: If J and K do not satisfy the condition, set E is not included.

Note that if the first row is simply e2T, then sin co = 0 replaces Eq. (2). This is

identical to requiring that (2) hold with a minus sign and J = 0. We will proceed by

solving (2) and (3) and showing that all N eigenvalues have been accounted for.

Consider only the case with plus signs in (2) and (3). Equation (2) implies that

either

(4.1) CO + 2p7r = co + Ja ,

or

(4.2) co = (2p + IV - (co + Ja) ,

while Eq. (3) implies that either

(5.1) co + iN + l)a + 2qir = co + (TV + 1 - K)a ,
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(5.2) co 4 (X + l)a = (2gx + 1) - (co + (AT 4- 1 - K)a) .

One of each of these pairs must be used.

(4.1) and (5.1) imply that:

(6) a = 2pir/J = 2qir/K ,    co arbitrary .

These cases will usually be included in other cases, but two special cases should be

noted now. If p = q = 0, a = 0. co can be chosen as 7r/2. This gives set D which only

occurs in the ++ case. The eigenvector is [1, 1, 1, ■ • -, l]r.

If J, K are both even, p = «7/2, q = K/2 gives a = -n. Again, co can be chosen as

7r/2. This gives a set E. The eigenvector is [1, — 1, 1, — 1, • • -]T.

(4.2) and (5.2) imply that

(7) 2co = (2p + 1)tt - Ja= (2<7 4 l)x - (22V + 2 - K)a .

Let g = 0; since p is arbitrary, then

(8) a = 2pir/i2N + 2 - J - K) .

p = 0 has already been handled, p = Í2N + 2 — J — K)/2 has been handled

(equality case) or is equivalent to smaller p. (a should remain in the range [0, it].)

Therefore 1 ^ p < (2X + 2 — J — K)/2 and this case gives a set Al. From (7) we

get co set XI since multiples of it may be discarded in co.

(4.1) and (5.2) imply that

(9) a = 2pir/J ,

(10) 2co = (2g + 1)tt - (22V + 2 - K)a .

Again we can take 1 £j p < J/2 and q = 0 to get a set BI and co set YI. Similarly

(4.2) and (5.1) lead to a set Cl and co set XI.

We now have a set of values and vectors. The remaining problem is to show that

there are no others. First note that we have N values in Table III. In the + + case,

for example, we have sets A1,B1,C1,D and E if J and X are even. This gives a total

of

[(22V + 2-K-J- l)/2] + [(J - l)/2] + UK - l)/2] + 1
(+1 if J,K both even).

For each of the four cases we have

J K Number of Members

odd odd N +1 - ÍK + J)/2 - 1 + (J - l)/2 4 (K - l)/2 + 1 = N

odd even N + 1 - (X 4 J)/2 - i + (J - l)/2 + (X - 2)/2 + 1 = X

even odd X + 1 - (X + J)/2 - \ + (J - 2)/2 + (X - l)/2 + 1 = X

even even X 4 1 - (X + J)/2 - 1 + (J - 2)/2 + (X - 2)/2 4 1 + 1 = X

Therefore, if the a sets do not intersect, we have all of the values and vectors. If, for

example, sets Al and BI have a nonempty intersection, we have:
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(ID

with

a = 2p!7r/(2X + 2 - J - K) = 2p2Tr/J ,

lúPi<N+l-iJ + K)/2 ,    lt%p2<J/2.

This implies that J and (2X + 2 — J — K) have a common factor of at least 3. In

this case consider

v = (A — 2 cos al)n

pa = — i cos (co + ia)/2 sin a

where

If 1 < i < N,

—2vi sin a = Oi — 1) cos (co 4 Oi — l)a) —2i cos a cos (co 4 ia)

+ ii + 1) cos (co + (z + l)a) ,

= ¿[cos (co(i — l)a) + cos (<o + ii + l)a) —2 cos a cos (co + ia)]

+ cos (co + (i + l)a) —cos (co 4 Of — l)a) ,

= —2 sin a sin (co 4 ia) ,

= —2 sin a£,-.

Therefore,

v% = £<.

For i = 1, we have

— 2i<i sin a = 2 cos (co 4- 2a) —2 cos a cos (co + a) + J cos (co 4 Ja) .

From (11), Ja = 2p2ir, and in this case the co value can be obtained from the set XI.

Therefore,

cos (co 4 Ja) = COS Hw — Ja)/2 + Ja) = cos ((it 4 Ja)/2)

= cos (tt + 2p27r)/2 = 0 ,

which implies that vi = £i. Similarly, we can show that vn = £at. Thus, if sets A1 and

51 intersect, we get a double root X with a single vector £ and a solution of (A — \I)p

= £ as given above.

