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1. INTRODUCTION 

When comparing two samples· of possibly censored survival times it is 

very often important to assess the proportionality of the underlying 

hazard functions. This is also true in the more general framework of 

Cox's proportional hazards model (Cox, 1972) relating the survival 

time of an individual to other characteristics. Although this assump

tion of proportionality might be regarded to be only of technical rele

vance in such a model it is indeed in many applications - at least in 

the medical field - of substantial importance. So in a study of cancer 

patients it is of great interest whether the prognostic relevance of 

the stage of disease at the time of diagnosis can be established over 

the whole time period. An example where the prognostic relevance is 

"washed out 11 in the long term is given by Pocock, Gore & Kerr (1982). 

Similarly, in a controlled clinical trial it is very important to 

distinguish between the kind of uniform superiority of one treatment 

over another which can be described by a constant relative risk or 

hazard ratio and a superiority of a treatment which is only of short

term nature. 

In order to check the assumption of proportional hazards graphical 

methods and several test procedures have been proposed so far. For 

a review of existing methods we refer to Kay (1984) and - restricted 

to the test procedures - to the examples in chapter 5 of this paper. 

Nearly all of these tests, however, are based on an arbitrarily chosen 

partition of the time axis and/or are difficult to compute. 

The key idea behind the test procedures proposed in this paper is the 

observation that in nonproportional hazards situations different two

sample tests, e.g. the logrank and a generalized Wilcoxon test, might 

come up with very different answers. Our test procedures use this 

discrepancy as a check of the proportional hazards assumption and are 

based on the relationship between generalized linear rank tests and 

estimates of the proportionality constant (Andersen, 1983). This im

plies that the test statistics can be interpreted in a very natural 



2 

way and almost all computational effort has to be done anyway. In addi

tion, a related graphical method is presented which was originally pro

posed by Lee & Pirie (1981.) for comparing trends in series of events. 
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2. STATISTICAL MODEL AND CONSTRUCTION OF THE TEST STATISTIC 

We consider a two-sample censored data situation with sample sizes n1 

and n2, ·n = n1 + n2• More precisely: 

Let Xjk(j= 1,2; k= 1, .•. ,nj) be independent positive random variables 

representing survival times which might be times to death, failure or 

some other well-defined event. 

We assume that the distribution functions Fj of Xjk are absolutely 

continuous. Furthermore, the Xjk are censored on the right by indepen

dent positive random variables Cjk which are also independent of the Xjk· 

(Actually much more general censoring models are covered by the mathe

matical techniques given in the appendix.) Thus, we can only observe 

and 

xjk = min(Xjk'cjk) 

{ 
1 ' 

~jk = 0 
xjk...; cjk 

xjk> cjk 

Usually, one is interested in the testing problem 

{ 
H; : F 1=F2 

VS. _ 

H~ : F 1 ;e F 2 

whether or not the distributions of the survival times are equal in both 

groups. The standard statistical methods are the so-called 11 generalized 

linear rank tests". Let 

N.(t) =#deaths (or failures) in group j before or at t (j = 1,2) 
J 

= n {k = xjk...;t, ~jk = n 

Y.(t) =#at risk in group j at t
J 

= n {k: xjk>t} 

then the test statistics can be written as follows 

T ( dN2(t) dN1 (t)) 
QK = f o K ( t) y 2 ( t) - y 1 ( t ) 

where K(t) is a predictable random weight function, i.e. K(t) depends 
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only on the observations up tot-, and L ls the upper limit of obser

vable survival times. The quantities d~~(~~ can be considered as esti-

mators of the hazard functions J 

. _ft- Fj(t) 

A.j(t) - 1-Fj(t) -

in the two groups, and therefore 

A t dN.(s) 
Aj ( t) = fo Y~ (s) 

as estimators of the cumulative hazard functions 

A . ( t) = - l og ( 1 - F . ( t) ) 
J J 

j = 1,2 

(Ne l son, 196 9) • 

One is often interested in the special alternative of proportional hazards, 

i.e., the ratio A. 2 (t)/A.1(t) is equal to some positive quantity e . 

This quantity e is usually referred to as the 11 relative risk 11 and can be 

simply estimated by the 11 generalized rank estimator" 

(Begun & Reid, 1983; Andersen, 1983). It should be noted that there is 

a relationship between SK and a generalized linear rank test statistic 

QK both having the same weight function K(t), namely 

(Andersen, 1983). Though many of the generalized linear rank tests were 

not constructed with the proportional hazards model in mind, they may 

all be considered as tests based on an estimate for the proportionality 

constant. In this paper, we are interested in testing the actual propor

tionality of the hazard functions, i.e. the test problem is given by 

for some positive e 

for any positiv e 

Under H
0 

the estimator BK converges in probability to 8 as sample sizes 
• 

converge to infinity provided that some technical conditions are satis-

fied. This implies that, at least for large sample sizes, the difference 
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A A 

between eK
1 

and 8K2 f
or two different weight functions K1(t) and K2(t) 

should be close to zero since both converge to the same quantity 8. 

For example, we might choose K1(t) as Gehan•s weight function 

K ( Gehan) ( t) = y 1 ( t) • y 2 ( t) 

(Gehan, 1965) and K2(t) as the weight function corresponding to the 

logrank test, namely 

K(Logrank)(t) = Y (t)•Y (t)/(Y (t)+Y (t)) 
1 2 1 2 

In this case K1(t) gives more weight to the early deaths than K2(t) 

and K2(t) weights the late deaths more heavily than K1(t). Under H0 , 

however, the estimators for the relative risk based on K1(t) and K2(t) 

should be nearly the same. 

On the other hand, these two estimators should be substantially dif

ferent under H1, i.e. when the hazard ratio A2(t)/A1(t) varies with 

time and, especially, when the hazard ratio is monotone increasing or 

decreasing. Thus, in principle, we will base a test statistic on the 

difference between two generalized rank estimators, 8K1 and 8K2, with 

two different weight functions. 

