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A simple test for random effects in regression models

By SimoN N. Woob

Department of Mathematical Sciences, University of Bath, Bath BA2 74Y, UK.
s.wood@bath.ac.uk

SUMMARY

Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding
variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed
models, this paper exploits the link between random effects and penalized regression to develop a simple
test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates
and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of
the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of
independent standard normal random variables. The test can be used with generalized linear mixed models,
including those estimated by penalized quasilikelihood.

Some key words: Generalized linear mixed model; p-value; Random effect; Variance component.

1. A STRAIGHTFORWARD TEST

Consider the linear mixed model for n independent response variables, y;,

n=XB+> Z;ib;. bj~N(.y;0%), yi~N(@;. 0%,
j=1

where Z; and X are model matrices, f is a vector of parameters and ;0% is a parameterized covariance
matrix for the random effects, ;. Such models are discussed in detail in Pinheiro & Bates (2000), for
example. We wish to test Hy : ¥, = 0 for some k. Exact tests require simulation and are known only for the
Gaussian case, either for models with a single variance component (Crainiceanu & Ruppert, 2004) or for
models with independent random effects each depending on a single variance parameter (Wang & Chen,
2012). However, practitioners routinely use models containing many variance components, with exponen-
tial family distributions other than Gaussian, and are then forced back on quite crude approximations that
often lack power, as shown by Scheipl et al. (2008) for the Gaussian case. This paper proposes a simple
simulation-free test that treats variance components, other than v, as fixed at their estimated values, but
extends to the case of generalized linear mixed models with multiple variance components.

Restricted maximum likelihood or maximum likelihood can be used to estimate the ;. Given these
estimates, the predicted random effects l;_,- and the maximum likelihood estimates 4 can be found by min-
imization of

m 2 m
= x8 -3z + i,

j=1 j=1
with respect to the b; and 8, where 12]_ is the inverse, or sometimes the Moore—Penrose pseudo-inverse,
of 1}, If B= (,3 , 131 , 132, ...) then the solution to this minimization can be written B= Py, where the
matrix P is given in the next paragraph. Let P; denote the rows of P such that l;j = P;y. Under
the null hypothesis y ~ N(XB, £_;), where X_; = + E_H:k th/er})az, ) l;k ~ N, PrX_P}),

since F (l;k) =0, as demonstrated next.

© 2013 Biometrika Trust. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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LetZ=(Z1:2y:--+) with corresponding combined random effects vector b. To prove that £ (l;) =0,
note that 53 is the minimizer of the augmented residual sum of squares

I(6)-(5 5)(%)

with respect to 8 and b. The matrix B is a matrix square root of » y I/A/j_ So we have

2

(3 8) (D= (3): 2 (0)=4(5)

and hence £ (13) = 0. The matrix P is given by the first n columns of (X" X)X,

Now consider a testing procedure. The proposal here is that o and v; for j & k should be treated as
fixed at their estimated values. Then the test statistic is based on the log of the ratio of the restricted
likelihood under the null hypothesis, Hy : ¥ = 0, and the alternative hypothesis that H, : ¥ = lﬁk. Under
H, the restricted loglikelihood can be expressed in terms of B and b j as

m 2 m 2
A ~ ~ 1 ALA A 1
ll__262 y—X,B—jE_1 Zb; 257 2 by b+ c &2+cl,
while under Hj it is
1 m 2 1 m Z‘
~ T A7 0
102_26—2 y—Xﬁ— E Z./b] E E b’;wj b] +C() E‘I'CO
JFk Jj*k

These expressions can be derived by integrating B out of the joint density of y and the random effects
via a Laplace approximation, which is exact for a Gaussian linear mixed model. See Wood (2011) for
further details. The constants ¢ and ¢; are irrelevant, given fixed ¥, and o. The vectors ,8 and b are the

maximizers of /{, while ,3 and b; ; are the maximizers of /. The test statistic is W = 2(l 11— lg), which can

be expressed as a quadratic form in by, as shown next, by exploiting standard numerical linear algebra
(e.g., Wood, 2006, Appendix A).

Without loss of generality, assume that k£ = m, the largest value of j: the Z; can always be reordered to
ensure that this is so. Let p = dim(B) and p; = dim(b;). Consider the QR decomposition of the augmented
model matrix, i.e.,

where Z_j is Z with the columns of Z; omitted, B_; is a square root of ) ik 1/3,7 and By a square root
of @k_. Now ,3 and the l;j are the minimizers of || f — RB||?, where f is the first p elements of (y", 0)Q
and we define  to be the remaining » elements. Hence B=R"! f and 2/, 1 = —|I7||*>. Now partition

Ry R
R = ~
(V%)
where Ry is the upper left p — px X p — pj block of R. Letting fo denote the first p — p; rows of f and
/1 the remaining p; rows, then 8 and the b; are the minimizers of

