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Abstract 

A new class of polymers characterized by dynamic cross-links is analyzed from a mechanical point 

of view. A thermodynamically consistent models is developed within the Lagrangian framework for 

polymers that can rearrange their internal cross-links. Such a class of polymers has the capability to 

reset their internal microstructure and the microscopic remodeling mechanism leads to a behavior 

similar to that of an elastic fluid. These materials can potentially be used in several fields, such as in 

biomechanics, smart materials, morphing materials to cite e few. However, a comprehensive 

understanding is necessary before we can predict their behavior and perform material design for 

advanced technologies. The proposed formulation –following a statistical approach adapted from 

classical rubber elasticity– is based on the evolution of the molecular chains’ end-to-end distance 

distribution function. This distribution is allowed here to evolve with time, starting from an initial 

stress-free state and depending on the deformation history and the cross-link attachment/detachment 

kinetics. Some simple examples are finally presented and discussed to illustrate the capability and 

generality of the developed approach. 
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Nomenclature 
 

b  Average chain’s segment length 

const. DA ccc  Maximum potential number of link concentration in the polymer  

0,Ac , DA cc ,   Link concentration of the attached cross-links in the initial state and at a 

generic time and detached links in the polymer, respectively 

F , jiij XxF  /  Macroscopic deformation gradient tensor 

F  Macroscopic deformation rate tensor  

0J , FdetJ  Initial equilibrium swelling ratio of the hydrogel and change of the material 

volume or swelling ratio, respectively 

k  Boltzman’s constant 

onoff kk ,  Rate of lost links density and rate of new formed links density, respectively 

Nn,  Number of linked chains in the unit volume of material and number of 

chains’ segments, respectively 

P  First Piola-Kirchhoff stress tensor 

)(0 rP  Standard Gaussian distribution (referred to the material’s initial free-stress 

state) 

0r , r  End-to-end vector of a chain in the initial and in a generic state, respectively 

T  Absolute temperature 

)(rU  Energy stored in a single chain having an end-to-end vector r  

  

)(t  Rate of entropy production 

),( tr  Total variation of the chains’ end-to-end vector r  distribution function at the 

time t 

),( tt r  Distribution of the chains’ end-to-end vector r  density at a generic time t  

)()( 000 rr P  Distribution of the chains’ end-to-end vector r  density in the initial stress-

free state  

)(),(

),(

0 rr

r






t

t

t

 
Distribution difference of the chains’ end-to-end vector r  density in the 

current and in the stress-free state  

),( ton r , ),( toff r  Positive and negative contributions rate to the stretch distribution function 

rates, respectively 

0  Density of attached cross-links at equilibrium 

λ  Macroscopic stretch of the polymer  

σ  Cauchy stress tensor 

V , V  Strain energy density (unit volume) contained in a stretched elastomer and 

its increment, respectively 
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1. Introduction 

A class of soft materials, such as gels, elastomers or biological tissues, can either be characterized 

as solid or liquids, depending on the time scale of applications. This peculiar response arises from 

the fact that these materials have the capacity to internally remodel and evolve their microstructure 

in time, yielding a time-dependent behavior that resembles to that of viscoelastic solids. From a 

modeling perspective, these materials present a significant challenge since theory typically 

separates the concepts of Lagrangian mechanics (for solids) and Eulerian mechanics (for fluids)  [1-

4]. We propose here to address this problem by focusing on a relatively new family of polymers 

whose cross-links can actively attach and detach in time following controllable kinetics [5-7]. This 

family may include, for instance, double network gels that have a system of stable background 

cross-links and a secondary lightly cross-linked pattern that can easily fail and reform under 

external actions. Polymer with reversible cross-links are also ubiquitous in living matters [11, 12] 

and a proper understanding of their mechanical response will have impact in biomechanics and 

mechanobiology but also in the design of bio-inspired synthetic materials whose internal can evolve 

with their environment. Environment responsive materials can further be developed by leveraging 

the sensitivity of dynamic cross-links to external forces, strain, chemistry, heat, light and pH [10]. 

In this context it was recently shown that the use of the so-called click nucleic acid (CNA) polymers 

can enable the design of gels with highly controllable reversible physical cross-links [8]. The 

dynamic nature of the chains’ cross-links enables a rearrangement of the polymer network, leading 

to stress relaxation and irreversible deformations [9]. Such characteristics open the way for a new 

class of materials [13-16] that are capable of adapting to applied loads without failing, tuning their 

shape to minimize stresses or self-healing  by reattaching two surfaces that are close enough. such a 

remodeling feature depends on both the bond detachment-attachment balance as well as on the bond 

density in the equilibrium state of the material. 