So consider two weight functions K1(t) and K2(t) which are predictable 

processes and which satisfy Kj(t) = 0 when the number in either sample 

at risk at time t-, Yi(t) (i = 1,2), is equal to zero. As we have seen 

above the estimators for the relative risk can be written as 

( 1) 
A A A 

8K. = Ki2/Ki1 
1-

(i=1,2) 

where 

(2) 
A 

= J; K . ( t) d A . ( t) K .. 
1-J 1- J 

(j=1,2) 

Instead of using the difference 

eK - eK = R22IR - R12IR 
2 1 21 11 

we can consider the symmetrized version obtained by multiplying by 

K11K21 
A A A A 

(3) QK1K2 = Kll K22 - K21 K12 

which should be also close to zero under H
0 

• 
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With arguments which are outlined in detail in the appendix and under 

certain conditions one can show that under the null hypothesis the 

asymptotic variance of QK
1

K
2 

can be consistently estimated by 

(4) 

where 

(5) 
roT d(N1(t)+N2(t)) 

= Jr Ki(t)Ki,(t) Y
1
(t) • Y

2
(t) 

[
dA

1 
(t) dA

2
(t) 

= J; Ki(t)Ki,(t) Y
2
(t)+ \(t)] 

In addition, (again under the null hypothesis), the standardized test 

statistic 

(6) I A 1f2 
TK K = QK K (vat QK K ) 

1 2 1 2 1 2 

has asymptotically (n-+oo) a standard normal distribution. (Note that 

this statistic is antisymmetric under exchange of K1 and K2 or of sample 

1 and sample 2. In some situations, another variance estimator may be 

preferred - see appendix and section 6 - which does not have this pro

perty.) 

Thus, a two-sided level-a-test can be performed by comparing the abso-

lute value of the test statistic with the a/2-fractile of the standard 

normal distribution. It will be shown later on that this test is con

sistent against alternatives with a monotone increasing or decreasing 

hazard ratio, provided the ratio of the two weight functions, K2(t)/K1(t), · 

is monotone, too. 

A 

Note that Vii' is the usual variance estimator of a two-sample test with 

weight function ./ Ki(t)Ki' (t). This is why we prefer the particular 

choice of variance estimator given in (4). A disadvantage of this 

choice is that the estimate can be negative especially when we are far 

from the null hypothesis. We have already mentioned the possible choice 

of weight functions K1(t)=K(Gehan)(t) and K2(t)=K(Logrank)(t). 

Anotrrer choice for the weight function K1(t) could be from the class of 

weight functions K(p)(t) proposed by Fleming and Harrington (1982) where 
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(p) Y1(t) • Y2 (t) 
K (t) = y (t) + y (t) 

1 2 

[S(t)]P 

S(t) denotes the Kaplan-Meier estimator (Kaplan & Meier, 1958) of the 

survival function in the combined sample. Obviously, the weight func

tion corresponding to the logrank test is contained in this class (p=O); 

the choice p=1 yields the Peto-Prentice version of the generalized Wil

coxon test (Peto & Peto, 1972; Prentice, 1978). This generalization of 

the Wilcoxon test is preferable in some respects to Gehan's version; 

in particular, when censoring is very heavy or when there are different 

censoring patterns in the two groups (Prentice & Marek, 1979). For a 

general discussion of this problem see Leurgans (1983). We shall later 

see that also in our context Prentice 1 s version of the generalized Wil

coxon test is to be preferred. However, with Gehan's version the sta

tistic is easier to compute. Note that the rati.o of any two members of 

this class of weight functions is monotone. The ratio of K(Gehan) -with 

K(O) or with K(l) is monotone, too. 

For sake of completeness a proposal due to Fleming, 0 1 Fallon, O'Brien 

and Harrington (1980) should be mentioned, too. These authors propose 

in the context of generalized Kolmogorov-Smirnov tests a weight function 

which is substantially equal to 

K(Fleming)(t) = [Y1(t) .. Y2(t)]1h [S(t)]-h 
V

1
{t)+ V

2
(t) 

where S(t) again denotes the Kaplan-Meier estimator of the survivor 

function in the combined sample. 

The different weight functions mentioned here are displayed and illustra

ted in one of the examples presented in chapter 5 below. 
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3. A RELATED GRAPHICAL METHOD 

In order to describe the difference between two survival distributions, 

Lee & Pirie ( 1981) proposed in another context the so-ea 11 ed 11 trend 

function 11 

This function has some nice properties: it is a straight line through 

the origin with slope A2(T)/A1(T) when the hazard ratio is constant, 

it is convex (concave) when the hazard ratio is monotone increasing 

(decreasing). This is because its derivative, y', is directly connected 

with the hazard ratio, namely 

Thus, a graphical check on the shape of the hazard ratio can be done 

by plotting A2(t) vs. A1(t). 

This graphical method can be easily generalized by using weighted cumu

lative hazard functions 

A ~K) ( t ) = f
0
t K ( s ) d A . ( s ) 

J J 
j = 1 ,2 ' 

where K(t) is some positive weight function. Then, the trend function 

is defined by 

y(K)(u) = A~K)(AiK)- 1 (u)) ' UE [0,AiK) (T)] 

y(K) (u) has the same nice properties as y(u) and can be estimated by the 

empirical trend function 

Y(K)(u) = A(K)(A(K)-1(u)) 
2 1 

with 

j = 1 ,2 

Thus, the proportionality of the hazard function can be graphically 

checked by plotting AiK)(t) vs. AiK)(t) and comparing yK(u) with a 

straight line through the origin with slope AiK)(T)/AiK)(T). The signed 

area between these two functions weighted by some weight function seems 
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to be an appropriate measure for such a comparison (Figure 1), espe

cially if one is interested in discovering convexity of concavity of 

y(K). Such a measure can be represented as 

A(K)(T) A(K)(T) 

J, 1 [ .y<K>(u)- 2 u]dJ(A(K)-l(u)) 
0 A (K) ( ) 1 

Al T 

(7) 

where dJ(t) denotes such a weight function. This expression can be 

rewritten as 

(8) 

[

A A(K)(T) A ] IT 
= A (K) ( t ) - 2 A ( K) ( t ) J ( t ) -

2 AfK)(T) 1 0 

A_(K)(T) 
- fT J(t)d[A{K)(t)- 2 Jl.(K)(t)) 

0 . 2 Af K) ( T) 1 

Jt(K) (T) 

= -[JT J(t)dA(K) (t) - 2 f,T J(t)dA(K) (t)] 
0 2 A_f K) ( T) 0 1 

[ 

A fT K(t)dA (t) A 

= - g J(t)K(t)dA2(t) -
0 

,,...
2 s; J(t)K(t)dA

1 
(t)] 

I~ K ( t ) dAl ( t) 

Putting K(t) = K2(t) and J(t) = Ki (t)/K2(t) where Ki (t) and K2(t) 

are the weight functions used in chapter 2 this expression reduces to 
A 

(9) 
[

A K22 A ] A 

- K12-~ Kll = QK K /K21 ' 
K21 1 2 

an equivalent version of our test statistic QK K • 
1 2 

The empirical trend function, y~K>(u), might be used in many other ways, 

too. The techniques of the appendix can be used to derive the limiting 

distribution of this function. 
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4. REMARKS ON CHOICE OF APPROPRIATE WEIGHT FUNCTIONS 

The aim of this section ii to provide advice on how in practice the 

random weight functions K1 and K2 should be chosen. We base this advice 

on mathematical considerations of consistency and asymptotic relative 

efficiency, and on pragmatic considerations of computational convenience. 

