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A Simple Treatment of Constraint Forces and Constraint
Moments in the Dynamics of Rigid Bodies

Oliver M. O’Reilly · Arun R. Srinivasa

November 6, 2014

Abstract In this expository article, a simple concise

treatment of Lagrange’s prescription for constraint forces
and constraint moments in the dynamics of rigid bodies

is presented. The treatment is suited to both Newton-

Euler and Lagrangian treatments of rigid body dynam-

ics and is illuminated with a range of examples from

classical mechanics and orthopedic biomechanics.

Keywords Lagrange’s equations · Constraints ·

Constraints forces · Constraint moments

1 Introduction

Consider formulating the equations of motion for the

classical problem of a thin circular disk shown in Fig-
ure 1 that is sliding with a point XP in contact with a

smooth horizontal surface. One approach to formulat-

ing the equations of motion is to use Lagrange’s equa-

tions. To proceed, one picks a coordinate system (de-

noted by q1, . . . , q6) to describe the rotation and trans-
lation of the disk. An astute choice is to select the

Cartesian coordinates x and y of the center of mass,
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a set of 3-1-3 Euler angles ψ, θ, and φ, and the vertical

coordinate zP of the point of contact XP . The coordi-
nate zP is related to the vertical coordinate z of the

center of mass by the simple relation

q6 = zP = z −R sin(θ). (1)

After choosing the coordinate system, we can calculate
the kinetic T and potential U energies of the disk. For

the disk in motion on the plane, the coordinate q6 is

constrained to be zero. As a result, the equations of

motion have a Lagrange multiplier λ on the right hand
side:

d

dt

(

∂T

∂q̇Γ

)

−
∂T

∂qΓ
+
∂U

∂qΓ
= ΦΓ , (Γ = 1, . . . , 6) , (2)

where the generalized constraint force is

ΦΓ = λδ6Γ , (3)

and δ6Γ is the Kronecker delta.

The equations of motion (2) supplemented with (3)

and the constraint q6 = 0 provide 5 differential equa-

tions for q1, . . . q5 and an equation for λ. The latter

equation is

d

dt

(

mRθ̇ cos (θ)
)

+mg = λ. (4)

It is important to note that λ depends on the motion of

the disk and is determined by the equations of motion.

From a historical perspective, the introduction of the

multiplier λ dates to Lagrange’s first treatment of his

equations of motion for holonomically constrained rigid
bodies in the 1780s (cf. [15]).

In the centuries following Lagrange’s work, his im-

plementation of the Lagrange multiplier to accommo-

date constraints was extended to include constraints of

http://dx.doi.org/10.1115/1.4028099
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Fig. 1: A circular disk of radius R moving on a hori-

zontal plane. The position vector of the instantaneous
point of contact XP of the disk and the plane relative

to the center of mass X̄ of the disk is always along e
′′

2
.

A set of 3-1-3 Euler angles are used to parameterize the

rotation of the disk.

the form

6
∑

Γ=1

AΓ q̇
Γ + eC = 0. (5)

Here, the seven functions AΓ and eC depend on q1, . . . , q6

and t. The prescription for the generalized constraint

forces, which are denoted by Φ1, . . . , Φ6, associated with

(5) is (see, e.g., [1,28,32]):

Φ1 = λA1, . . . , Φ6 = λA6. (6)

The (determinate system of) equations of motion for

the system are then (2) supplemented by (5) where the

generalized constraint forces are prescribed by (6). It

should be clear that (6) subsumes the case of the sliding
disk above because the constraint q6 = 0 can be written

as q̇6 = 0 and (6) then leads to Φ1 = . . . = Φ5 = 0 and

Φ6 = λ.

From a pedagogical point of view, it is natural to

ask if a physical interpretation can be given to λ in

(6)? The answer to this question is yes. For instance,

for the sliding disk considered previously, λE3 is the

normal force N acting at the point XP . Indeed with
this insight it is easy to see that (4) is simply a bal-

ance of the vertical inertia of the disk, gravity and the

normal force acting at the instantaneous point of con-

tact XP . However, a physical interpretation of (6) is
not always obvious and is challenging for many instruc-

tors to explain. In addition, because of the predom-

inant use of Lagrange’s equations of motion and its

progeny1 in establishing equations of motion for con-

strained mechanical systems, little emphasis is placed

in textbooks on physical interpretations of the gener-

alized constraint forces. Consequently, the benefits of

establishing the equations of motion using the methods
of analytical mechanics often come at the expense of a

lack of detail and transparency on the physical nature

of the constraint forces and constraint moments acting

on the rigid body.2

The purpose of the present paper is to provide a

treatment of generalized constraint forces that readily

establishes their connection to the constraint forces Fc

and constraints moments Mc acting on a rigid body.