A similar result holds for intersections of Al and Cl. If 51 and Cl intersect, then

a = 2p,7r/J = 2p2ir/K. This corresponds to Eq. (6), which means that co is arbitrary.

By taking the co given in Table II and 7r/2 plus that co, two linearly independent

eigenvectors are obtained. If Al, 51, and Cl have a common intersection, then a

triple root with two eigenvectors and one other principal vector will be obtained.

Therefore, we have obtained a complete set of eigenvalues.

Example. N = 8, X = J = 6, double positive case.

Matrix 1

0
1

0   0    10   0

o
0 1    0   0

o
1

o
1
o

1
0J
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a Values

Set Al    tt/3
Set 51

Set Cl
SetZ)
SetX

x/3

tt/3
0

2x/3

2tt/3
2tt/3

co Values

—k/2    -3x/2

-ât/2    -3tt/2
— AT —2lT

w/2

■k/2

Eigenvalues

-1,     1
-1,     1

-1,     1

2
-2

The inverses of a set of related matrices, 21 — A, are easy to compute. (These

matrices can occur in one space dimension boundary value problems. Their eigen-

values are 2(1 — cos a).) The 7th column of the inverse has the form

1

a — b

if 2 < I < N

[w + a, w -p 2a,

1, and

■, w + la, w + Ia + b, • ■ ■, w + Ia + (X - 7)6]7

[w + a, w + 2a, ■ • •, w + Na]T

if I = 1 or X, where the w, a and b must be chosen (separately for each I) to satisfy

equations arising from the first and last rows of the matrix, (w, a and 6 may be non-

integer). Thus, for X = 6,1 = 2, J = 5 in the —\- case, the matrix and its inverse

are

2
-1

0
0

0

0

-1

2
-1

0
0

-1

1
-1

2
-1

0

0

0

0
-1

2
-1

0

0

0
0

-1

2
-1

and -

10 0
10 20
10 20
10 20
10 20

L10 20

8
24
20

16
12

-6

6
18
30
22

14

-4

4

12
20

28

16

-2

2

6
10

14
18.

respectively.

These results can be extended to cover the types of matrices arising from differ-

ential equations in two or more space dimensions. We will treat the extension from

one to two dimensions. Consider the block matrix

5 =

A

D
n
A
D

D
A

±D

D

±Z)

D A
D

D
A.

Where the matrix A is as defined earlier, the matrix D is a diagonal matrix with

elements 8 and where the extra ±25 blocks appear in the J'th and X' 4 1 — Xth

block columns, or do not appear at all. Consider the vector

(12) V =   [mi£, P2%,  • • -, MAT'£]     ,

where £ is an eigenvector of A corresponding to X. We will write this as p. X £.

The tth block of Bv for 1 < i < N' is

Dpi-ii, + Am¿£ 4 5/ii+i£ = ioißi-i + ßi+i)/pi + X)/ui£ .

Hence, if the first and last blocks can be fixed appropriately, and if
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(13) ¿5(m.-i 4 ßi+i)/ßi + X = X',       Ki<N',

v will be an eigenvector of 5 corresponding to X'.

(13) is a recurrence relation for pn with a solution

(14) ßi = sin (co' 4 ia) ,

when X' = 2£ cos a' + X. The first block of 5i- leads to the requirement that

(15) Mo = ±ßj'

while the last block requires that

(16) M-v'+i = ±pn'+i-k' ■

(15) and (16) determine co' and a' by use of Tables I, II, and III, so that the eigen-

values and eigenvectors of 5 can be determined from (12).

In the case of repeated roots without a complete set of eigenvectors, the principal

vectors can also be used for p. or £. They will give rise to principal vectors of 5. If p.

and £ are the single eigenvectors associated with double roots a' and a respectively,

and if p and £ are the associated principal vectors of order 2, then it is trivial to show

that p. X £, p X £ are principal vectors of orders 2 and 3, while p X £ — m X £ and

p. X £ are independent eigenvectors.

The extension to any number of dimensions is straightforward. The use of more

dimensions allows multiple roots to be introduced. For example, the 5X5 matrix

A =

0 10 10
10 10 0
0 10 10
0 0 10 1

l_0    1    0    1    0.

has roots — 2, 0, 0, 0 and 2. If the process above is applied twice, we get a matrix of

order 125 with at least 27 zero roots and principal vectors of order 4.
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