Especially the topic of asymptotic relative efficiency is very technical 

so we only very briefly sketch the important results here. 

Define K=·K2 and J = KifK2 as in section 3. For large sample results 

we suppose that as n, the combined sample size increases, the two weight 

functions converge in probability to deterministic functions, while the 

number at risk in each sample at each time instant, divided by n, also 

converges in probability: 

(10) Y~n) (t)/n ~ y. (t) 
l. l. 

K~n) (t) ~ k. (t) 
l. l. 

for each t. Define k(t)=k2(t) and j{t)=k1(t)/k2(t). In fact we 

need slightly strengthened forms of these conditions, namely convergence 

uniform in tE (0,-r], in probability. Under the usual random censor

ship model this holds for the Yjs and all the usual weight functions by 

the Glivenko-Cantelli theorem and its analogue for the product-limit 

estimator. (Actually for some applications, see section 6 and the appen

dix, it is useful to replace n in the denominator of (10) by n1n2/(n1+n 2) 

or by a (n) for some other sequence a (n) -+ 00 as n-+ 00.) 

For consistency results we consider the case of fixed alternatives, A1 
and A2 fixed and not proportional; for efficiency results we consider 

a sequence of (non-proportional) alternatives Ain) and A~n) which converge 

to a proportional hazards situation A2 = eA1 at the rate 1//n. Consider 

first the fixed alternatives case. We rewrite the standardized test 

statistic as 

TK K = rn {QK K /K21) • (K211./n v~r{QK K ) ) 
1 2 1 2 1 2 

(cf. section 3, (7), (8) and (9)) and consider the two bracketed terms 

separately. From the representation of the first term QK K /K21 given 
1 2 
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in section 3, we expect that as n-+oo this quantity will converge in proba

bility to 

fo
A1(k) (T) ( A (k) (-r) ) 

y(k)'(u) - 2 u dj (A (k)- 1 (u)) 
Aik) (-r) 1 

where cr=Aik)(T), A{k>(t)=JJ- k{s)dAi(s) and y(k)(u)=A~k)(Aik)-l(u)). 

This can be proved under the above mentioned conditions using the tech

niques of Appendix I. Immediately we draw the following conclusions, 

assuming throughout that k1 and k2 are positve: If A2/A1 is increasing 

(decreasing) then y(k) is convex (concave) and hence y<k> (u) - ~ y(k) (cr) 

is negative (positive). If j is increasing (decreasing) then j(Aik)-l) 

generates a positive (negative) measure. Thus if A2/A1 and j are both 

monotone increasing or both monotone decreasing the final result is 

negative. If they are both monotone but in different directions the 

final result is positive. (The result will actually be strictly posi

tive or strictly negative under weak non-degeneracy conditions which we 

do not go into here. Obviously the result is zero if the Ai's or the 

ki's are proportional.) 

For the other main term (K21 /Vh var{QK
1
K

2
)) we note that under the same 

convergence conditions we can expect (cf. {2), (4) and (5) in section 2) 

A p T 
K . . ~ k . . = f,

0 
k . dA . 

iJ iJ i J 

n vii I ~ vii I : J~ k i k i I (:~ 1 
+ :~ 2 ) 

and hence (K21 ;/n v~r QK1K2) converges in probability to a strictly 

positive quantity under weak non-degeneracy conditions. 

This can again be proved rigorously using the techniques of the appendix. 

(Actually, under a fixed alternative hypothesis, n var(QK K ) may con-
1 2 

verge to a negative quantity. If this estimate of the variance is ne-

gatiMe, one should replace (K21//n var QK
1
K2) by +00 .) 
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Combining these two parts gives consistency against alternatives of 

monotone.hazard rates if K2/K1 is monotone, too. We note that this is 

the case when any two of the weight functions common in survival ana

lysis are used: thosecorresponding to the logrank test, Gehan's genera

lization of the Wilcoxon test, or Peto & Peto's and Prentice's genera

lization of the Wilcoxon test. When we note that all the ingredients R .. 
A A A l.J 

and Vii' of our test statistic (except for V12 = V21 , corresponding to 

a weight function v'K1K2') are needed to compute the two-sample tests with 

weight functions K1 and K2, we see that our test statistic is easy to 

compute and potentially widely useful. 

When considering asymptotic relative efficiencies, the situation is 

rather more complex. Consider again a sequence of models as above 

indexed by total sample size n, in which (10) still holds but also the 

hazard rates A~n>(t) and AJn>(t) vary with n in such a way that as n-+oo, 

for all t: 

A ~n) ( t) + A. ( t) 
l. l. 

where 

(n) 

¥2 (A2 (t) ) n - e + 
A~n) (t) 

JI,( t) . 

(These conditions will need to be slightly strengthened to produce ri

gorous proofs. See Gill (1980, § 5.2) for a complete derivation of the 

analogous results in the ordinary two-sample problem; see also Leurgans 

( 1984)). 

Then it turns out that the standardized test-statistic converges in 

distribution to the N(µ,1) distribution with 

1/ JJ jk(t-i)dA 
µ = -e 2 --,,=======-----..../{I; (j-])2 k2dA/y} 

where A= A1, i = (JJ tk dA) I (JJ kdA), J = (JJ j k dA) I (JJ kdA) and 

y = y1y2/(y1 + ey2). So the asymptotic power when testing one-sided at 

level a is 1-~(ua-µ) where ~ is the standard normal distribution func

tion and ~(ua) = 1-a. 