While Fc and Mc ensure that the rigid body’s motion
satisfies the constraints, they also constitute an addi-

tional set of unknowns that must be solved along with

the motion of the rigid body. The treatment is a devel-

opment of our earlier works [4,21,22,26] and uses tools
that are employed to represent conservative moments,

moments in anatomical joints, and constraints on the

rotational motion of a rigid body.

After reviewing some background and notation, we

start with a series of examples of constrained rigid bod-
ies and examine the nature of the constraint forces and

constraint moments acting on them. The series of ex-

amples motivates a prescription for Fc and Mc. We

then show how this prescription is identical to the pre-
scription featuring Lagrange multipliers that dominates

analytical mechanics. The paper closes with a discus-

sion of systems of rigid bodies and suggested avenues

for students to explore.

2 Background and Notation

The motion of a material point X on a rigid body can

be conveniently described by decomposing the motion

into the translation of the center of mass X̄ and the

rotation of the body about the center of mass:

x = Q
(

X− X̄
)

+ x̄. (7)

In this equation, Q = Q(t) is the rotation tensor of the

rigid body, and x is the position vector of X and x̄ is

the position vector of the center of mass in the present

configuration of the rigid body at time t. The vectors

X and X̄ are the respective position vectors of X and
X̄ in a fixed reference configuration of the rigid body.

In many problems, the reference configuration is chosen

1 For example, the Boltzmann-Hamel equations, the Gibbs-
Appell equations or Kane’s equations [1,13,27,33].

2 Notable discussions on constraint forces in systems of parti-
cles in analytical mechanics include Gantmacher [9] and Planck
[29], however, apart from [12,22,30], discussions of constraint (or
reaction) moments are notably absent from textbooks.
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to be the present configuration at time t = t0 and, in

this case Q (t0) is the identity tensor.

The equation (7) can be differentiated to yield an

equation relating the velocities of any pair of material

points XA and XC , say, on a rigid body:

vA − vC = ω × (xA − xC) , (8)

where ω is the angular velocity vector of the rigid body.

This vector is the axial vector of Q̇QT : ω×a = Q̇QTa

for any vector a.

As can be seen from Shuster’s authoritative review

[31], the rotation tensor Q has several representations.
One of the most useful representations is found by defin-

ing a fixed Cartesian basis {E1,E2,E3} and a corota-

tional (body-fixed) basis {e1, e2, e3} such that ei(t) =

Q(t)Ei. For several examples in this paper we will also
use a set of 3-1-3 Euler angles (ψ, θ, φ) to parameterize

Q (see Figure 1). The vector ω then has the represen-

tation

ω = ψ̇g1 + θ̇g2 + φ̇g3, (9)

where the three unit vectors

g1 = E3,

g2 = e
′

1
= cos(ψ)E1 + sin(ψ)E2,

g3 = e3. (10)

constitute a basis which is known as the Euler basis (cf.

Figure 1).

While the Euler basis vectors are readily related to

the axes of rotation that are used to construct the Euler
angle representation for Q, they form a non-orthogonal

basis. In particular, g1·g3 = cos (θ). As a result, ω·g3 =

ψ̇ cos (θ)+φ̇. In rigid body dynamics, it is useful to have

a basis that we can readily use to isolate the speeds ψ̇,
θ̇, and φ̇ by taking the inner product of ω with these

basis vectors. Such a basis is known as the dual Euler

basis [22,26]. Given the 3-1-3 Euler basis vectors, it

is straightforward to compute the corresponding dual

Euler basis vectors g1, g2 and g3:

g1 =
1

g
(g2 × g3)

= cosec (θ) cos(φ)e2 + cosec (θ) sin(φ)e1,

g2 = g2 = cos(φ)e1 − sin(φ)e2,

g3 =
1

g
(g1 × g2)

= e3 − cot(θ) (cos(φ)e2 + sin(φ)e1) , (11)

where g = (g1 × g2) · g3 = − sin(θ). The dual Euler

basis is not defined when sin(θ) = 0. For this pair (θ =

0, π) of singular values of θ, the Euler basis fails to be
a basis. We leave it as an exercise to verify that

ω · g1 = ψ̇, ω · g2 = θ̇, ω · g3 = φ̇. (12)

As a result of these identities, the dual Euler basis vec-

tors find applications with constraint moments, conser-

vative moments and for moments in a joint coordinate

system [6,21,24,25].