A key to understand, quantify and eventually predict the response of these complex materials 

resides in establishing a link between the physico-chemistry of cross-link attachment/detachment 

and the overall time dependent mechanical response of the material.  Moving in this direction, a 

number of experimental studies were performed to characterize these polymers via stress-relaxation 

and creep tests [17-20].  Several theoretical models have been also proposed to complement and 

explain experimental observations [21-25], while in [26] a comprehensive review on reorganizable 

polymers with dynamic covalent bonds is presented.  In [21, 22] a thermodynamically consistent 

constitutive models is proposed to account for thermal-chemical and mechanical behavior of  

network polymers with thermally reversible linkages  in which phases are formed, continuously in 

time, in a stress-free state and without any deformation in their appearance configuration; in [23-25] 

a finite deformation  model is developed, based on the strain energy evolution evaluated by 
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accounting for the contribution of the chains that break and reform at different instants during the 

loading history, according to a proper decaying function of time. A comprehensive review on 

materials (whose properties are based on reversible chemistry, i.e. reversible breaking and 

reformation of covalent and non-covalent bonds) with the ability to reversibly adapt to the 

environmental stimuli can be found in [27]. 

In the present paper we propose to develop a simple mechanical model that clearly connects the 

distribution of cross-links in the material and the evolution of its macroscopic mechanical 

properties; we treat here a polymer as a nano-composite made up of two phases: a polymeric 

network and dynamic cross-links. The interaction of the two above ‘constituents’ provides a 

material with unique features that can be usefully exploited in real macroscopic applications. The 

proposed approach is based on the extension of the classical concept of entropic elasticity that 

connects the internal forces in polymer chains to their end-to-end distance distribution. The 

continuous detachment and attachment of cross-links affects the time evolution of the point-wise 

statistical distribution of the chains’ end-to-end distance, and hence its stored mechanical energy. 

This feature, in turns, affects the redistribution of stress and strain in the materials eventually 

leading to stress relaxation. We show that this approach enables a relatively simple and effective 

description of the mechanical behavior of polymeric materials with an evolving microstructure 

without the need to keep track of the deformation history. We also show that in the limit case of 

static cross-links, the model degenerates to classical rubber elasticity, while increasing the rate of 

cross-link detachment yields the behavior of an elastic viscous fluid. The model is finally 

implemented with the finite element method and predictions of simple relaxation tests are analyzed 

and compared with the literature. This is complemented by additional parametric analyses that aim 

to demonstrate the versatility and capability of the approach for polymer with active cross-links. 

 

 

2. General concepts 

The general concept relating the evolving nature of covalent bonds in the presence of heat to the 

overall behaviors of polymers has been firstly introduced by Rowan [28]. In a cross-linked 

elastomer, polymer chains constantly undergo dynamic fluctuations under finite temperature. The 

energy associated with this thermal motion is not only responsible for the material’s stiffness, but 

also for its ability to evolve its structure if cross-links are reversible. At the nano-scale, the energy 

stored in a chain can be related to its end-to-end distance via the framework of flexible polymer 

chains. At the macroscopic level, however, it is convenient to describe the structure in terms of the 

chain density, as well as the statistical distribution of the end-to-end distance. In the case of 

reversible cross-linked polymer, we further refine the description by considering the chains in either 
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a detached (inactive) or attached (active) state. In the case of reversible cross-links, this end-to-end 

distribution evolves from two mechanisms: (a) chain stretch due to the imposition of an external 

stress and (b) a change in chain connectivity due to the detachment and re-attachment of active 

cross-links. These mechanisms strongly depends on the strain rate and the rate of detachment ( offk , 

fraction of cross-links that detaches in a unit time) and re-attachment ( onk , fraction of cross-links 

that reattaches in a unit time. At the macroscale, this translates to a material whose stress-free 

configuration is continuously updated as the microstructure changes. (Fig. 1.).  

 

Please insert here Fig. 1. 

