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ABSTRACT

Based on the heat engine framework, a simple scaling theory for dust devils is proposed and compared to
observations. This theory provides a simple physical interpretation for many of the observed characteristics of
dust devils. In particular, it predicts the potential intensity and the diurnal variation of dust devil occurrence. It
also predicts that the intensity of dust devils depends on the product of two thermodynamic efficiencies, cor-
responding respectively to vertical and horizontal temperature gradients.

1. Introduction

Dust devils are low pressure, warm-core vortices with
typical surface diameters between 1 and 50 m. Since
they receive their vorticity from local wind shears that
can be either due to the convective circulation itself or
due to larger-scale phenomena, they rotate either cy-
clonically or anticyclonically with equal probability
(Williams 1948; Sinclair 1966; Carroll and Ryan 1970).
Dust devils are more frequently observed in hot desert
regions, although they have been observed in colder
regions such as the subartic (Wegener 1914; Grant
1949). To a first approximation, a dust devil moves with
the speed of the ambient wind, typically at about 5 m
s21. In general, dust devils slope with height in the wind
shear direction. In environments of high wind speed
(*10 m s21), dust devil diameters are biased toward
large values. About 55% of the dust devils observed
around Tucson, Arizona, have diameters between 3 and
15 m, and 15% have diameters larger than 15 m (Sinclair
1966, 1969, 1973).

Figure 1 is a sketch of a dust devil. Near the surface,
the warmest air parcels are spiraling in toward the mov-
ing dust devil while they absorb heat from the surface.
Over the desert, the typical temperature and pressure
perturbation observed within dust devils varies from 4
to 8 K and from 2.5 to 4.5 hPa (Sinclair 1973). The
vertical velocity reaches positive peak values in the re-
gion of maximum temperature. A weaker and cooler
downdraft, in nearly solid body rotation, is present in
the dust devil core (Sinclair 1966, 1973; Kaimal and
Businger 1970). The near-surface vertical velocity
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reaches peak values of about 15 m s21 (Sinclair 1973;
Ives 1947). Weak thermal updrafts and small dust devils
are frequently observed in the wake of larger dust devils.
The low-level tangential velocity also reaches peak val-
ues of about 15 m s21, while the near-surface radial
velocity usually does not exceed 5 m s21. The radial
velocity reaches its peak value outside the region of
maximum tangential and vertical velocities (Sinclair
1973). Indeed, the radial velocity nearly vanishes in the
region of maximum tangential wind. Moreover, since
dust devils are warm-core vortices, the pressure pertur-
bation and therefore the tangential velocity reach peak
values a few meters above the ground and rapidly de-
crease with height. In fact, in typical dust devils the
perturbation pressure value nearly vanishes just a few
hundred meters above the surface.

Dust devils have tangential velocity profiles charac-
teristic of a Rankine vortex. Moreover, to a first ap-
proximation, their tangential winds are in cyclostrophic
balance above the surface. However, since there is a
radial inflow of air toward their center, the observed
pressure gradients are larger than those necessary to
support cyclostrophic tangential winds (Sinclair 1973).
Substantial mixing and expansion of the dust devil vor-
tex occurs near the surface. Warm, near-surface air
moves horizontally toward the low pressure center until
it reaches the dust column. Then, it rises rapidly. Within
the dust column, the radial velocity nearly vanishes. The
presence of dust particles in the dust devil inner core
is suppressed by both a descending motion and cen-
trifugal forces (Sinclair 1966, 1973).

There is mounting evidence that dust devils form in
the bottom of convective plumes (Battan 1958; Sinclair
1966; Ryan and Carroll 1970). The radial inflow of near-
surface warm air into the rising plume results in the
concentration of ambient vorticity and may lead to the
establishment of a weak vortex. As the convective
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FIG. 1. Sketch of a dust devil (adapted from Sinclair 1966).

plume rises to higher altitudes, the pressure depression
at its base increases. This low pressure center near the
surface forces a spiral inflow of warm boundary layer
air into the incipient dust devil. (Surface friction plays
an important role in forcing this near-surface conver-
gence of warm air.) When the surface is composed of
loose materials, dust particles might become airborne
making the dust devil visible. Thus, when loose mate-
rials are not present, intense vortices may exist and may
not be visible to the observer. The intensity of a dust
devil depends on the depth of the convective plume and
the existence of local wind shears. When a dust devil
crosses cold terrain, the dust column is cut off, and the
convective plume quickly dissipates (Sinclair 1973).

