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A SIMPLE 'SYNTHESIS'-BASED METHOD OF VARIANCE COMPONENT ESTIMATION
by

H. 0. Hartley*, J. N. K. Rao+ and Lynn Laﬂotte‘

1, Introduction

In this paper we do not attempt an evaluation of the ever growing methodology
in the estimation of variance components. (For an excellent summary of the literature
up to 1971 see Searle (1971).) Optimality proﬁerties are sometimes achieved at consi-
derable computational efforts. A case in point is the M. L. estimation (see Hartley &
Rao (1967)) which is still fairly laborious for large data banks in spite of the improve-
ments through the W-transformation (Hemmerle & Hartley (1973)). Similar observationms
apply to the general case of Minque (C. R. Rao_(19?1)) recently simplified by Liu &
Senturia (1976). Other methods, such as the Henderson 3 Method (Henderson (1953)) or
the Abbreviated Doolittle and square root method (see e.g. Gaylor, Lucas and Anderson
(19570)) depend on a subjective ordering of the compon;nts (such as with the Fourward
Doolittle procedure) and if the ordering is unfortunate the method may fail to yield
estimates for certain components while with a different ordering (not attempted) all
components may well be estimable. The work involved in attempting all possible order-
ings of the variance componén:s is usually prohibitive. The present method achieves
optimality properties and is nevertheless computationally simple. In fact it possesses
Minque optimality for a particular choice of norm, but also various other optimality
properties and necessary and sufficient conditions for estimability associated with
Minque simplify considerably (see Section 6). Moreover we are able to derive suffi-
cient conditions for consistency which also provide estimability conditions of a simpler
structure (see Appendix). The consistency of our estimators makes them convenient as

starting points for a single ML cycle to obtain asymptotically fully efficient estimates.

2a The Mixed ANOVA Model

Employing the currently used notation we write the mixed ANOVA model in the form

*H. 0. Hartley, Institute of Statistics, Texas ASM University
+J. N. K. Rao, Carleton University, Ottawa
f Lynn LaMotte, Quantitative Management Science, University of Houst
- i r 2 AT \ —
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ctl . .
y=Xa+ I Uibi (1)
‘i=1
where
y 18 an n x 1 vector of observations,
X 1s an n x k matrix of known coefficients,
a is a k x 1 vector of unknown constants,

Ui is an n x m, matrix of 0, 1 coefficients,

bi is an m x 1 vector of normal variables from N(O, oi).

Specifically Uc+ = In and b is an n-vector of "error variables".

1 ctl
Moreover the design matrices Ui have precisely one value of 1 in each of
their rows and all other coefficients 0. We denote 5y m = ; m, the
total number of random levels.. i
We may assume without loss of generality that
Xx=1 ()

for 1f (2) is not satisfied we may orthogonﬁlize X by a Gram Schmidt
orthogonalization process with a consequential reparameterization of a
omitting any linearly dependent columns in the Gram Schmidt process.
Usually the first éolumn of X is the column vector with all elements =
1//n. It is the objective of the method to compute estimates of the

variance components oi and the vector o.

3. The Present Method

The essence of the present method is to

(a) Select c+l quadratic forms Qj(y) in the elements of y.

(b) Use the method of synthesis (Hartley (1967), Rao (1968)) to
obtain the coefficients kji in the formulas for E(Qj) in the

form




(c)

(d)

ctl 2 :
= I .
E(QJ) A I»t:“_cl1 (3)

Estimate oi by equating the computed Qj to their expectations"
i.e. by inverting the system (3) to compute the vector 02 with

-~

elements oi

-~

g = K9 (%)
from the vector g(y) with elements Qj(y) where K = (kji) with
rank to be discussed in Section 6 and 7.

Replacing any negative elementg of ;2 by 0, with consequences

to be discussed in Section 7.