 

From a mechanical prospective the above observation is justified by the fact that initially stretched 

polymer chain can possibility detach from the network and reattach in a lower energy state (smaller 

stretch). The rearranging mechanism corresponds yields an overall energy dissipation: before the 

detachment the chain has a certain amount of stored energy, while such an energy is lost due to the 

links reverse, typically occurring with an increase of the material temperature. The formation of a 

new cross-link between two previously relaxed chains, induce an increase in stored mechanical 

energy of the system. This phenomenon can also be thought of as a healing mechanism; if the 

deformation rate is not too fast with respect to the cross-links rearrangement speed, it can prevent 

macroscopic failure or the formation of macro cracks, with the beneficial effect of providing a more 

stretchable material capable of smooth out the stresses and strains peaks. 

 

2. Evolution of cross-link density 

Let us now assume that the concentration of the cross-linked chains is at equilibrium during the 

whole stretch history and that evolves according to the well-known mass action law [29-31]: 

offAonDA kckcc   (1a) 

where DA cc , , offon kk ,  are concentrations of detached and attached chains per unit volume and  

the number of re-attachments and detachments rate per unit volume, respectively; at steady state, 

the time variation of the active cross links vanish and we obtain: 

0)(  offAonAA kckccc  (1b) 

where DA ccc   is a constant. The above relation states that the rate of change of active cross-

links is equal to zero when the steady equilibrium is fulfilled and that such a rate is the sum of the 

new formed cross-links (proportional to the actual detached cross-links density, AD ccc  , 
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through the re-attachment rate parameter onk ) minus the lost cross-links (proportional to the actual 

existing links density Ac  through the detachment rate parameter offk ); although in general, the rate 

of detachment is likely to increase with stress, we assume here, for simplicity, that the strain does 

not affect the rates of attachment and detachment. From relation (1b) we deduce that at equilibrium, 

the concentration of active (or attached) links is: 

offon

on
A

kk

kc
c




  (2a) 

Considering that the polymer is initially at equilibrium, the initial concentration is also given by eq. 

2.a. This concentration can also be related to the equilibrium density function )(0 r  of end-to-end 

distance r by: 





 rr dcA )(00,   (2b) 

Note here that the variation of the active cross-links, governed by Eq. (1a), reflects the 

macroscopic mechanical properties of the elastomer since the amount of stored energy in the 

material depends on the current active cross-links. 

 

 

3. Mechanical model for dynamically cross-linked polymers 

In the present section we develop the mechanical model for polymers with reversible cross-links via 

a proper description of the end-to-end chain length statistical distribution evolution of the polymer. 

 

3.1. Statistical model 

According to the standard theory of elastomers (rubber elasticity, [29-34]) where a constant cross-

link density is assumed (fixed cross-links network), the distribution of the chains’ end-to-end vector 

r  at a given time instant t, can be described through the classical Gaussian function written in the 

following form [29, 32-34]: 



























2

22/3

2000
2

3
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2

3
)()0,(),(

NbNb
Pttt

r
rrr


  

 

(3) 

where 2222
zyx r , bN ,  represent the average value of the squared end-to-end vector 

length, the number of segments in one polymeric chain and its length, respectively, and 0  is the 

initial cross-links density distributed according to the Gaussian function )(0 rP . According to the 
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statistical mechanics approach, the amount of energy stored in the unit volume of the material at a 

given time, can be evaluated by adding up all the contributions of the single stretched chains as: 






 rrrr dUtt tV )(),(),(  ,   with 2

22

3
)( rr

Nb

kT
U   

 

(4) 

where the integral 



rr dtt ),(  is the number density of chains per unit volume of material in its 

current configuration and )(rU  represents the elastic energy in one single chain [29]. The notation 

V)(   in Eq. (4) indicates that the quantity )(  is evaluated per unit volume. At equilibrium, the 

stored elastic energy is thus 



 rrrr dUV )()()0,( 0 .  Polymer chain statistics is a useful tool to 

describe the mechanical behavior of elastomeric materials (such as rubbers, polymers, gels, etc.), 

whose microstructure is based on a complex entangled network of long linear chains joined together 

in several points [30-34]. On the other hand such a complex microstructural layout can be found 

also in others materials, such as in polymeric matrix fibrous composites [35] and in particulate 

filled elastomers [36] whose mechanical response can be conveniently described through a chains 

network approach. 

In our formulation, we choose to describe the elastic energy function ),( tV r  as the difference 

between the stored elastic energy at time t and the stored elastic energy in the equilibrium condition.  