The height of the dust column of a dust devil rarely
exceeds 1 km. However, the thermal updraft above the
dust devils (their invisible part) usually extends to the
top of the convective layer. In the summertime, the con-
vective boundary layer extends to about 3–4 km above
the ground over the desert regions. The dust devil oc-
currence increases abruptly from nearly zero at around
1000 Mountain Standard Time (MST) to its maximum
value at around 1300 MST (Sinclair 1969; Flower 1936;
Williams 1948). Then, the dust devil activity slowly
decreases as the afternoon progresses. In this study, we
present a simple physical explanation for this distri-
bution and for the potential intensity of dust devils.

Our main objective is to propose a simple scaling
model for the potential intensity of dust devils. In order
for a dust devil to form, both thermodynamical pro-
cesses responsible for maintaining a pressure depression
and dynamical processes capable of producing vorticity
must be present. The various dynamical processes ca-
pable of producing and enhancing vertical vorticity in
convective systems have been extensively studied in the
atmospheric science literature (Lilly 1982; Davies-Jones
1984; Rotunno and Klemp 1985; Fiedler and Rotunno
1986; Simpson et al. 1986). We do not discuss these

mechanisms in this paper. Instead, we focus on the ther-
modynamics of the convective process responsible for
the maintenance of the pressure depression within a dust
devil.

2. Dust devils as convective heat engines

Heat engines are devices that convert heat into me-
chanical energy. Therefore, any natural convective phe-
nomenon is a heat engine. Emanuel (1986) and Rennó
and Ingersoll (1996) idealized hurricanes and atmo-
spheric convection as heat engines. In this study we use
the framework developed by Emanuel (1986) and Rennó
and Ingersoll (1996) to formulate a scaling theory for
dust devils. We assume a dust devil in quasi-steady state.
Since for a given set of environmental conditions a
steady state is achieved only when the work done by
the heat engine is balanced by mechanical friction, the
quasi-steady state assumption implies that we aim at a
theory for the maximum bulk thermodynamical inten-
sity of a vortex in cyclostrophic balance. Therefore, the
reader should be cautioned that our theory does not
attempt to predict the upper bound for the maximum
windspeed in a supercritical end-wall vortex. Fiedler
and Rotunno (1986) showed that the thermodynamic
speed limit can be exceeded at the foot of intense end-
wall vortices.

We assume that most of the heat input to a dust devil
heat engine is in the form of sensible heat flux at the
surface, and that the heat output is in the form of thermal
radiation emitted by subsiding air parcels. Moreover, we
assume that the convective drafts are adiabatic and that
the heat engine cycle is reversible. The available energy
lost by the higher-entropy updraft air through mixing
with the lower-entropy ambient air is implicitly included
in our model through the definition of the cold tem-
perature [see section 4 and Fig. 3 of Rennó and Ingersoll
(1996) for a more detailed discussion of this issue].

An energy equation for a convecting air parcel fol-
lows from the dot product of the velocity vector with
the equation of motion (Haltiner and Martin 1957). The
resulting equation states that following an air parcel in
steady state

1
2d |v| 1 gz 1 adp 2 f ·d l 5 0, (1)1 22

where v is the vector velocity, g the gravity acceleration,
z the height above a reference level, a the specific vol-
ume, p the pressure, f the frictional force per unit mass,
and dl an incremental distance along the air parcel’s
path.

Mass conservation requires that in steady state the
circulations within a material volume occupied by the
convective system must be closed in a frame of refer-
ence moving with the material volume [that is = · (rv)
5 0]. Thus, integrating Eq. (1) over mass on this ma-
terial volume, we get
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a dp 5 f · d l. (2)E E
m m

The notation ∫m indicates an integral over mass on the
entire material volume occupied by the convective sys-
tem normalized by its mass.