The equations of motion of a rigid body of mass
m can be determined from the balances of linear and

angular momentum:

F = m ˙̄v, M = Ḣ. (13)

Here, H is the angular momentum of the rigid body

relative to its center of mass X̄, F is the resultant force

acting on the rigid body, and M is the resultant mo-
ment relative to X̄ acting on the rigid body. When the

body is subject to N constraints, the balance laws are

supplemented by the N constraints and N prescrip-

tions for the constraint forces and constraint moments.
As emphasized in a marvelous discussion by Planck [29,

Chapter VI], the resulting system of 6 + N equations

should form a determinate system both for the 6 un-

knowns x̄ and Q and the constraint forces and con-

straint moments.

3 Illustrative Examples

To set the stage for our discussion of constraint forces
and moments, we examine a range of problems from

rigid body dynamics. We start with a familiar example

from an undergraduate dynamics course, and then turn

to examples of rolling and sliding rigid bodies and a

more complex example of a whirling pendulum.

XA

e1

e2

E1

E2

Fc

Mc

Fig. 2: A rigid body rotating in a plane about a fixed
point XA. The constraint force Fc and constraint mo-

ment Mc which ensure that the point XA remains fixed

and the axis of rotation is constrained to be E3 by a

revolute joint at XA, respectively, are also shown.
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3.1 Planar Motion of a Body About a Fixed Point

For our first example, we consider a body which is con-

nected by a revolute joint to the ground at a fixed mate-

rial point XA (cf. Figure 2). The body is free to perform

planar rotations about an axis of rotation E3. However,

because XA is fixed and the body cannot rotate about
the planar directions E1 and E2, its motion is subject

to five constraints. The most convenient method to ex-

press these constraints uses the velocity vector of the

point A and the angular velocity vector of the rigid
body:

E1 · vA = 0, E2 · vA = 0, E3 · vA = 0,

E1 · ω = 0, E2 · ω = 0. (14)

To make sure that XA stays fixed, a reaction force RA

acts at this point. This reaction force has three indepen-

dent components: each one restricting the translation of
XA in a given direction. The body also cannot rotate

about any axis other than E3. Hence, the joint needs

to provides a reaction moment that prevents rotation

in the E1 and E2 directions.
We refer to RA as a constraint force, Fc = RA, and

the reaction moment provided by the joint as a con-

straint moment Mc. In addition to the reaction force’s

three independent components, the reaction moment

should have two independent components which model
the resistance of the revolute joint to rotation in the

E1 −E2 plane. In conclusion, we prescribe

Fc =

3
∑

k=1

λkEk acting at the point XA,

Mc = λ4E1 + λ5E2. (15)

Here, the components λ1, . . . , λ5 are found from the bal-

ances of linear and angular momentum. For example,

in an undergraduate dynamics course it is common to

use F = ma to determine the joint reaction force Fc

(i.e., λ1, λ2, and λ3). The E3 component of the bal-
ance of angular momentum relative to the point XA,

MA = ḢA, is also used to determine the differential

equation governing the motion of the rigid body. Less

standard in textbooks is to use the E1 and E2 compo-
nents of MA = ḢA to determine λ4 and λ5.

3

It is useful at this stage in our discussion to point

out that the prescription (15) assumes that the revo-

lute joint is free of Coulomb friction. The reader might

also note the similarities between the constraints (14)
and the expressions (15) for Fc and Mc. For exam-

ple, observe the fact that there are 5 constraints and 5

quantities λ1, . . . , λ5. This feature will appear in all the

forthcoming examples.