We now give more details for (a), (b) and (c):

(a)

(v)

The Qj(y) will be based on contrasts which do not depend on
any elements of a. Accordingly we orthogonalize all Ui matrices
on X and construct matrices Vi orthogonal on X as follows: De-
note by u(t,i) the tth column vector of Ui and by x(r) the rth
column vector of X then the colummns v(t,i) of Vi are given by
: k
v(t,1) = u(t,i) - I x(r) {x'(r)ult,i))
: =1
or (5)

= = L}
Vi Ui XX “i .

We now choose the ct+l quadratic forms Qi(y) as

Qj()?) =y Vjviv - (V_;Y) ViY i=1 ..., et (6)

It follows from the method of synthesis (see Hartley (1967),

J. N. K. Rao (1968)) that




-‘-
c+l ’ :
E Qj(y) = 151 kjioi with

- : (7
- L] ] Ll
kyg i (V3 uw(t,1))° (V5 u(t,d))
Now since v(t,j) is orthogoﬁal on any x(p) (i.e. since

v'(t,3)x(p) = 0) we can write the k g in the alternative form

J
kji - i (Vj v(t,1)) (VJV(t.i))
(8)
= IE (v'(1,3) v(t,1))
tt

showing that kij = kji .
An alternative form of kji. is

kji = tr{(Vjv})(ViVi)} . 9)

We shall show in Section 6 that the symmetrical matrix
K = (kji) will have full rank c+l if the n x n matrices Vivi
are not linearly dependent.

(¢) We shall also show in Section 6 that the system of equations
Q = xg* (10)
is consistent even if the rank of K is degenerate. Solving
(10) in the form
o = K (11)
~ ~
we shall, of course, be particularly interested in the full

rank case when K = Khl.

4. The Computational Load ’

It may be helpful to give an idea of the computational efficiency of

the present method by tabulating the number of prodﬁcts involved in the

e s e e — *‘W-—-—-——-—- - e —
)




main operations of the algorithm. To this end we first note simplified

versions for the k Observing that Uc+1 = T we have from (5) that

c+1.:|.=

v = T - XX' and since X'X = I we find that V

' - - '
ct+l c+1vc+1 I-Xx" and

finally from (9) that

\
- = " S L = s L]
kb+1,c+1 tr (I - XX")(I' - XX') = tr (I - XX')
¢ (12)
-n-k .
J
Similarly we find that
k = tr {(I - xxX")(V.v])} |
ctl,i i'i
- [ ' 1
tr {1.'1\1':L XX vivi} 3 (13)
- ' -
tr vivi
ret
Ll
Further we note the form of Vc+1y i.e.
] = o ‘o .
Vc+1y y - XX'y (14)
Defining now the adjoined matrices
U-(Ull...luc) v-(vll...lvc) (15)

the bulk of the work consists of the formation of the elements of the

_ symmetrical matrix V'V = V'U = U'V. The elements of this matrix are
assembled in submatrices in accordance with the partition (15) as showm
in the Schedule 1 below where it must be remembered that the range of
the column index t depends on i and is t = 1, ..., m, and the range of

i
tm 1, caay ua so that the submatrix v;ui has dimensions m-1 xm. The
kji for 1 > § =1, ..., ¢ are then obtained by forming the sums of
squares of the elements in cach submatrix in accordance with (7).

Finally, we recite the formulas for the remaining coefficients in

the equations (10). The kc+1’c+1 and kc+1.i are computed from (12) and




Schedule 1: Submatrices of V'U

Ui __EZ . e . Uc
Vl v(t,1) 'u(t,1) v(t,1)"u(t,2) A vl('c.l)'u(t,c)
Y2 v(t,2) ult,2) e v(r,2) *ule,c)
Ve _ v(t,c) "u(t,c)

(13) respectively and the right hand sides of Qj(y) from the second form

in (6) for j =1, ..., c while Q¢+1(y) is given in accordance with (14) by
-i_llll ’
Q) = y'y - (X'9)'(X'y) . (16)
We can now summarize the approximate number of products involved in

the various operations of the algorithms.