The first law of thermodynamics applied to moist air
can be written as

T ds 5 d(c T 1 L r) 2 adp, (3)p y

where T is the absolute temperature, s the specific en-
tropy, cp the heat capacity at constant pressure per unit
mass, Ly the latent heat of vaporization of water per
unit mass, and r the water vapor mixing ratio. Inte-
grating Eq. (3) over mass in the material volume oc-
cupied by the dust devil convective system in steady
state, we get

T ds 5 2 a dp 5 p da, (4)E E E
m m m

where we have used the ideal gas law. It is important
to recall that the integral of the exact differential over
the material volume vanishes because the flow is steady,
and in this case the vector rv has zero divergence. Equa-
tion (4) states that in steady state the work done by the
convective system is equal to the net heat input into the
convective heat engine. When the left-hand side of Eq.
(4) is integrated over a Carnot cycle it represents the
area enclosed by the hot and the cold adiabats (s2 and
s1) and the hot and the cold isotherms (Th and Tc),
respectively, at the bottom and at the top of a ‘‘Carnot
convective circulation.’’ This area, in turn, represents
the total amount of work done by a convective cycle
(Rennó and Ingersoll 1996). Brunt (1941) showed that,
for a Boussinesq system, the area enclosed by the hot
adiabatic, the ambient temperature sounding, and the
top and the bottom of the convective layer represents
the total amount of work done by the buoyancy forces
in moving an air parcel along the updraft (that is con-
vective available potential energy or CAPE). Equation
(4) is more general because it also includes the work
done by non-Boussinesq terms (e.g., the anelastic term).

It follows from Eqs. (2) and (4) that

T ds 5 2 f · d l. (5)E E
m m

This is not a new result; Eq. (5) simply states that, in
steady state, the net work performed by the dust devil
convective heat engine balances the frictional loss of
energy. Alternatively, Eq. (5) can be expressed as a line
integral around the convective cycle:

T ds 5 2 f · d l. (6)R R
Integrating Eq. (1), at the near-surface inflow stream-

tube, from large radius (`) to the center (0) of the dust
devil (see Fig. 1), we get

0 0

a dp ø f · d l, (7)E E
` `

where we have neglected changes in kinetic and poten-
tial energy of air parcels moving toward the center of
the dust devil. Our justification for neglecting changes
in kinetic and potential energy is that, near the surface,
there is a stagnation point at the center of the dust devil
(relative to the dust devil motion), and that to a first
approximation the surface is flat. Equation (7) relates
the surface radial pressure drop to the near-surface fric-
tional loss of energy. The notation indicates an in-0∫`

tegral from ` to 0, throughout the inflow streamtube,
normalized by the streamtube’s mass.

Using the ideal gas law to eliminate a, Eq. (7) be-
comes

0 0

RT d lnp ø f · d l, (8)E E
` `

where R is the specific gas constant for air.
Defining the fraction of the total dissipation of me-

chanical energy consumed by friction at the surface as

0

f · d lÈ
g [ , (9)

f · d lE
m

we get

0

RT d lnp ø g f · d l.E E
` m

Using Eq. (5) to eliminate ∫m f ·dl, we get

0

2 RT d lnp ø g T ds, (10)E E
` m

where ∫m T ds is the net heat input into the dust devil
convective heat engine. The net heat input, in turn, is
the amount of heat which is turned into work. Since the
thermal efficiency h of a heat engine is defined as the
fraction of the heat input that is turned into work, we
have that

T dsE
m

h [ , (11)
0

T dsÈ
where T ds is the heat input into the dust devil. Using0∫`

Eq. (11) to eliminate the net heat input ∫m T ds in Eq.
(10), we get
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0p02RT ln ø gh T ds, (12)s Ep` `

where Ts is the mean temperature of the surface-layer
air, that is the mean temperature at which heat is ab-
sorbed by the dust devil heat engine. The overbar rep-
resents a horizontal average from ` to 0. Equation (12)
states that the surface pressure drop from large radius
(`) to the center (0) of the dust devil is proportional to
the net heat input. Therefore, the net work performed
by the dust devil heat engine on its environment is pro-
portional to the surface pressure drop.