This reads: 

 




 rrrrrrr dUttt tVVV )()(),()0,(),(),( 0  (5) 

This definition ensures that the energy vanishes at equilibrium. Substituting (4) into (5), we find 

that [29]: 

 




 rrrrr dt
Nb

kT
t tV

2
02

)(),(
2

3
),(   (6a) 

Note: In the particular case of static cross-links (standard rubber elasticity), the distribution of the 

end-to-end vector r  can be taken in the reference state (Lagrangian view).  In this case, the elastic 

energy becomes: 
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
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i.e.   3)(tr
2

))((
2

3
),( 0

2
002

 




FFrrIFFrr TT
V

nkT
d

Nb

kT
t   

(6b) 

which is consistent with conventional rubber elasticity. Here, n is the number of linked chains per 

unit volume (with 1)3(  kTEn , [29]) and its is assumed that the distribution function remains 

Gaussian irrespectively of the applied strain state. For an incompressible material, the deformation 

energy provided by Eq. (5) must be enriched with an extra term that enforces the incompressibility 

condition, Using the Lagrange multiplier method, and denoting p as the Lagrange multiplier that 

enforces the the condition J=1, the increment of energy per unit volume can be rewritten as: 

)1()(),(),(  




JpdUttV rrrr   

 

(7) 

We note that p  is to be interpreted as the hydrostatic pressure ( 3/)(tr Pp ). From the above 

discussion it appears that in order to formulate the macroscopic mechanical model in terms of the 

energy(6a), a knowledge of the evolution of the distribution function ),( tr  is required. 

 

Please insert here Fig. 2. 

 

For the sake of illustration, let us first consider a unit material volume undergoing a stretched 

deformation represented by the scalar 11 / Xxλ , where 1x  and 1X  are the lengths of the domain 

in its underformed and deformed configurations. In this case, the distribution function under a given 

stretch, the end-to-end distance is represented by a scalar rr  and the distribution function 

),( t r  is now a scalar function of the variable r . When this volume undergoes a stretch λ , the 

length  0l  of the initial end-to-end vector becomes 0ll  λ . At the level of the distribution, this 

implies that the initial Gaussian curve (Fig. 3a) modifies its shape, i.e. a new distribution ),( t r  

is obtained as shown in Fig. 3b. Now allowing the cross-link to be reversible, we consider that 

during a small time interval, existing links detach while others reattach in a different configuration. 

We here assume that the reattachment process occurs in the reference Gaussian distribution (curve 

(2) in Fig. 3b).  The distribution ),( t r  (labeled (1) in Fig. 3b) that represents a generic 

stretched state at the time instant t , therefore evolves and – after a small time increment dt – the 
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distribution of the end-to-end distance of the stretched chains is represented by the curve (2) in Fig. 

3b (at the time instant  dtt  ), which tends to evolve in time to the initial one (0). 

 

Please insert here Fig. 3. 

 

To mathematically represent the above processes, we now propose to derive an evolution law of the 

form: 

 dtttttt ttttt FF
rrrrr ),(),(),(),(),(   

xlxl
 (8) 

where the term 
xl

),( tt r  represents the time derivative of ),( tt r  at fixed active cross-link density, 

while 
FF

rr ttt tt  /),(),(   is the time derivative of ),( tt r  for a fixed macroscopic 

deformation tensor F . The two above contributions, namely 
F

rr ),(,),( tt tt  
xl

, can be explicitly 

written as follows. The first contribution is obtained by performing a power series expansions of  

)( rr    to obtain: 

   11 tr)(
)(

),(  



 FFrrFF

r

r
r   t

t
t t

xl
 (9) 

where F  is a time increment of the macroscopic deformation gradient. The second contribution 

follows from the kinetic law [37]; 

),(),(),( tktkt tontofft rrr
F

        where   )(
)(

),( 0
0,

rr P
c

cc
t

A

A
t


  (10) 

),( tt r  being the current density of the detached cross-links that can potentially reattach and 





 rr dtc tA ),( .  Eq. (10) expresses the variation of 

F
r ),( tt  with time, as the amount of the 

new created links. The latter is proportional to the difference between the concentration of detached 

cross-links 



 rr dtc t ),(  and the number of detached links. The final expression for the rate of 

change of the distribution function at time t  is therefore: 
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
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rrF
F
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

  

 

(11) 

where it can be appreciated that the evolution of the distribution function depends on the dynamic 

nature of cross-links through the terms ),(),,( tt onoff rr   ; these latter terms are assumed by the 

model to be independent by the strain and strain rate applied to the material. 
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Note that since expression (11) provides the variation of the distribution function in the current state 

( ),( tr ), it corresponds to an updated Lagrangian formulation. This is different from the standard 

theory of rubber elasticity, which takes a total Lagrangian approach. 