Operation Approximate No. of Products Involved

a/axtat - Da

L]
Gcthugonslisarien of X 5 where k+ = ## of columns in original X

X(X'U) 1=1, .00, ¢

nmk
(equation (5))
U'v =Vv'v 0
(Schedule 1) Subtotals of elements of v(t,1)
kij 1'.1 ~ 1’ LU c (1/2)“(“1)
(equation (7))
kc+l.1 1 =1, ssey € -

(equation (13))




Operation Approximate No. of Products Involved'

ket1,ctl 0
(equation (12))

Qj(y) J =Y, seny oF) (D) (1)
(equations (6), 2nd form
and (16))

The important point is that the number of products is only a linear
function of the nuwber of data lines n. An approximate formula for the

+
total number of products is n{% k (k+ = 1) + (2m+l) (k+1)}

5. A Numerical Example

A small numerical example with n = 4, k- 3, k=2,c=1, m = 2,

m= 2, m, = n = 4 is shown in schedule 2 below.

Schedule 2: A Numerical Example of a Mixed Model

¥y |X Original U, v, X new v,
411 1 0}1 01 0 0 o0 | am |+ar -2
2 {1 1000 1|0 1 0 o[> a>d {-wn +am
1§41 06 3106 1 l¢ @ ¥ o0 lan -am 0 0
213 0 210 1 je o o 2 Loy -am 0 0

The orthogonolization of X (original) to X (new) follows the standard Gram
Schmidt procedure and reduces the k+ = 3 dependent colums to k = 2 columns
which are orthogonal and standardized. Note that

I(Z)ne" - xtz)old - (1!2)::(1)old and
x(3)°1d = x(l)ne" - x(2)new must be eliminated.

Using now x(r) = x(r)neu we orthogonalize U1 on X and compute (see (5))




"_

VI

-8~

x'(1) u(1,1) = +(1/2), x'(2) u(1,1) = +(1/2)

and hence
v(1,1) = u(1,1) - (1/2)x(1) - (1/2)x(2)
likewise
x'(1) u(2,1) = (3/2), x'(2) u@2,1) = -(1/2)
and hence

v(1,2) = u(2,1) - (3/2)x(1) + (1/2)x(2) .
This yields the matrix Vl in schedule 2 which has only one independent

column. The elements of Viﬂl require the computation of

v(1,1)" u(l,1) = (1/2); v(1,1)" u(2,1) = v(2,1)" u(l,1) = -(1/2)
and - '

v(2,1)' u(2,1) = 1/2 vith sum of squares of k,, = 4(1/2)% = 1.

1

Further (equation (12)) ky, = 4 - 2= 2 and Fequatiou (13)) k12 = k2iﬂ'
2

4(112)2 + 4(0)” = 1 sc that the K matrix is given by K = (i ;)

Finally, (equation (16))

1
Q) =2+ +1? 422 - Gl -G H2=25 -0 225 - 225- 25

ard (equation (6)) Q,(v) = C% 2)2 1 (%(-2))2 =2.

The solution of Q = Kg” therefore ylelds oa = 1/2, o> = 1.5 .

6. Optimality Properties and the Consistency of the Equations

The estimators described in Section 3 may be seen to be "best at oi =0,
1=1, ..., ¢, 02, = 1" as defined by L. R. LaMotte (1973). Therefore, the
consistency of equation (10), regardless of the rank of X, is estahlished as
Lemma 4 by LaMotte (1973). That the estimators defined by (11) are "best"
among invariant quadratic unbiased estimators guarantees that they are admissible
in that class: that is, no other invariant quadratic unbiased estimators have

uniformly less variance for all o. Further, as noted by LaMotte (1973), the

estimators (11) have the property that in any model for which a uniformly best




estimator exists, (11) will be uniformly best. Finally, it may be seen
tﬁat the "synthesis" estimators (11) are also MINQUE as in Rao (1971,
Section 6) with V = 1. No claim is made that this choice of the norm has
any particular merits among the rather general family of the norms covered
by Minque formulas. However, it appears to be reasonable to us that in the
absence of any theoretical criteria for selection of Minque norms a norm
leading to simple estimators may be regarded as meritorious.

Following Section A5 in LaMotte. (1973), it may be seen that the rank
of K is equal to the number of linearly independent matrices among V, V!