Before drawing some conclusions from this formula for µ we present a 

heuristic derivation of it. The numerator is derived from the formula 



13 

A A A A 

for Tn(K11K22 - K21 K12 ) in which we replace K1 and K2 by k1 and k2, and 

A1 and A2 by Ain> and A~n) where dAin> (s) = dA(s), dA~n) (s) = (e+ ~s))dA(s). 

This gives . 

In {u; k1dA)(J
0
T k2e(1 + J'n)dA)- (f; k2dA)(J; k

1
8(1 + v~)dA)} 

= e{(f; k1dA)(J; ik2
dA)- (j; k2dA)(J; ik

1
dA)} 

= e{ (j; jkdA)(J; ,Q,kdA) - (f; kdA)(J; j,Q,kdA)} 

= -e(f; kdA)(f~ jk(i-i)dA) • 

For the denominator we make the same substitutions in i./n v~r(QK 1 K 2 ): 
replacing A1 and A2 directly by A and eA and Y1/n and Y2/n by y1 and y2 • 

This gives (cf. (4)) 

n var(QK
1
K

2
) ~ (f; k2dA)(J; 8k2dA)(J; k~dA/y) 

- (f; k 2 dA)(f~ k 1 8dA)(f~ k1 k2dA/y) 

- (f; k1dA)(J; k28dA)(J; k
1
k2dA/y) 

+ (f; k
1 
dA)(J; k

1 
edA)(J; k~dA/y} 

= e{u; kdA)
2(f; j k

2
dA/y)- 2(f; kdA)(J; jkdA)(J; jk

2
dA/y) 

+ (f~ jkdA)
2
(J; k

2
dA/y)} 

= e(f; dkA)
2
{(f; j

2
k
2
dA/y)- 2](J; jk

2
dA/y) + ]

2(f; k
2
dA/y)} 

= e(f; kdA)
2 

{J;(j-])
2 

k
2
dA/y} 

Combining these expressions leads to the formula for ~1. 

The formula can clearly be used for rough power calculations in any par

ticular case once hazard rates and censoring distributions can be hypo

thesized. We note that the 11 k function 11 for typical choices of weight 

functions is given by 

Y1 Y2 

Y1+Y2 

(t-F/1 Y2 
Y1+Y2 

logrank test 

Prehtice 1 s Wilcoxon generalization 
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Gehan's Wilcoxon generalization 

Harrington & Fleming's statistics 

where in a random censorship model with ni/n+pi E (0, 1) as n-+oo,, and 

with censoring distribution Gi in sample i, Yi= Pi(1-Gi)(1-Fi) and F 

is a distribution with hazard rate 

Y1 Y2 
--A.+ A.· 
Y1+Y2 1 Y1+Y2 2 ' 

i.e. a time-varying weighted average of the hazard rates in the two 

samples, where the weights are proportional to the number at risk in 

each sample at each time. 

We can make some recommendations on choice of k and j (i.e. of k1 and 

k2) by seeking to maximize µ2 for given y1,y2,i,A. and e by choice of 

k1 and k2• We note that 

J; jk(£-i)dA = f; k(j-J)(£-i)dA = J; k{j-J)idA • 

So defining k*= k(j-J) we find 

µ
2 

= e<J; k*£dA)
2 

I <J; k*
2
di\/y) 

Now k* must satisfy JJ k*dA= O. We therefore consider the problem: 

maximize (JJ k*£dA) subject to the constraints JoT k* di\/y =constant, 

JJ k*dA=O. By standard methods (cf. Gill, 1980, Lemma 5.2.1) we obtain 

that k*cx:y(i-i) is the solution. Since k*= (j-])k this suggests 

that j and k should be chosen with j ex: i, k ex: y. Thus the ratio of the 

two given weight functions defines the alternatives at which power is 

maximal (for test-statistics in our class), provided that one of the 

weight functions has kcx:y=y1y2/(y1+8Y2). 

We see that at 8=1, the "optimal k" coincides with the k of the logrank 

test. We also see that, restricting the weight functions to the above 

list, taking one of them to be the Gehan weight function means that j 

will depend strongly on the censoring distributions which seems not a 

desirable property. 
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Taking the logrank test and Prentice's Wilcoxon generalization gives a 

statisti-c with a nice optimum property at 8=1 and y1 a::y2; i.e. we sup

pose we are close to equal hazard rates in the two samples and equal 

censori~g distributions. We then have a statistic which is best, in our 

class, for testing against alternatives with ia:: (1-F). We note that 

for the logistic location family F(x;cp) = (1+e-x-cpf 1 we have 

aacp log A(x;cp) = -(1-F(x;cp)). Thus this choice is optimal within our 

class of statistics, at such a point, for testing proportional hazards 

versus logistic location alternatives (or any monotone transformation 

of the latter, since the statistic is a rank statistic). This property 

is of course related to the fact that the logrank test and Prentice's 

Wilcoxon test have certain optimality properties for the two-sample pro

portional hazards and logistic location families, respectively. 

In genera 1, however, a test statistic of our class designed with a spe

cial alternative in mind is going to be complicated in practice to use. 

For instance the fact that we would like to have ka::y suggests taking 

K= Y1Y2/(Y1 + eY2) where e is some preliminary estimate of relative risk, 

e.g. elogrank• see (1). This K is not predictable but it can be veri

fied that, with some more effort, the same results hold for it as for 

K=Y 1Y2/(Y 1 +8Y2 ). Note that for these K's, eK is an efficient estima

tor of 8 under the null-hypothesis of proportional hazards. 

Our recommendation therefore is to use the logrank and Prentice's Wil

coxon weight functions as giving a test which is very easy to use and 

does have some nice optimality properties. Only use the combination of 

logrank and Gehan's Wilcoxon if atmost simplicity is the aim. Never 

use the combination of Gehan's and Prentice's Wilcoxon for which the 

j function only depends on the censoring distributions and is actually 

constant when there is no censoring, giving a test with no power at all. 