3 An example of such a calculation can be found in [23].
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Fig. 3: A cylinder sliding on a smooth horizontal sur-

face. The constraint force Fc and constraint moment
Mc which ensure that the center of mass X̄ moves in

the horizontal plane and the cylinder does not rotate

into the plane, respectively, are also shown.

3.2 Sliding Cylinder

As a second example, consider a cylinder sliding on a
smooth horizontal surface shown in Figure 3. The nor-

mal to the surface is E3 and the axis of symmetry of

the cylinder is e3. Clearly, the center of mass X̄ of the

cylinder can only move horizontally and the cylinder

cannot rotate into the plane. Following [21,22], these
two constraints can be expressed as

E3 · v̄ = 0, (e3 ×E3) · ω = 0. (16)

In the second constraint, the vector e3 × E3 has the

property that it is always normal to the axis of symme-
try of the cylinder and lies in the horizontal plane.

Along the line of contact of the cylinder and the sur-

face a normal force field will be present. This force field

ensures that the motion of the cylinder satisfies (16)
and appears in the equations of motion of the cylinder

as a resultant force (or normal force) and a resultant

moment. The resultant force will be in the E3 direction

and act at the center of mass and the moment will be

normal to the contact line and the axis of the cylinder.
We summarize these observations, by noting that the

resultant force is a constraint force Fc acting at X̄ and

the moment is a constraint moment Mc where

Fc = λ1E3 acting at the point X̄,

Mc = λ2 (e3 ×E3) . (17)

The quantities λ1 and λ2 must be determined from the

balance laws.
We can use the balance laws or, equivalently, La-

grange’s equations of motion, to solve for the motion of

the cylinder and the unknowns λ1 and λ2. Paralleling
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the methods in [21,22], we use a set of 3-1-3 Euler angles

to parameterizeQ and a set of Cartesian coordinates to

parameterize the motion of the center of mass. The in-

tegrable constraints on the rigid body can be expressed

as θ = π
2
and x̄ · E3 = 0. Leaving the establishment of

the results as an exercise, we would find

Fc = mgE3,

Mc = Iaψ̇φ̇ (cos(φ)e1 − sin(φ)e2) , (18)

where Ia is the moment of inertia of the cylinder about

the e3 axis.

 

g
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Fig. 4: A rigid body rolling without slipping on a rough

horizontal plane. The constraint force Fc acting at the

instantaneous point of contact XP (where vP = 0) can
be decomposed into a normal force N and friction force

Ff : Fc = N+ Ff .

3.3 Rolling and Sliding Rigid Bodies

As a third example, consider a rigid body in motion

with a single instantaneous point XP of contact with a

surface (see, e.g., Figure 4). If the body is sliding, then

there is a single constraint:

n · vP = f(t), (19)

where n is the normal vector to the surface at XP and
f(t) is a prescribed function of time which vanishes if

the surface is fixed. The vector n depends on the loca-

tion of the rigid body and time (if the surface is mov-

ing). For example for the sliding disk shown in Figure
1, n = E3 and f = 0. At the point of contact, a normal

force N exerts a force on the sliding body. This normal

force is a constraint force and so we prescribe

Fc = N = λn acting at the point XP , Mc = 0.

(20)

Note that we are assuming that the constraint at XP

is enforced purely by a force acting at that point. If

we assumed dynamic friction were also present at the

point, then a friction force would be added to Fc and a

frictional moment would be added to Mc. For an exam-
ple of this instance see the discussions of the dynamics

of Euler’s disk in [14,16,17].

For a rigid body rolling on the surface mentioned

previously, one has three constraints:

Ek · vP − vs ·Ek = 0, (k = 1, 2, 3) . (21)

Here, vs is the velocity vector of the point on the surface

that is coincident with XP . Rolling contact is main-

tained by static Coulomb friction Ff while a normal

force N ensures that the rolling body doesn’t penetrate
the surface. The resultant of these forces is the con-

straint force acting on the rigid body:

Fc = N+Ff =
3

∑

k=1

λkEk acting at the point XP . (22)

The three unknowns λ1, λ2, and λ3 reflect the fact that

normal force has one unknown component and the fric-
tion force has two independent components. It may be

helpful to recall that part of the solution procedure

when solving for the motion of a rolling rigid body in-

volves solving the unknowns Ff and N.

g

XA

X̄

ψ̇ = Ω

θ
E1

E2

E3

e3

Fc

Mc

Fig. 5: A whirling rigid body. The constraint force Fc

and constraint moment Mc are also shown.