1"
i=1, ..., ctl. Thus a singular K may occur if the UiUi matrices are not
all linearly independent or if there exists (see (5)) a linear combination
of the UiUl matrices whose columns are contained in the linear subspace
spanned by the columns of X. In the first case the singularity is caused
by the design leading to the Ui
is caused by confounding fixed and random effects. 1In either case, (10)
is consistent but some linear combinations of the variance components can
not then be unbiasedly estimated. We should stress however that other

special cases of Minque (not necessarily invariant to a) may also deserve

particular attention.

matrices, while in the second the singularity

il 2

PR SN
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APPENDIX
The Asymptotic Consistency of ;2
In discussing the asymptotic behavior of ;2 it is of course necessary to
specify the limiting process under which such properties are supposed to hold.
Clearly it is necessary for the consistent estimation of the variances gi =

Var bi that the number of elements m, in the vectors bi all tend to «. For the

identity matrix Uc+1 we have My =0 the overal sample size. For the re-
maining m we assume that their limiting behavior is related to n by
1-a l-a
CEETT (17)

where 0 < a, <1 and L,U are universal constants. More specifically we assume

i

that @4 = 0 but ay >0 for i =1, ..., c. Generalizations to situations in

_which ay = 0 for several components are under consideration.

Denote now by

v(t, 1) = number of elements in u(t, i) which are 1 (18)

v(t, 1; 1, j) = number of rows in which both u(t, i) and

u(t, j) have elements 1. (19)

Using these concepts we introduce the following conditions of 'pseudo orthogon-

ality' of the u(t, i) vectors. We assume that

a a
£n 1‘£ v(t, 1) <un : (20)

(where £, u are universal constants) and that
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v(t, 1; t, J) = o(v(t, 3))

-(21)
idjwithi=1, ..., c+1
and j =1, ..., ¢
™y
The relationship between (17) and (20) is obvious since E' v(t, i) = n so that
t=1

(20) implies (17) with U = %‘ and L -‘% and the stronger condition (20) implies

a uniform order of magnitude for all v(t, i) in a given U Since the columns

i

of the Ui matrices are orthogonal we have v(t, i; t, i) = 0 for all pairs t # t.

For columns u(t, i), u(t, j) with 1 # j condition (21) is satisfied if there is
an asymptotically uniform distribution of the v(t, i) rows for which u(t, i) has

elements 1 over a fraction qm, of the mj columns of U, where 0 < q < 1 since the

..1) "

3 B
fraction of wv(t, i) which gives rise to wvw(t, 1; t, j) will be O(q—lmj
a.-1 i
0(n J ) and will tend to zero.
Next we must introduce conditions on the orthogonal standardized matrix X

with elements x_ . Denote by ) x2_ the sum of xgr over those rows for which
s(t,i)

u(t, 1) has a 1 element then we assume that
ai-l
xir = 0(n ) (23)
s(t,1)
o
Since z xir = 1 and the number of terms in I is wv(t, 1) = 0(n ") condition
s s(t,1)
(23) implies that asymptotically the xir have a uniform density x:r = O(n-l).

Finally we place on record a consequence of conditions (18) to (23): it

follows from (5) using (18), (19), (23) and Schwartz' inequality that




12
201-1
( v(t, 1) + 0(n ) fort =1, 1=
: 2&1-1
u'(t, 1) vi(r, §) = ¢ 0 + 0(n ) fort 41, 1i=j (24)
. ui+u e |
v(t, 1; t, j) + 0(n ] ) for i # j
o
We now turn to the asymptotic behavior of the kii and kij' From (8), (17), (20),
and (25) we have that .
m, m
iy = 1 1 e'e, 1) vix, 1))?