The above efficiency calculations were made within our class of sta

tistics. It seems likely that the best statistic in our class for a 

particular alternative will have some global optimality property among 

all tests in a wider class (e.g. all rank tests), but we have not in-,, 
vestigated this in detail yet. The analogue question for ordinary cen-

sored data linear rank tests still needs thorough investigation. 
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5. ExAMPLES 

Fleming, O'Fallon, O'Brie~ and Harrington (1980) present data on time 

from tre·atment to progression of disease of 35 patients with stage II 

or IIA ovarian cancer. The data of these patients who were treated in 

the Mayo Clinic are listed in table 1. 

times from treatment to disease progression 

Stage II 28, 89, 175, 1959 309, 377+' 393+, 421+, 
patients + + + no+, 1106\ 1206+ (n

1 
= 15) 447 ' 462, 709 ' 744 ' 

Stage IIA + + 
309, 

patients 34, 88, 137, 199, 280, 291, 299 ' 300 ' 

(n2 = 20) 351 ' 358 ' 36 9 ' 369, 370, 375, 382, 392, 429+, 

451, 1119+ 

Table 1: Times from treatment to disease progression of patients with 

ovarian cancer; censored observations are marked with 11
+ 11 

Figure 2 displays the Nelson estimates of the cumulative hazard func

tions which show that grade influences the rate of progression only 

towards the end of the time scale. How the differences between the 

two hazard functions are weighted by various two-sample tests is shown 

in figure 3. In order to make the order of magnitude of the different 

weight functions comparable we have normalized them by dividing by the 

square root of the corresponding variance estimators. 

Giving different weight to the 11 early 11 and 11 late 11 differences of the 

two hazard functions results in different P-values for the various 

two-sample tests considered. In particular, these P-values are 0.018 

for the logrank test, 0.047 for Harrington & Fleming's test with p=0.5, 

and 0.109 and 0.134 for Prentice's and for Gehan's generalized Wilcoxon 
,, 

test, respectively. The (in many respects) extreme proposal of Fleming 

et al. (1980) yields a P-value of 0.015. Since Harrington & Fleming's 
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weight function with p=0.5 is only a compromise between the logrank 

test and· the Wilcoxon generalizations it seems to be adequate for our 

purposes to compare the generalized rank estimates for the relative 

risk based on the logrank weight function and on Gehan's or Prentice's 

weight functions. For the logrank weight function we obtain 

9<Logrank) = 2.78 whereas for Gehan's and Prentice's weight function 

we get e(Gehan) = 1.99 and §(Prentice)= 2.02, respectively. The dif-

ference between these values indicates a lack of proportionality. This 

is established by calculating the test statistics proposed in chapter 2 

yielding T = 2.83 (p = 0.005) for the Gehan vs. logrank comparison and 

T= 2.46 (p= 0.014) for the Prentice vs. logrank comparison. 

All p-values mentioned here are two-tailed. The reason for the similar 

behaviour of Gehan's and Prentice's weight function is the relatively 

light censoring in this example. Up to the largest uncensored time, 

there are only four censored observations among the stage II patients 

and three censored observations among the stage IIA patients. 

Thus, in these ovarian cancer data the null-hypothesis of proportional 

hazards has to be rejected. This is also visually supported by the 

plot of the empirical trend function using the logrank weight function 

as displayed in fig. 4. The data have also been used by Breslow (1984) 

and Breslow et al. (1984) who calculated a test statistic for "accele

ration" based on Cox's (1972) original proposal yielding a p-value of 

0.017, in concordance with our results. 

The second example is a controlled clinical trial in chronic stable 

angina comparing the survival times of patients receiving coronary ar

tery bypass graft surgery and of patients receiving a conservative me

dical treatment. 

Details of the trial which was undertaken by the Veterans administra

tion can be found in Detre et al. (1977). A first impression of the 
' results of this trial - the sample sizes are considerable: n1 =507 

and n2 = 508 - may be gained from the display of the hazard ratio in 



18 

fig. 5. The hazard ratio has been estimated by assuming a piecewise 

exponential model. Figure 5 shows that the risk is more than twice as 

high for the surgically treated patients immediately after treatment. 

Then the. hazard ratio rapidly decreases and finally remains constant at 

a level of about 0.75 after three years. This should be an excellent 

example for a nonproportional hazards situation but our test statistic 

based on a logrank vs. Gehan comparison yields only a value of T = -1.27 

associated with a nonsignificant p-value of 0.2. Figure 6 displays the 

values of our standardized test statistic T calculated after 1,2,3, ••• ,8 

years. This strongly suggests that departure from the proportionality 

of the hazard functions is restricted to the first four years after 

treatment. This is also confirmed by the plot of the empirical trend 

function based on the logrank weight function which is displayed in 

figure 7 and which also indicates that the hazard ratio is not monotone 

in this example. 

These data show very clearly the limitations of our proposed test sta

tistic. It is designed only to detect departures from the proportio

nality of the hazard functions when the hazard ratio is monotone. This 

has to be seen in contrast to the other 11 omnibus 11 test procedures based 

onan arbitrarily chosen partition of the time axis. The resulting p

values of some of these test procedures (Andersen (1982), Schoenfeld 

(1980) and Schumacher & Vaeth (1984))when using a partition of the time 

axis into nine intervals are given in table 2, all of them leading to 

a rejection of the null-hypothesis of proportional hazards. 

test statistic 

Andersen (Wald) 

Andersen (likelihood ratio) 

Schoenfeld 

Schumacher & Vaeth 1 

Schumacher & Vaeth 2 

p-value 

0.031 

0.023 

0.026 

0.002 

0.041 ,, , ______________ _._ _____ ____. 

Table 2: Results of various test statistics for testing the proportio

nality of the hazard functions in the Veterans Administration 

data 
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A more thorough discussion of these data can be found in Schumacher 

( 1 982 ' 1984 ) • 

Two other examples will be mentioned very briefly. The first of these 

uses data on time to remission of leucemia patients. It was presented 

by Freireich et al. (1963) and used as an example by very many authors. 

(e.g. Gehan (1965), Cox (1972), Schoenfeld (1980), Begun & Reid (1984), 

Nagelkerke et al. (1984), Schumacher & Vaeth 

(1984), Wei (1984)). As is shown by Begun & Reid (1984) the various 

estimates of relative risk are not too different compared with their 

standard errors. Thus it is not astonishing that our test statistic 

based on a logrank vs. Prentice comparison yields a p-value of 0.72. 