It follows from the first law of thermodynamics and
the ideal gas law that

T ds 5 d(cpT 1 Ly r) 2 RT lnp. (13)

Neglecting changes in the heat capacity of air and in
the latent heat of vaporization of water, we get

T ds ø cpdT 1 Ly dr 2 RT lnp. (14)

Integrating Eq. (14) from large radius toward the cen-
ter of the dust devil, we get an expression for the heat
input, that is

0 0 0

T ds ø (c dT 1 L dr) 2 RT d lnpE E p y E
` ` `

p0ø c (T 2 T ) 1 L (r 2 r ) 2 RT ln . (15)p 0 ` y 0 ` s p`

Substituting Eq. (15) into Eq. (12), we get

p p0 02RT ln ø gh c (T 2 T ) 1 L (r 2 r ) 2 RT lns p 0 ` y 0 ` s[ ]p p` `

cgh T 2 T L r 2 rp 0 ` y 0 `p ø p exp 1 . (16)0 ` 51 2 1 21 2 1 21 2 6[ ]gh 2 1 R T R Ts s

Since most of the heat input to a dust devil is in the
form of sensible heat flux, we can neglect changes in the
air parcel’s water vapor content. (Note that this term is
the most important in waterspouts and tornadoes.) Thus,
the radial pressure drop across a dust devil is given by

Dp [ (p 2 p )` 0

gh 1 T 2 T0 sø p 1 2 exp , (17)s5 1 21 21 2 6[ ]gh 2 1 x Ts

where x [ R/cp (we have assumed T` ø Ts and p` ø
ps). The net work performed by the dust devil convec-
tive heat engine is proportional to the radial pressure
drop across the dust devil [see Eq. (12)]. Therefore, the
radial pressure drop provides a good measure of the
dust devil intensity.

Equation (17) is general; that is, it applies to either
rotating or nonrotating convective plumes. Therefore,
Eq. (17) can be used to estimate the near-surface pres-
sure depression within any dry convective plume (or to
any moist convective plume if the latent heat term is
included). Interestingly, Eq. (17) predicts that the in-
tensity of a convective vortex increases with increases
in the fraction of the total dissipation of mechanical
energy occurring near the surface. This might provide
an explanation for the smallness of the pressure drop
across nonrotating convective plumes.

It follows from Eq. (17) that the intensity of dust
devils depends on the surface air temperature increase
from the local environment toward the center of the dust
devil. The daytime surface air temperature over a desert

is regulated mainly by sensible heat flux from the ground
into the surface air. The sensible heat flux, in turn, is
proportional to the difference between the ground tem-
perature and the surface air temperature (see the bulk
aerodynamic formula). Therefore, the ground temper-
ature provides an upper bound (through the second law
of thermodynamics) for the temperature at the center of
a dust devil, T0 (assuming an equal mass contribution
from warmer and colder air parcels, strong mixing near
the surface reduces the difference between the center
air temperature and the ground temperature to ;50%
of its maximum possible value).

A large air temperature increase is likely to occur
when air parcels sitting over relatively cold surfaces
move toward warmer surfaces. Therefore, dust devils
are more likely to form in regions of larger horizontal
temperature gradients (within the dust devil inflow re-
gion, that is ;100 m) than in regions of smaller tem-
perature gradients. This idea is supported by the ob-
servation of a local maximum of dust devil occurrence
near dry washes (Sinclair 1966) and over dry fields
downwind of irrigated fields (G. Osoba 1997, personal
communication). Moreover, it is supported by the oc-
casional observation of dust devils in the French coun-
tryside during the summer, over warm fields with cooler
surroundings (Georgii 1952). Obviously, we are making
the hypothesis that the observation of larger dust devil
occurrence near dry washes is due to temperature con-
trasts between areas of sandy soil and areas covered by
vegetation, which frequently occur around dry washes.
However, the reader should be warned that the more
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frequent observation of dust devils around dry washes
might also be due to the presence of a larger quantity
of dust (fine soil) near dry washes. A large quantity of
dust near dry washes would potentially make visible
dust devils that would elsewhere be invisible. Our hy-
pothesis is supported by observations that dust devil
occurrence is not as frequent in plain desert land covered
by loose materials as it is near dry washes. We plan to
test our hypothesis by making careful observations of
dust devil occurrence as well as temperature measure-
ments around dry washes and plain desert land covered
by loose materials.