t=1 =1

mi 2 Il1 S 2
= Z {u'(t. i) v(e, i)} +£ u'(t, 1) v(r, 1) (25)

t=1 t¥t

l-a,+2a 2-2a, +4a, -2
> Const n L3 os - )
l-l-\:t1

2Cn for all 1 =1, ..., c+1

From (8), (17), (19), (21) and (24) we have for 1 # j; 1 =1, ..., c+l;

m, mj _ 2
kg =1 L {u'te, v, J)}
t=1 =1

b
Ve, 13 %, J)

m m s,
i a +a -1
-1 fv(t. 1 *, N2 som® 4 1
t T t

-~

"1 % 20,420 -2
+1] o I
| -2 1
" - o +a,-1
=7 o(w(t, 1)) {j vw(t, 13 1, J) + O(n I Hn (26)
t T '
2-a,-a 2a0,42a,-2
+0m L dyom Lt o4




13

1+a a,ta 1+a '
= o(n i) + 0(n 1 j) = o(n 1) (26)
since uj < 1. Similarly we prove by symmetry that kij = o(n j) for 1 # § < e,
From (25) and (26) it is clear that for all large n the ¢ x c matrix k,, for

13 e

i, =1, ..., c is asymptotically diagonal with diagonal coefficients > cn %

while the coefficients kc+ are asymptotically equal to o(n). Moreover it is

1,3

obvious from (12) that k > Cn. Using therefore the first c equations

ctl,c+l -
of ng = Q(y) we obtain that

y -ui-l - -ni-l 7oy -
o =0(m 1 ) () -oma? 1} =0 1 ) (y) +oin D2,

for i =1, ..., ¢ (27)

Substituting (27) in the last equation we obtain

ps l_amin & B |
0o2,, {cen + o(n )} =, + 121 Q,(y) oln ) (28)
or
- < 2 -ni-l
02, =0 Q) + | Q (y) o(n ) (2%
i=1
Substituting (29) back in (27) we obtain
& -ui-l -l—a1
o = O(n ) Q(y) + o(n ) O, (30)

Equations (29) and (30) show that ;2 is estimable from the Qi(y). They also

show that 02 1s consistent provided we can show that




o

14
2nr+2
Var Qt(y) = o(n )
- 2 for f 7 S (31)
Var Qc+1(y) = o)
since Coni(y)Qj(y) = 0(\.".11'(21(1-')!i varqj(y)%}.

In order to prove the first result in (31) we use formulas [22], [32] ,
[33] and [34] of J.N.K. Rao (1968) with slightly altered notation. Formula [22]

gives E Q%(y) in the form

c+l 5 c+l c+l
2) = 2 L
E(QQ (y)?) = 2 1§j§1 ¢;4030% + 121 ey 08 * 121 LT (32)

th
- b BT -
where Muq E bil are the 4  moments of the elements bu of bi Noting that

Var Qr(y) = E Qt(y)2 - Ez(Qr(y)) the leading terms of 4

J.N.K. Rao's equations [33] and [32] cancel and we are left to consider the orders

and cij given by

of magnitude of

m
i
cu-Zhi = §<T§1{Qr(U(t. i) + u(r, 1)) - Qr(U(t. 1)) - Qr(U(t. 1)}2
m n (33)

i r
=3 ¥ (] 2(u(t, 1) v(s, 1)) (u(r, 1)' v(s, 1)))2

t<r=1 s=1

Consider first the case r = {. We distinguish two terms when s = t and s = t.

For those two terms (u(t, 1)' v(s, 1)) (u(r, 1)' v(s, 1)) is from (24) of the

ay Zui—l 3a1"1 mr
order of magnitude O(n ) O(n ) = 0(n ). For the remaining terms in I
s=1
4o, -2

i

the product is of the order O(n ) but the number of terms is of the order :




[
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l—ai 51.11-2 . 2—2::1 651-2
0(n 7) so that {J}? is O(n ) and hence ¢, = O(n ) O(n ) =
s i
4ui 2a,+2
O(n ) = o(n ) since ay< 1.

Consider next the case r # 1 and r f c + 1. We have from (33) and (24)

5 mi 201+2a -2
ey =L 1L (e, 158, 1) W(¢, 158, 1) + O(n X
t<T s
ai+a -1
+0(m = T ) (v, 1; s, t) + V(1, 1; s, 1)))?
™y 20 +a_-1
=) } {o(v(s, 1)) § v(r, 1; s, r) + O(n )
t<t 8
(34)
ai+ar—1
+ O(n ) (v(t, 1) + v(z, 1))}2
m
i a_toa 2a,+a -1
=35 @™ Hsom ' Ty
t<t
242a a +2a +1 2a1+2u
= o(n r) + o(n Y+ 0(n r)
2+2a
= o(n .