In this example Gehan's weight function is rather sensitive to the 

highly unbalanced censoring patterns - there are no censored observa

tions at all in the second sample. The p-value obtained by our test 

statistic agrees with the p-values obtained by test statistics proposed 

by the authors mentioned above and are listed in table 3. 

test statistic 

Andersen (Wald) 

Andersen (likelihood ratio) 

Nagelkerke, Oostring & Hart 

Schoenfeld 

Schumacher & Vaeth 

Schumacher & Vaeth 2 

Wei 

p-value 

0.26 

0.26 

0.65 

0.41 

0.53 

0.55 

0.65 

Table 3: Results of various test statistics for testing the proportio

nality of the hazard functions in the Freireich data. 

The last example is based on the canine transplant data presented by 

Prentice & Marek (1979). This is in many respects a very extreme example 

because the sample sizes and the censoring patterns in both groups are 

very,, different. This is reflected by the large difference between 

Gehan's and Prentice's weight function yielding a value of T= 0.09 
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for the logrank vs. Prentice and of T= 3.77 for the logrank vs. Gehan 

comparis·on. A thorough discussion of this phenomenon is given by 

Prentice & Marek (1979). · 
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6. OTHER APPLICATIONS 

6.1 TESTING FOR TREND IN POISSON PROCESSES 

Consider two non-homogeneous Poisson processes N1 and N2 with intensity 

functions µ1(t) and µ2 (t), tE [O,-r]. Lee & Pirie (1981) consider the 

problem of testing the null-hypothesis µ2 (t)/µ 1(t) = 8 versus µ2(t)/µ 1(t) 

monotone and proposed a graphical technique and a test statistic which, 

in a certain sense, are special cases of our methods. In fact our ini

tial aim was precisely to investigate whether their methods could be 

used in the analoguous censored data problem. 

If we choose any constant a and define 11 numbers at risk 11 processes Yi(t) 

and 11 hazard rates 11 A.i(t) by Yi(t)=a, A.i(t)=µi(t)/a (i=1,2) then 

the processes and functions Ni, Yi and Ai share many properties of the 

same quantities in the censored data problem. In particular all the 

mathematical results of the appendix apply without any change at al 1 to 

this new situation. 

If we take a=1, K(t)=1 for all t and J(t)=N1(t-)+N2 (t-)+1 - recall 

K(t) = K2 (t) and J(t) = K1(t)/K2 (t) - then the standardized statistic 

of section 2 becomes asymptotically equivalent (under the null-hypothesis 

or under a sequence of contiguous alternatives) to the standardized 

version of Lee & Pirie's (1981) statistic while the plot of section 3 

becomes precisely their relative trend plot. Using the alternative va

riance estimator (A2) with a1=a2 =1 (see appendix) the standardized 

statistic is actually equal to IR/(R-1) times their statistic, where 

R = N 1 ( ·r) + N2 ( T) 

An interesting difference between the two statistics is that theirsis 

proposed as a conditional test, conditional on the values of N1(T) 

and N2(T), so their standardized test uses a conditional variance. 

Their large sample theory is also theory on asymptotic conditional 

distributions. 

One can investigate large sample properties in exactly the same way as 

in s.ection 4 (in fact we used the term 11 asymptotically equivalent 11 just 

now in the sense indicated in section 4). We consider a sequence of 

problems indexed by n in which one observes two Poisson processes over 
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the same fixed time interval [0,T] for all n, but with larger and larger 

intensity functions µ{n) and µ~n). Now it is useful that we earlier 

introduced the constant a ·(which till now we took equal to 1): we let 

this number depend on n, and suppose that µin) and µ~n) grow in such a 
way that >..{n)(t)=µJn>(t)/a(n)+A.iCt) as n+oo, a(n)+oo as n+oo. 

Choosing J and K as above (or rather J (n) (t) =(Nin) (t-) + N~n) (t-) + 1 )/a (n), 

K (n) (t) = 1), we obtain j (t) = /\.1 (t) + f\.2(t), k(t) = 1 and (replacing n 

in the denominator of (10) by a (n)) Yi(t) = 1. So y = Y1Y2/(Y1 + 8y2) = 

= 1(1+8)=constant. Thus this choice of k and j has some optimality 

properties when t(t) a: f\.(t). This corresponds to parametric alternatives 

to the proportional intensities model of the form 

as <f>+O. 

6.2 TESTING FOR EXPONENTIALITY VERSUS A MONOTONE HAZARD RATE IN THE 

ONE-SAMPLE CASE: THE TOTAL TIME ON TEST STATISTIC 

A one-sample analogue of our problem is also of very great interest. 

Suppose we are given a specified hazard rate >..1(t) (e.g. >..1(t) = 1 for 

all t), and a censored sample from a distribution with hazard rate >..2(t). 

Suppose we wish again to test the hypothesis >..2(t)/>..1 (t) = e for some 

constant e versus the alternative >..2(t)/>..1(t) monotone. In the special 

case >..1(t)= 1 this is the same as testing exponentiality versus alter

natives of a monotone hazard rate. The total time on test statistic 

(see Barlow, Bartholomew, Bremner & Brunk (1972), section 6.2 and Aalen 

& Hoem (1978), section 3.4) is a well-known statistic for this purpose. 

(Note that as in section 6.1 we can also consider the analogous problem, 

for which the total time on test statistic is available, too, on the in

tensity function of a Poisson process.) 

In fact the one-sample analogue of our class of statistics contains the 

total time on test statistic as a special case. Also the total time 

on test plot is (up to a scale transformation of each axis) our relative 
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trend plot with suitable choice of K function. 

Moreover our theoretical results (at least, their easier one-sample ana

logues) provide immediately large sample results for the total time on 

test statistic with censored data. (Aalen & Hoem (1978) and Barlow & 

Proschan (1969) both claim to give general results, but in fact in both 

papers it is tacitly assumed that one stops observation at a predeter

mined uncensored observation so that the number of uncensored observa

tions is non-random. The statistic was only ever introduced in this 

situation anyway. Here we suppose that observation stops at a fixed 

time.) 

We define our class of one-sample statistics exactly as in section 1, 

using the index 2 to indicate the sample actually available, and using 

the index 1 to indicate a fictitious sample from a distribution with 

the given hazard rate Ai which is so large that Ai and Ai are taken to 

be identical (cf. (2), (3), (4), (5), (6); in the last expression of (5) 

we take Yi(t) =00). For asymptotic results (cf. section 4) we replace 

n in the denominator of (10) by n2 and take Yi(t) = 00 • 

Taking K(t)=Y2 (t), J(t)=N2 (t-)+ 1 and Ai(t)=t we obtain a stan

dardized statistic asymptotically equivalent to the standardized total 

time on test statistic. To show this, let us work rather with the al

ternative variance estimator (A2) with ai = 0, a.2 = 1 (see appendix). 