Equation (17) also predicts that the intensity of a dust
devil is a function of its thermodynamic efficiency. The
thermodynamic efficiency of the convective heat engine
can be written as

T 2 Th ch 5 , (18)
Th

where Th and Tc are, respectively, the entropy averaged
temperatures of the heat source and sink. To a first ap-
proximation, the temperature of the heat source of the
dust devil convective heat engine is equal to the average
temperature of the surface air Th ø Ts (Rennó and In-
gersoll 1996). To a first approximation, the entropy of
the convective boundary layer is constant with height.
Therefore, the entropy averaged temperature of the
boundary layer air is equal to its pressure averaged tem-
perature. It follows from the first law of thermodynamics
that the temperature profile of a dry adiabatic layer is
given by

x
p

T ø T . (19)s 1 2ps

Integrating Eq. (19) from the surface to the top of the
convective layer, we get an expression for the temper-
ature of the heat sink

x11 x11T (p 2 p )s s topT 5 ,c x(p 2 p )(x 1 1)ps top s

5 bT , (20)s

where ps is the ambient surface pressure, ptop is the am-
bient pressure at the top of the convective boundary
layer, and b is defined as

x11 x11(p 2 p )s topb [ . (21)
x(p 2 p )(x 1 1)ps top s

It follows from Eqs. (18) and (20) that the thermo-
dynamic efficiency of a dry convective heat engine is
given by

T 2 bTs sh ø
Ts

ø 1 2 b. (22)

Equation (22) states that the thermodynamic efficien-

cy of a dust devil, or of any dry convective heat engine,
is a function of the pressure thickness of the convective
layer. This result is in agreement with observations of
boundary layer convection and results of numerical sim-
ulations that show an increase in the intensity of con-
vection with increases in the boundary layer thickness
(Deardorff 1970).

Defining the horizontal thermodynamic efficiency of
the dust devil as

T 2 T0 sh [ , (23)H Ts

Eq. (17) becomes

gh hHDp ø p 1 2 exp . (24)s5 1 21 2 6[ ]gh 2 1 x

Note that since, in general, for boundary layer convec-
tion gh K 1, to a first approximation (gh 2 1) ø 21.
It follows from Eq. (24) that the potential intensity of
dust devils (Dp) is a function of the surface pressure,
the ‘‘vertical thermodynamic efficiency’’ (or the pres-
sure thickness of the convective layer), the near-surface
fraction of the mechanical dissipation of energy, and the
horizontal thermodynamic efficiency.

Assuming that, to a first approximation, dust devils
are in cyclostrophic balance, Eq. (24) can be used for
the computation of wind speed around dust devils. An
atmospheric vortex in cyclostrophic balance satisfies the
equation

2y Dp
ø a , (25)1 2a a

where y is the tangential wind speed around the vortex,
and a is the vortex radius (the radius of maximum wind).

Substituting Eq. (25) into Eq. (24), and using the ideal
gas law, we get an expression for the wind speed around
a dust devil:

gh hHy ø (26)RT 1 2 exp .s5 1 21 2 6[ ]! gh 2 1 x

Equation (26) suggests that the wind speed around a
dust devil does not explicitly depend on its size. That
is, the magnitude of the tangential wind speed depends
only on the value of the pressure depression. The value
of pressure depression, in turn, depends only on the
thermodynamics of the convective plume associated
with the dust devil. However, the wind speed around a
dust devil might depend on its size through its horizontal
thermodynamic efficiency, which, in turn, might in-
crease with the dust devil size.

The magnitude of the vertical component of the wind
velocity within the dust devil can be computed by Eq.
(42) of Rennó and Ingersoll (1996), that is

c hFp inw ø , (27)
31 2! 8es T mR c
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FIG. 2. Horizontal profiles of temperature (8C), pressure (mb), and the three cylindrical components of the wind velocity (m s21) through
the base of a dust devil, at 7, 17, and 31 ft above the surface. The measurements were made by Sinclair (1966) near Tucson, Arizona, over
flat terrain on 13 August 1962 at 1300 UTC (after Sinclair 1966).