Ifo = RoBiII?
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where B_; is B with by omltted, while 2]0 = —||r||2 — ||f1 I>. Hence 2(11 — lo) = f1l*>. By the upper
triangular structure of R, f] = Rbk, SO 2(11 — lo) = bTRTRbk Now find a matrix square root, C, of the
covariance matrix of b, under Hy, so that C'C = P, Y_(P{. If z; is a p; vector of independent N (0, 1)
random variables, it follows that under H,,

Pk
Ié ﬁék~ZZC1§TI§CTZ;{=Z,T{UAUTZk~Z)LiX12i, (1)
i=1

@‘)

W=

where UAU" is the spectral decomposition of CR'RC”, so that U is an orthogonal matrix while A is
a diagonal matrix of eigenvalues, ;. The cumulative distribution function of such a weighted sum of
xi random variables can be computed by the method of Davies (1980), or approximated using Liu et al.
(2009). If ¥; and o were known, then this test would be exact and is simply a likelihood ratio test. Result
(1) can also be obtained by first integrating out the random effects, other than the kth, so that we start with

g_( 655x 63572
0 By ’

where ﬁ):,l/ ? is the inverse of a matrix square root of _.

When o2 has been estimated, slightly improved p-values can be obtained by quadrature evaluation of the
one-dimensional integral required to obtain pr(}_; AixZ > Wopsx2/k) where « is the residual degrees of
freedom used in the o2 estimation, and Wy, is the observed value of W. This has negligible computational
cost given the ability to rapidly compute the cumulative distribution function of ), A; xi: provided by
Davies (1980) or Liu et al. (2009).

Computationally the approach is most efficient if X and the Z; are not used directly. Rather the QR
decomposition QR = (X, Z;, Z,, ...) is performed first, or simply retained from the original model fit,
and X and the Z; are then replaced by the corresponding columns of R, in all expressions. This minimizes
the cost of reordering and the subsequent QR decomposition to find R, and of computing the ¥ _. Further
computational efficiency can be obtained, albeit at some cost in numerical stability, by noting that R is
also the Cholesky factor of X" X. The computational limit is then set either by the size of matrix for which
Cholesky decomposition is practical, or by the size of symmetric eigenvalue problem that is practical.

The extension to generalized linear mixed models is routine. Let the y; be conditionally independent
random variables from an exponential family distribution with mean u; determined by g(u;) = n;, scale
parameter ¢ and variance function V' (11). The function g is a known link function. The Laplace approximate
restricted loglikelihood under H; is

' ~log f(y | B) — ZbT ~bj + ¢

where f(y | B) is the conditional density of y given 3 and ¢] is a constant that is ignorable when treating
the variance parameters as fixed. Under Hj the equivalent is

108 1 01B)— 52 ST B e
J*k
Assuming fixed dimension for B the ratio of these approximations to the truth is 1 + O (n~!), and further
details are given in Wood (2011).
With z; = g/ () (y — ;) + 0; and W2 =g'({i;)72V ({i;)~", a standard quadratic approximation of
log f(y | B) about B yields

1
2¢

12
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Fig. 1. Null distribution of p-values. Quantile-quantile plots for the null distribution of p-values of the new

method overlaid over a grey reference line. Panels (a)—(f) are for Gaussian responses following § 3.1.1 of

Scheipl et al. (2008). Sample sizes are 30 (a, b), 100 (c, d) and 500 (e, ). Group sizes from (a) to (f) are 3,

10, 5, 20, 5, 100. Panels (g) and (h) are for binary responses. Sample sizes are 100 for (g) and 400 for (h)
with a group size of 20.

Under Hy, the same quadratic approximation remains valid for ié so that

W<Z—X/3"— iz@)

JEk

2

A

/"\/_7
Iy~ ——

_ Lzm:gu’;f;; iy
2 Jry T 0-
¢ 5k

Hence, given large sample normality of the by (e.g., Wood, 2006, § 4.8), the test proceeds exactly as in the
linear case, but with W X replacing X and W Z; replacing Z; in all computations.

2. SIMULATION TESTING

The simulation study of Scheipl etal. (2008) was repeated, to compare the test proposed here
with a test based on simulation of the correct distribution of the likelihood ratio statistic, and with
the best test found in Scheipl. The latter is an approximation proposed by Greven etal. (2008)
based on the exact test of Crainiceanu & Ruppert (2004) and Crainiceanu et al. (2005) and imple-
mented in R (R Development Core Team, 2013) package RLRsim. To test the kth random effect the
approach replaces the response variable by y — > itk ZA,‘Z; ; where the b ; are predicted random effects.
Crainiceanu & Ruppert (2004) is then applied to test the single remaining effect for equality to zero. This
approach is difficult to extend beyond Gaussian response distributions, while in the Gaussian case, the
key underlying difference to the method proposed here is neglect of the variability associated with the
predictions, b I8