The case r # 1, r = c + 1 follows on the same lines as (34) except that - 0

and that v(t, i; s, c+l) v(T, i; s, c+l) = O since u(s, r) has a 1 only in the
th

8 row and either u(t, i) or u(Tr, i) have a zero in that row. The order of
2a -1 2a
magnitude of {} will therefore be O(n * ) and 4 will be O(n 1) = n(nz).
The treatment of the cij in J.N.K. Rao's formula [33] follows on similar

lines to the above proof for the c11 if of the two alternatives 1 < j, j < {1

in (21) the smaller ui, aj is selected for majorisations.

L
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It remains to consider the terms
™y b, I _
hy =1 Qute, ) =1 (] @'(e, 1) v(s, )2 (35)
t=1 t=1 s=1

For the case r = 1 we have using (24)

.
5 o
b=l e'(e 0 wie, D 4] (u'(e, 1) via, )°)?
t=1 s¥t
b 20 3 -1
=) {om M +0(m )}2 (36)
t=1
143a ba 5a -1
=0(n H+0m H+om L)
2a1+2 2a 42
= o(n )=o(n T ) fori=rfc+1,
= o(n?) for i = r=c + 1.
For the case 1 # rand r # ¢ + 1
m m
i r a +a -1
By e (] ((t, 158, ) +0@m* T )22
t=1 g=1
'i mr ﬂi'.'u -1
=] (] olus, e))ule, 158, £) +0(a = T )f w(t, 15 8, 1)
t=1 s=1 8
1-a 20 420 -2
+0n o ! )}2 37
mi ai+u 2u1+u -1
=) {o(n %y 4+ 0(n A )
t=1
ui+2u +1 2n1+2¢ 3a1+2u -1
= o(n ) + o(n ™) + o(n )
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2+2ar
= o(n Y= - - (37)
Finally for r =c + 1, 1 # r we have
mi n ui-l 2
h, = I () o, 158, 1) +0(n " ))2)

t=1l s 1

= a,-1 2,1 p 9
= Z { E v(t, i; s, r)2 + z v(t, i; s, r) O(n ) + 0(n )}

t=1 s s

Mow since v(t, 1; 8, c + 1) is either 0 or 1 we have that J v(t, 1; s, ¢ + 1)2 =

s
I v(t, 1; s, ¢ + 1) = v(t, 1) so that
s
| a, Zui-l
h = ) 1{C‘(u ) + 0(n )}2 (39)
t-

1l-a 2a

«0(n )o@ 1

)
= o(n?).
Since 02 1is unbiassed and Cov (02) +0asn-+e it follows that o2 is

consistent. Moreover if we replace any negative oi by 0 the resulting statistic

say Ei has a smaller mean square error and hence is also consistent.
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The consistent estimator 32 may serve as.a starting value for the
iterative maximum likelihood estimation procedure described by Hemmerle
and Hartley (1973). Under certain regularity conditions (not discussed
here) one single cycle of the iteration will result in asymptotically
efficient estimators of 02 and a. If the iteration is carried to convergence
solutions of the ML equations are reached. If no ML cycles are performed

a consistent estimator & of a can be computed from the generalized least

squares (ML) equations.

& = x'n'lx)'l(x'n‘ly)

(40)
)
c Bi
= — "
where H In + 151 32 Uiui
c+l =

It has been shown by Hemmerle and Hartley (1973) that (40) can be computed

directly from the UiUi and x'ui matrices without the inversion of the

n X n matrix H using their so called W transformation. In fact the W;

matrix (their equation (19)) is essentially given by the V!V, matrices

4
(see the above Schedule 1) and by the contrasts Viy required in the computation

of Q, (y).
The variance covariance matrix of & can likewise be computed through

the W transformation.
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