where e ø 0.7 is the emissivity of the boundary layer
air, sR ø 5.67 3 1028 W m22 K24 is the Stefan–Boltz-
mann constant, Fin is the heat input to the convective
heat engine, and m is a dimensionless coefficient of
turbulent dissipation of mechanical energy. To estimate
m we must know both the length of the convective path
(that is of the convective circulation) and the length and
velocity scale of the most energetic eddies (Rennó and
Ingersoll 1996). Since in homogeneous and isotropic
turbulence the most energetic eddies are the largest, we
arbitrarily assume that the most energetic eddies have
the length and velocity scale of the convective drafts.
Assuming that the length of the convective path is be-
tween 2 and 8 times the thickness of the convective
layer, we get m ø 10–50.

Figure 2 displays the profiles of temperature (8C),
pressure (mb), and the three cylindrical components of
the wind velocity (m s21) through the base of a dust
devil, at 7, 17, and 31 ft above the surface. The mea-
surements were made by Sinclair (1966) near Tucson,
Arizona, over flat terrain on 13 August 1962 at 1300

MST (Sinclair 1973). It follows from Sinclair’s obser-
vations that T` ø 319 K, T0 ø 324 K, Dp ø 3.0 hPa,
and that both the tangential (y) and vertical wind (w)
speed fluctuate between 10 and 15 m s21. The heat input
to a dry convective system is approximately equal to
the surface sensible heat flux; its typical summertime
value at the desert around Tucson at 1300 MST is Fin

ø 455 W m22.
Taking Ts ø T` ø 319 K, T0 ø 324 K, and assuming

typical summertime values for the surface pressure ps

ø p` ø 925 hPa and the pressure at the top of the dust
devil convective plume, 650 hPa, we get h ø 0.050,
hH ø 0.016. Assuming dry air, we have that cp ø 1005
J kg21 K21 and x ø 0.286. Taking g ø 0.5–1.0 and the
above numbers, Eqs. (24), (26), and (27) give Dp ø
1.3–2.7 hPa, y ø 11–16 m s21, and w ø 8–16 m s21.
These numbers are close to the observed values, hence
supporting our theory. Moreover, they suggest that most
of the mechanical dissipation of energy occur near the
surface.
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FIG. 3. Diurnal variation of dust devil occurrence for the Avra
Valley based on the observation of 1663 dust devils by Sinclair
(1966). The solid curve at the top of the figure shows the average
surface wind speed (mph) and the dotted curve at the bottom shows
the average surface temperature at Ryan Field in the Avra Valley
(after Sinclair 1969).

FIG. 4. Sketch of typical early-morning temperature soundings
around Tucson (adapted from Sinclair 1969).

3. Diurnal variation of dust devil activity

Assuming that, to a first approximation, convective
boundary layers are quasi steady on the timescale of
dust devils, we can estimate the diurnal variation of dust
devil activity. Multiplying Eq. (6) by the convective
mass flux (M), we get

M T ds 5 2M f · d l. (28)R R
Equation (28) states that, at quasi-steady state, the dust
devil activity is such that the flux of mechanical energy
made available by the convective heat engine (Fav 5 M

T ds) is equal to the flux of energy mechanically dis-R
sipated by friction (Fd 5 2M f · dl). That is, in quasi-R
steady state

Fav ø hFin ø Fd, (29)

where Fin is the heat input to the convective heat engine.
To a first approximation, the heat input is equal to the
surface sensible heat flux, Fs.

From Eqs. (22) and (29), we get

Fav ø (1 2 b)Fs; (30)

alternatively, we can write

Fav ø hFs. (31)

Equation (30) states that the flux of energy available to
drive dust devils (and therefore, the dust devil activity)
is proportional to the boundary layer thickness and the
sensible heat flux. Equation (31) states that the flux of
energy available to drive dust devils is proportional to
the thermodynamic efficiency of boundary layer plumes
and the sensible heat flux.

Figure 3 displays the diurnal variation of dust devil
occurrence for Avra Valley, Arizona, based on the ob-
servation of about 1600 dust devils by Sinclair (1966).
The solid curve at the top of the figure shows the average
surface wind speed (mph) and the dotted curve at the
bottom shows the average surface temperature at Ryan
Field, in the Avra Valley (Sinclair 1969). Sinclair’s ob-
servations pose at least two important questions: why
is there an abrupt increase in the number of dust devils
around 1030–1100 MST, and why does the dust devil
activity peak at around 1300 MST? We use Eq. (30) to
address these two questions.