 

 

3.2. Thermodynamical model 

For a volume of material – considered as a thermodynamical system – the balance of energy rate 

per unit volume reads: 

  



)(

)(
ext

int

:)(

t
t

dst

EE

K   vtvbqFP  

(12) 

where dtdt /½)( 2vK  is the rate of change of kinetic energy, q  is the production rate of internal 

energy, b  is the vector of body forces and the last integral represents the power of the surface 

tractions acting on the boundary   of the unit volume of material, while v  is the velocity field 

vector. Hereafter the deformation process will be assumed to be over-damped (i.e. without any 

inertial effect) and with negligible production of internal energy ( 0q  ). Moreover the entropy 

inequality (second law of thermodynamics) evaluated for a generic portion of matter occupying the 

volume  , is: 

0)()()(  tQtSt  ,   with   dttS ),()( x  (13) 

which states that the entropy production )(t  per unit time, must remain positive.  In the above 

expression ),( tx  is the entropy per unit volume and  
 ddstQ nh)(  is the rate of 

entropy input with h  and T/   the rates of boundary and volume entropy sources, 

respectively. The Helmoltz free energy per unit volume can be finally written as [38]: 

0
1

:),(   T
T

TtV qFPF   (14) 

where the time derivative of the elastic energy ),( tV F   can be explicitly written, using the chain 

rule, as: 

T
T
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T
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T
T

V
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 (15) 
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In Eq. (15) the term ),( ton r  represents the (positive) contribution to the energy rate due the new 

formed links, while ),( toff r  is the (negative) contribution from link detachment; finally the latter 

term in Eq. (15) represents the change of energy density with temperature. The energy increment 

with respect to the initial state expressed by Eq. (5), can be evaluated once the current distribution 

function ),( tt r , evaluated through the evolution law given by (11), is known. 

 

3.3. Determination of the stress state  

Making use of Eqs (4, 5, 16), the variation of Helmoltz free energy can be also expressed as: 

T
T

pJd
t

Nb

kT

T
T

pJdU
t

T
T

pJ

VT
t

V

VT
t

V

VT
t

V
V


























































 
























FFrrF
F

r

FFrrF
F

r

FFF
F

F

F

F














2

2

),(

2

3

)(
),(

 (16) 

Taking into account the above expression, the free energy variation inequality (14) becomes: 
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Further assuming that the energy is minimized under any arbitrary process, we find that 
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while the Cauchy stress can be obtained through the standard relation Jt
T /),( FFPσ  . The 

remaining terms in the inequality expressed by Eq. (14) provide the following relationships: 

  0),(),(,0
1

, ,, 







 ttT
TT

offon
VV rrq rr 


   

 

(19) 

As expected, the first term indicates that the entropy is the derivative of the internal work with 

respect to temperature, the second implies that the heat flux is related to the temperature gradient, 

and the last corresponds to the dissipated energy produced by the attachment/detachment of 

polymer chains in time. 
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4. Numerical examples 

In this section, a few example problems are presented and discussed in order to verify the capability 

of the proposed formulation, implemented in a non-linear 2D finite element code, to capture the 

response of elastomers characterized by an evolving interval microstructure. 

 

4.1 Stress relaxation simulation 

The case of stress relaxation, i.e. the analysis of the stress history for a constant applied stretch, is 

herein considered [24]. The specimen is loaded in tension at a given strain rate of 0.2 s−
1
 to t = 1 s 

and subsequently the nominal strain is held constant at λ  = 1.2. The initial elastic modulus of the 

material is assumed equal to about 58.0 E  Pa. The nominal stress vs time from [24] and that 

obtained with the present model is plotted in Fig. 4; a best fit of the first portion of the experimental 

curve ( sts 50  ) provides the values 3.0;02.0  offon kk  for the dynamic cross-link model. 

 

Please insert here Fig. 4. 

 

Since in the proposed model the material has only dynamic cross-links – i.e. no permanent cross-

links are assumed to exist – it tends to return spontaneously to its initial free stress state; on the 

other hand from the experimental outcomes it appears that a certain residual stress remains even for 

longer times, probably because of the existence of a fraction of permanent cross-links. 