The full study results are in the online Supplementary Material, and include cases with multiple variance
components. Figures 1(a)—(f) and 2(a)—(f) show the results for the single variance component case in which
Crainiceanu & Ruppert (2004) is exact. The model is y; =« + b; + ¢; where y; is assumed to belong
to group j, b; is a Gaussian random effect, and ¢; a Gaussian residual error term. The single variance
component is the variance of the b;. Power curves are shown against a standardized effect size, but were
obtained by varying the standard deviation of the b; from zero up to 4.5, 1-8 and 0-75, respectively, for the
sample sizes 30, 100 and 500. In all cases in the full study the test proposed here gives power curves very
close to the Scheipl recommended method, and to the curve resulting from direct simulation, but since
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Fig. 2. Power comparisons with Crainiceanu & Ruppert (2004) and with direct simulation. Data and mod-
els for each panel correspond to those given for the panels in Fig. 1. Power curves, at the 5% level, are
plotted as continuous for the new method, dotted for Crainiceanu & Ruppert (2004) and dashed for direct
simulation. The curves are often so similar as to be indistinguishable. Effect strength was controlled by
increasing the random effect variance from zero, but is shown on a standardized scale. The horizontal dot-
ted line denotes the 5% level. Panels (g) and (h) compare the proposed method with a method using exact
simulation of the null distribution of the likelihood ratio statistic for logistic regression with binary data,
since Crainiceanu & Ruppert (2004) does not apply in this case.

variance parameter estimator uncertainty has been neglected there is a slight tendency for p-values to be
too low. For cases in which variance components are poorly identified this can give elevated Type I error
rates, and the online Supplementary Material also includes a simulation designed to illustrate this.

Figures 1(g)—(h) and 2(g)—(h) illustrate the test behaviour for a logistic regression model fitted to binary
data simulated from a generalized linear mixed model with logit link and linear predictor n; = f(z;) + b;
where " is a smooth function of predictor variable z, while b; is a 20 level Gaussian random effect, the
standard deviation of which was varied upwards from zero to 5 and 2-5 respectively for sample sizes 100
and 400, to produce 5% power curves. Beyond the Gaussian case there is no exact test known, so the new
test was compared to full simulation for the null distribution of the Laplace approximate restricted likeli-
hood ratio. The proposed method shows some performance degradation at sample size 100, attributable to
deterioration of the normality approximation for the b ; at such sample sizes.

3. DISCUSSION

The test suggested here provides a way of testing variance components in generalized linear mixed
models, including models estimated by penalized quasilikelihood, and has the practical advantage of being
computable without multiple model fits or simulation of the null distribution. Its main drawback is that
it treats the variance components as fixed at their estimates. Although practitioners routinely treat the
variance components in this way for inference about the fixed effects, it would clearly be desirable to
eliminate this assumption. However, until this is possible other than by direct simulation, the proposal is
at least a readily computed, well-founded test, where the assumptions are explicit.

The test is likely to show reduced reliability in three circumstances: firstly, if the variance parameter
estimates are very poor, as is the case for penalized quasilikelihood estimates from binary data; secondly,
when normality of the by, is a poor approximation, for example for small binary datasets where some b; may
not even be well defined; thirdly, if Uy is highly uncertain and highly correlated with other v j,as is the case
when covariates are highly correlated and the sample size is relatively small. The Supplementary Material
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provides an example of this. In such cases simulation should be used. Another limitation, shared with
previous approaches, is that the proposed test is not suitable for zero effect testing of only some variance
components from a set of effects modelled as correlated. For example, in a model with correlated slope
and intercept effects, it is not possible to directly test for zero variance of the random slopes. However, in
practice it is usual to test for independence of effects before testing for no effect, and a standard generalized
likelihood ratio test is unproblematic for the independence test: the Supplementary Material provides an
example.

Given that the variance component estimates have known asymptotic sampling distributions, it might
be interesting to investigate p-values computed by model averaging in order to allow for the variance
component uncertainty that is neglected here. Another issue is the utility of these tests for very large
random effects models estimable only by sparse matrix methods. Apart from the final eigendecomposition,
the test computations require only Cholesky decomposition, for which reliable sparse algorithms exist, but
the need to pivot to maintain sparseness presents a substantial challenge, since pivoting spoils the ordering
of R on which the test relies. The eigendecomposition is also potentially challenging, but could probably
be achieved efficiently by Lanczos iteration, if the pivoting issue could be resolved.

ACKNOWLEDGEMENT

I am grateful to Martijn Wieling and Bryan Wood for, in different ways, initiating this work, and to a
referee, an associate editor and the editor for valuable comments on earlier drafts. The work was funded
by the UK Engineering and Physical Sciences Research Council and is part of the research programme of
the UK National Centre for Statistical Ecology.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the full results of repeating the simu-
lation study design of Scheipl et al. (2008). Further simulation tests are presented for the cases of binary
data, highly correlated data and dependent random effects. R code providing an illustration of the method
implementation is also provided.
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