Let R=N2 (T) and let 0<Ti<T2 < ••• <TR<T be the ordered uncensored 

observations in [0,T] (i.e. the jump times of N
2
(t)). Let T0 =0, TR+i=T,. 

T· 
and define Dj=h~-i Y2 (t)dt, j=1, ••• ,R+1. First we give an expression 

for the standardized total time on test statistic (Barlow, Bartholomew, 

Bremner & Brunk (1972), p. 268) using the data on the time internal [0,Tr]; 

i.e. as if on knew beforehand that there would be at least R=r (not 

random) uncensored observations, and stopped registering failures and 

censorings at the time of the r-th failure. The statistic can then be 

written as 

1 \R-i (\i ) \R 1 
R=T li=i lj=i Dj I lj=i Dj - 2 

-/ 1 I ( 12 ( R-1 ) ) I 
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On the other hand, we obtain from (2) 

= I; Y2(t)_(N2(t-) + 1)dt = I~:~ j Dj 

T dN2(t) 
= fo Y2(t) v

2
(t) = R 

K21 = I; Y2(t)dt = I~:~ Dj 

A T dN2(t) 1 
K 12 = f o Y 2 ( t )( N ( t- ) + 1) Y 2 ( t) = 2 R ( R + 1) , 

so that by (3) 

Q = R{ \~+1 j D. - 1 (R+1) \~+1 D. l 
K1K2 lJ=1 J 2 lJ=1 J f 

Also in (A2) with a.1 = 0, a.2 = 1 we find Ao= A2, hence 22 = 1 and 

e1=K21/K22= (I~:~ Dj)/R. Putting Y1(t)= 00 this gives 

- T A A 2 A2 dN2(t) 
var{QK1K2) = fo{K22 K1(t)- K12 K2(t)) c1 Y2(t)2 

= J~(R(N 2 (t-) + 1)-i R(R+1))
2 

dN2(t) ((I~:~ oj);R)
2 

= f~((N 2 (t-) + 1)- ~ (R+1))
2 

dN2(t) (I~:~ oj)
2 

= ('~+l D .)
2 1 

(R+1) R(R+1) 
lJ=1 J T2" 

Thus the standardized statistic becomes 

\~+l j D. - 1 (R+1) \~+l D. 
lJ=1 J 2 l]=1 J 

I~:~ oj=/-+z (R-1)(R+1)/R' 

This differs from the total time on test statistic by a factor - & 
and by inclusion of an extra term j=R+1 in each summation. The minus 

sign was to be expected since the one-sided form of the total time on 

test statistic (reject for large values) is designed against alternatives 

in which A.2/A.1 is increasing. Since J = K1/K2 is increasing, too, our 

statistic should take on large negative values under such an alternative. 
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(K1 gives more weight to later times, so that eK
1 

tends to be larger 

than 8K
2
·.) The other differences are negligeable for large samples. 

Note that taking K(t) = Y2 (t) and dN 1 (t)/Y1(t) = dt our relative trend 

plot becomes a plot of Jg Y2(s)ds versus N2(t), tE [0,T]. The total 

time on test.plot based on R observations is a plot of J~ Y 2 (s)ds/J~Y 2 (s)ds 
against N2 (t)/R • 

A more thorough discussion of these topics can be found in a separate 

paper by on of the authors (Gill (1985)). 
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7, CoNCWDING REMARKS 

In a recent paper Wei (1984) proposed another goodness-of-fit test for 

proportional hazards which is - at least in a wide sense - related to 

the methods proposed in this paper. In particular, Wei 's test can be 

shown to be asymptotically equivalent to a Kolmogorov-Smirnov-type ver

sion of our test statistics using a special weight function. Details 

have been worked out by Andersen (1983). 

A generalization to the case of p-samples of our test statistics is 

possible in principle but neither simple nor straightforward. The rea

son for this is based on the fact that when comparing the hazard func

tion of the j-th sample with the hazard function of the pooled other 

samples, the hazard ratio is no longer proportional even under the null

hypothesis. Thus building up a test statistic in a 'Kruskal-Wallis'

manner - as described by Andersen, Borgan, Gill & Keiding (1982) - is 

not feasible. A suitable test statistic, however, could be based on 

all pairwise comparisons. The asymptotic null-hypothesis covariance 

matrix of the ~(p-1) pairwise test statistics using the same weight 

functions K1 and K2 in every comparison can be shown to have rank p-1. 

Thus these pairwise test statistics can be combined to a global test 

statistic which has asymptotically under the null-hypothesis a x2
-

distribution with p-1 degrees of freedom. We omit the details. 

The strengths and weaknesses of out tests are best illustrated by the 

examples in chapter 5 featuring various practically important situations. 

Although a theoretical and/or empirical comparison with all the other 

proposals still has to be done - as also stated by Kay (1984) - the test 

procedures proposed in this paper provide an attractive tool for asses

sing the proportionality of hazard functions. 
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APPENDIX 

Here we indicate that the counting process methods of e.g. Gill (1980) 
or Andersen, Borgan, Gill & Keiding (1982) can be used to derive large 
sample results about our test statistic and graphical method. In fact 
we just consider asymptotic normality of the test statistic under the 
null-hypothesis. Consistency, efficiency and (for the trend function) 
weak convergence results can be obtained using the same tools without 
further difficulties. See also Gill (1984) for an informal introduc
tion to these methods. For the trend function one also needs the me
thods of Vervaat (1972) for dealing with weak convergence of inverse 
processes. Also all these results are immediately available for a class 
of counting process models which includes just as a special case the 
random censorship model. 

Consider a bivariate counting process (N1 ,N2) = ((N1(t), N2(t)): tE [0,-r]) 

with intensity process (Y1A.1' Y2A.2) such that A.j(t) = ejA.(t) for all t. 
So Y1 and Y2 are non-negative predictable processes and A.1 and A. 2 are 
fixed, proportional non-negative functions. Let K1 and K2 be two pre
dictable processes. As in section 1 define 

"' t A.(t) = J
0 

dN.(s)/Y.(s) 
J J J 

j = 1 ,2 

"' rT "' K .. = ;,
0 

K.(s)dA.(s) 
l.J J. J 

A.(t) = f
0
t A..(s)ds 

J J 

-1 
(We set Yj = 0 where Yj = O.) 