 

4.2 Parametric study 

In order to show the macroscopic mechanical behavior of polymer with reversible cross-links, we 

consider some simple cases in which the main parameters are varied. In the following section a 

tensile tests with different material remodeling parameters will be considered. In the second 

example, we investigate the bending of a cantilever beam under prescribed displacements boundary 

conditions, for different material reversible cross-links parameters. As has been discussed above, 

the statistical model can take into account for the microstructure rearrangement of the polymer only 

through the offon kk ,  parameters that quantify the number of newly activated and deactivated 

physical cross-links per unit time in the reference volume of material. 

 

4.2.1 Tensile relaxation test 

In the present example, an element under tension is considered (Fig. 5a); a positive stretch equal to 

λ  = 1.0025 is progressively applied according to the time law of the displacement factor f  and 

subsequently is kept constant (Fig. 5b); the material is assumed simple elastic (Young modulus 7 
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MPa, Poisson’s ratio ~ 0.45) and with reversible cross-links; in this latter case different values of 

the offon kk ,  parameters are assumed as shown in Fig. 6a, b. Two different factor rates, 21f , 

are assumed in order to study the effect of the strain velocity on the material mechanical response. 

 

Please insert here Fig. 5. 

 

It can be observed (Fig. 6a) that the elastic behavior is recovered for the simple case of static cross-

links ( 0 offon kk ), while a non-linear softening behavior during loading and a stress relaxation 

during the phase λ =const. can be observed when different degrees of cross-links evolution is 

accounted for. 

 

Please insert here Fig. 6. 

 

Finally, the factor rate effect on the mechanical response of the material is considered; in the slower 

loading rate case ( 1f ) the material has enough time to re-arrange its microstructure, as much as 

higher is the onoff kk /  ratio. On the other hand for the faster rate ( 2f ) the stress evolution 

during loading is less influenced by the offon kk   mechanism and the response in term of stress is 

only slightly affected by the microstructural internal remodeling of the material. 

 

4.2.2 Cantilever beam under a free-end displacement history 

The present example considers the bending of a cantilever beam (Fig. 7a) with a Young modulus of 

10 MPa, Poisson’s ratio ~ 0.45); a prescribed displacement history is imposed to the beam’s free as 

shown in Fig. 6b; a maximum downward displacement equal to m1.0  is reached in 1s while an 

unloading step is subsequently considered during which the tip is brought back to its initial location 

and maintained at such a value during the rest of the simulation. The beam is assumed in a plane 

stress condition, having a small thickness equal to ms 1.0 . 

 

Please insert here Fig. 7. 

 

In Fig. 8a1, the stress history at point A (Fig. 7a) is shown for the elastic case as well as for three 

different cases characterized by different dynamic cross-links parameters. An increasing time-

dependent response is observed as the rates of attachment/detachment are increased. In Fig. 8a2 the 
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history of the vertical displacement at point B (Fig. 7a) after the free-end displacement has been 

returned to zero ( st 2 ) is shown. 

 

Please insert here Fig. 8. 

 

In Fig. 8b,c,d the tensile  stress x  contours in the beam at st 5  are shown: materials with high 

onoff kk /  values present the highest stress reversal just after   returns to zero ( λ = 1.0), while 

subsequently, after a given time, the stress state becomes lower than for the cases with lower 

onoff kk /  values. The x  stress pattern along the clamped cross-section 0x  of the beam, for the 

same three different dynamic cross-links cases, is also shown at st 2  (Fig. 8e) and at st 5  (Fig. 

8f). 

 

4.3.2 Circular plate under a uniform pressure history 

The last example deals with the bending of a simply supported circular plate under a uniform 

pressure variable in time, characterized by a Young modulus equal to 10 MPa and Poisson’s ratio ~ 

0.45); an axisymmetric model of the plate is considered (Fig. 9a). The pressure load varies 

according to the equation )(0 tfqq  , where Paq 100   is the base pressure and )(tf  is the load 

factor history (Fig. 9b). As can be noted the load is increased up its final maximum value, it’s kept 

constant for 2 s and then it is brought to zero and maintained at such a value in the following 

instants. The vertical displacement and the radial stress at point A (Fig. 9a) is monitored. The 

plate’s material is assumed to be elastic as well as with reversible cross-links characterized by 

different values of the offon kk ,  parameters (Fig. 10). 

 

Please insert here Fig. 9. 