Figure 4 displays a sketch of typical early-morning
temperature soundings around Tucson. A temperature
inversion extending from the surface to a few hundred
meters above it often occurs due to overnight heat loss
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TABLE 1. Predicted energy flux available to drive dust devils (Fan)
in typical summertime days around Tucson, Arizona. The values were
computed with Eq. (22) using data from a typical early-morning
temperature sounding around Tucson and observed diurnal variation
of the surface sensible heat flux for a southwest desert region (Sellers
1965).

Time
h

(adm)
FS

(W m22)
Fan

(W m22)

1000 MST
1100 MST
1200 MST
0100 MST
0200 MST

0.01
0.01
0.05
0.05
0.05

225
320
420
455
440

2
3

21
23
22

0300 MST
0400 MST
0500 MST
0600 MST

0.05
0.05
0.05
0.05

320
270

55
0

16
14

3
0

by radiation. After sunrise, the surface is warmed by
solar radiation, and hot air parcels rise until they become
colder than their environment. The thermodynamic ef-
ficiency of these early-morning convective plumes is
very small (&0.01) because they are very shallow [see
Eq. (22)]. These weak convective plumes will continue
until the surface temperature is large enough to produce
convective plumes that can break through the inversion
layer (this typically occurs at around 1100 MST). Fur-
ther temperature increases will rapidly cause the depth
of the convective plumes to increase to a few thousand
meters. This, in turn, will produce an abrupt increase
in the thermodynamic efficiency of convective plumes
and dust devils.

The energy flux available to drive convective plumes
and dust devils is proportional to the product of their
thermodynamic efficiency with the heat input (the non-
convective surface heat flux). For dry convective
plumes, the heat input is approximately equal to the
surface sensible heat flux.

Table 1 shows the predicted flux of energy available
to drive dust devils in typical summertime days around
Tucson, Arizona. The values displayed in Table 1 were
computed with Eq. (22), using data from a typical early-
morning temperature sounding around Tucson and ob-
served diurnal variation of the surface sensible heat flux
(Sellers 1965). The calculations based on our theory
explain both the abrupt increase in dust devil occurrence
around 1100 MST and the time of peak dust devil oc-
currence. The rapid increase in dust devil occurrence at
around 1100 MST is due to an abrupt increase in the
efficiency of thermal plumes. The peak in the dust devil
occurrence at around 1300 MST is due to a peak in the
surface heat input at a time of thermodynamically ef-
ficient (deep) convective plumes.

4. Conclusions

We present a scaling theory for dust devils that pro-
vides a simple physical interpretation for their intensity,
diurnal variation in occurrence, and potential spatial dis-

tribution. Our theory was successfully tested against
observations of dust devils around Tucson, Arizona. It
predicted the correct pressure depression, wind velocity,
and the diurnal variation in the occurrence of dust devils.
We are currently applying our scaling theory to water-
spouts and tornadoes with encouraging results.

Our theory predicts that the potential pressure de-
pression between the center of a dust devil and its en-
vironment is a function only of the ambient thermo-
dynamic variables. Thus, given the environmental con-
ditions, the potential pressure depression of a dust devil
is a known variable. Since dust devils receive their vor-
ticity from ambient wind shears, our theory suggests
that their radius must be determined by the initial an-
gular momentum of air parcels converging toward their
center. That is, the tangential velocity of air parcels
converging toward the center of a dust devil increase,
but only up to a point where the dust devil pressure
depression can still maintain a cyclostrophic balance.
Then, the farther movement of air parcels toward the
center of the dust devil would produce an unbalanced
centrifugal force that would drive the air parcels away
from the dust devil center (an expansion of the dust
devil region of maximum tangential wind). The above
hypothesis suggests that ambients of stronger horizontal
wind shears lead to larger dust devils than ambients of
smaller wind shears. This conclusion is supported by
observations that dust devil diameters are biased toward
large values in environments of high wind speed, and
therefore large horizontal wind shears (Sinclair 1966).
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