Define also 

A( t) = J~ A.(s )ds 

- JT K . . = 
0 

K . ( s ) dA . ( s ) 
l.J J. J 

Ri = f~ Ki(s)dA(s) , 

where' we suppose A(T)< 00 • We also suppose the sample paths of !Kil 
(i = 1,2) and Yj 1 

{j = 1,2) are almost surely bounded and that K1 and K2 
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are both zero where Y1 or Y2 are. 
A A 

Considering K as the 2x2-matrix with elements Kij' we can write our 

test statistic QK K (cf. (3)) as 
1 2 

QK K = det(K) 
1 2 

Note that K· ·=8·K· and hence det(K)=O. J.J J J. 

We wish to derive a large sample result on QK K so we consider a se-
1 2 

quence of the models described above indexed by n; so N1, N2, Y1, Y2, 

K1 and K2 all depend on n but A1 and A2 remain fixed (and proportional). 

We suppress this dependence on n from our notation. 

We recall that a possible estimator ~(QK K ) of the asymptotic null-
1 2 

hypothesis variance of QK
1
K
2 

is defined by (4) and (5) which we can re-

write as 

A T A A A A (dAl (t) dA2(t)) 
(A1) var(QK1K2) = fo(K21K1(t)-K11K2(t))(K22K1(t)-K12K2(t)) Y2(t)+ Y1(t) • 

We define a whole class of further possible estimators by, for given 
A A A A T A 

a.1,a.2> 0, a.1+a.2>0 defining A0 = a.1A1 + a.2A2• Define Kij = fo Ki dAj 

a 1 so for j =0 and 1 et 

j = 1,2 

Then we set 

Theorem 

Suppose there exists a sequence a {n) , a (n) -+ oo as n-+ 00 , and fixed func

tions y1, y 2, k1 and k2 such that 

where 

suptE[O,T]IY/t)/a~n) -yj(t)I~ 0 as n+oo, j= 1,2 

p 
sup E[o ]IK.(t)-k.(t)I-?> 0 t ,T J. J. 

as n -+ oo, i = 1 ,2 

-1 I k i I ( i = 1 , 2 ) and Y j ( j = 1 , 2 ) are bounded on [ 0 , T]. Then as n -+ oo 

(a<n>)hQ ~N(O,cr 2 ) 
K1K2 
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and (for any a 1,a2J 

where 

a(n) :c;'r(QK K )~ cr2 
1 2 

Before proving the theorem we give, as a lemma, a version of the a-method, 

which will enable us to derive asymptotic normality of a<n>¥2(det(K) - det(K)) 

from asymptotic norma 1 i ty of a (n) ¥2 ( K - R). 

Lemma 

Let X (n), X (n) be random column-vectors in RP and µ a fixed vector. Let 

f: RP +R be differentiable in a neighbourhood ofµ with derivative f 

which is continuous at µ. Suppose for some numbers a (n) + oo as n + oo 

and a random vector Z we have as n + oo 

a (n) '12 (X (n) - X (n)) ~ z ' 

x<n)~ µ 

(and hence also X(n)_!_> µJ. Then 

Proof: 

as n + oo. 

By the mean value theorem we have (with probability converging to 1 as 

n + oo) that 

where X (n) 1 ies on the line segment between X (n) and X (n) in RP • The 

result is now obvious. /51 
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Proof of the theorem: 

By a routine application of counting process methods it is easy to verify 

that for i ,j = 1,2 we have {jointly) 

a(n)l/2 zi~} = a(n)J/2 f~ Ki(t)(dA;(t)-dl\j(t)) 

= a(n)l/2 J.T K (t) (dNj(t)- Yj(t)d/\j(t)) 

o i Yj(t) -

p_> f
0
T k. ( t ) dW . ( t) 

l. J 

where W1 and W2 are independent Gaussian processes with zero means, in

dependent increments, and variance functions var(Wj(t)) = JJ d/\j(s)/yj(s). 

So applying the lemma with x<n), x<n) and f replaced by R, Rand det(•) 

we obtain 

a<n>
1
h Q _E_,, '· . kij rT k.(t)dW.(t) 

K1K2 ll,J Jo l J 

-ij i+j - - (T 
where k = (-1) k3_i,}-j; i,j = 1,2; kij =Jo ki(t)d/\j(t). Now k .. = e ·k · 
and 

where 

(A3) 

(A4) ~ 

lJ J l 

+ ;;<-k
21

k
1
(t)+ k

11
k

2
(t))dW

2
(t) 

~ N(0,02
) 

a2 = f~(k22k1 (t)- k1l2(t))2 d/\1 (t)/yl (t) 

+ I~ ( k 2 1 k 1 ( t ) - k 11k2 ( t ) ) 
2 

d/\2 ( t ) I y 2 ( t ) 

= s; e~el(k2kl(t)- klk2(t))d/\(t)/yl(t) 

+ S~ e~e 2 (k 2 k 1 (t)- i<
1

k
2
(t))d/\(t)/y

2
(t) 
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This proves the first part of the theorem on asymptotic normality. For 

the second part on consistency of the variance estimators we note first 

that again by routine methods a<n>var(QK
1
K

2
) (cf. (A1)) converges in 

probability to the expression for 0
2 given by (A4). Next, by multi

plying A by a constant if necessary (and dividing 81 and 82 by the same 

constant) we can identify A and A0 =a1A1 +a2A2 (for any given choice 

of a 1 and a 2 ). We now note that Kij ~ kij for i = 1,2; j = 0, 1,2 

where km= ki. So 2j ~ 8j for j = 1,2. It is now also easy to see 
,.., 

that var(QK K ) given by (A2) converges in probability to the equivalent 
1 2 

expression (A3) for 0
2

• tsJ 



A(K)(t) 
2 

A (K) (-r) 
2 

u = A (K) ( t) 
1 

A (K) (T) 
1 

Figure 1: Comparison of y(K)(u) and the straight line u • (A
2

(T)/A
1

(T)) 

as graphical check for the proportional hazards assumption. 
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