 

In cases of dynamic cross-links the vertical displacement during loading ( st 10  ) is greater than 

in the linear case, particularly in cases with greater onoff kk /  ratio; by keeping constant the applied 

pressure ( sts 31  ) the displacement continues to growth for the materials having evolving cross-

links and, after completely removing the load ( st 4 ) a residual vertical displacement still exist in 

the plate and it tends subsequently to zero as the time increases; the speed of the plate to return to 

its initial configuration is more pronounced for higher onoff kk /  ratios (Fig. 10a). 

 

Please insert here Fig. 10. 
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The radial stress at point A increases meanwhile the load reaches its maximum value but in a 

softening fashion for the material with reversible cross-links; during the constant load phase the 

stress decreases if 0, offon kk  and reverses the sign as soon as the load is completely removed.  

Subsequently the stress tends to zero in time, with a faster rate for higher values of the onoff kk /  

ratios (Fig. 10b), indicating that, according to the formulated model, the material tends to go back to 

its initial free-stress state, irrespectively of the applied stress or strain values. 

 

Please insert here Fig. 11. 

In Fig. 11 the stress field r  in the radial cross-section of the plate is displayed at st 3 , i.e. at the 

last instant before the applied pressure load starts to decrease; a progressively relaxed stress 

distribution in the plate can be observed by increasing the onoff kk /  ratio (Fig. 11b, c, d), 

characterized by values well below those corresponding to the elastic material (Fig. 11a). 

 

 

5. Conclusions 

In the present paper a new class of polymers with reversible cross-links has been considered; these 

materials have the capability to reset their internal microstructure thanks to a microscopic 

remodeling mechanism that leads to a behavior similar to that of an elastic fluid. A 

thermodynamically consistent model has been proposed – following a similar approach as the 

statistical theory adopted for rubber elasticity – on the basis of the evolution of the molecular 

chains’ end-to-end distance distribution function. By allowing this distribution to evolve in time 

(depending on the deformation history and on the internal remodeling parameters), the free energy 

and the stress state of the material can be evaluated during a generic stretch history. Some simple 

examples are finally presented and discussed to illustrate the capability and generality of the 

developed approach. 
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FIGURES AND CAPTIONS 
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Fig. 1. Scheme of the polymeric network (a). Activable ( onk  mechanism) and de-activable ( offk  

mechanism) cross-links in the stretched material (b). 
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Fig. 2. Scheme of three 2-D chains in their reference state (a, b, c) and the corresponding 

configurations after deformation acting along the x-direction quantified by the stretch λ  (a1, b1, 

c1). 
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Fig. 3. Gaussian distribution of the initial chains’ length density (0) vs the corresponding 

microscopic chains length in the reference configuration (a); evolution of the chains’ density length 

distribution after applying an external macroscopic stretch (1) (b). 
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Fig. 4. Relaxation test under a prescribed nominal stretch λ  = 1.2. 
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Fig. 5. Relaxation test under tension: 2D mesh (a). Histories of the displacement factor (b). 
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Fig. 6. Evolution of the stress x  in time for different values of the offon kk ,  parameters of the 

material for factor rate 1f (a). Effect of the factor rate on the stress during loading (b). 
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Fig. 7. Cantilever beam (dimensions in m) under a prescribed displacement history applied at its 

free end (a). History of the adopted displacement factor (b). 
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Fig. 8. Evolution of the stress x  in time at point A (a1) and the vertical displacement at pojnt B 

(a2) for different values of the offon kk ,  parameters of the material (a1). Stress field x  (in Pa) at 

st 5  for the case 2.0,2.0  offon kk  (b), 4.0,2.0  offon kk  (c) and 8.0,2.0  offon kk  (d); 

stress patterns along the clamped cross-section of the beam at st 2 (e) and st 5 (f). 
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Fig. 9. Axisymmetric FE model of the circular plate (a) (dimensions in m) and load factor history, 

)(tf  adopted  (b). 
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Fig. 10. Vertical displacement (a) and history of the radial stress (b) at point A vs time, for different 

values of the offon kk ,  parameters of the material and for the elastic case. 
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Fig. 11. Stress field r  in the radial cross-section of the circular plate (in Pa) at st 3  for the 

elastic case (a) and for material with dynamic cross-links with 2.0,2.0  offon kk  (b), 

4.0,2.0  offon kk  (c) and 8.0,2.0  offon kk  (d). 

 