3.4 A Whirling Rigid Body

Consider the rigid body in Figure 5 which is attached

to a spinning shaft by a revolute joint at XA. The shaft

is subject to a prescribed angular speed Ω(t) and the

rigid body is subject to 5 constraints:

Ek · vA = 0, (k = 1, 2, 3) ,
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g1 · ω −Ω = 0, g3 · ω = 0, (23)

where we use a set of 3-1-3 Euler angles (ψ, θ, φ) to

parameterize the rotation of the rigid body. Note the
use of the dual Euler basis to express the constraints in

compact form. Expressions for these basis vectors are

recorded in (11).

To make sure that XA stays fixed, a reaction force
RA acts at this point. As in our first example, this reac-

tion force has three independent components: each one

restricting the translation of XA in a given direction.

The body is only free to rotate in the g2 direction and

so we need constraint moments in directions perpendic-
ular to g2 to ensure this freedom is preserved. Because

g1 · g2 = 0 and g3 · g2 = 0, we thus prescribe

Fc =
3

∑

k=1

λkEk, acting at the point XA,

Mc = λ4g
1 + λ5g

3. (24)

The constraint moment λ4g
1 can be interpreted as the

motor torque needed to drive the shaft at its prescribed

speed. The power required to achieve this is given by

λ4g
1 · ω = λ4Ω. We also note that g1 is never parallel

to g1.

4 Constraints and Lagrange’s Prescription

Traditionally prescriptions for Fc and Mc are either
couched in terms of physical arguments as discussed

in the four examples discussed in the previous section

or feature generalized constraint forces and a virtual

work assumption (as in the sliding disk example dis-
cussed in the introduction). An alternative formulation

of Lagrange’s prescription can be obtained by combin-

ing features of both prescriptions as follows.

Suppose that a constraint πC = 0 on the motion of

a rigid body can be expressed in the form

πC = fC · vC + hC · ω + eC , (25)

where vC is the velocity vector of a material point XC

on the body, and the functions fC , hC , and eC depend
on Q, x̄ and t. Then, we define Lagrange’s prescription

for Fc and Mc as

Fc = λ
∂πC

∂vC

= λfC acting at the point XC ,

Mc = λ
∂πC

∂ω
= λhC , (26)

where λ is a function which is determined by the equa-
tions of motion.

The prescription (26) can be generalized in an ob-

vious manner to systems of constraints and in Section

Table 1: Summary of the constraints and constraint

forces Fc and constraint moments Mc for the examples

from Section 3.

Constraints Constraint Forces
Constraint Moments

Pinjointed Ek · vA = 0 Fc =
∑

3

k=1
λkEk

Rigid E1 · ω = 0 Mc = λ4E1 + λ5E2

Body E2 · ω = 0 Fc acts at XA

Sliding Fc = λn

Rigid n · vP = 0 Mc = 0

Body Fc acts at XP

Rolling Fc =
∑

3

k=1
λkEk

Rigid Ek · vP = vs · Ek Mc = 0

Body Fc acts at XP

Sliding E3 · v̄ = 0 Fc = λ1E3

Cylinder (e3 × E3) · ω = 0 Mc = λ2e3 × E3

Fc acts at X̄

Whirling Ek · vA = 0 Fc =
∑

3

k=1
λkEk

Rigid g1
· ω = Ω Mc = λ4g

1 + λ5g
3

Body g3
· ω = 0 Fc acts at XA

5 we will show how the prescription (26) is equivalent

to traditional prescriptions for generalized constraint
forces. In anticipation of this equivalence result we used

λ in (26). As evidenced from the examples discussed in

Section 3, for each constraint we have a single λ. This

ensures that the system of equations governing the mo-

tion of the body are sufficient to determine both the
constrained motion of the body and the constraint force

Fc and constraint moment Mc.

4.1 A Review of the Examples

To see if the prescription (26) makes physical sense,

we return to the examples discussed in Section 3. The

constraints and the constraint forces and constraint mo-

ments for the examples are summarized in Table 1. It

is straightforward to conclude from the results summa-
rized in this table that the prescriptions for Fc and Mc

are completely compatible with Lagrange’s prescription

(26).

4.2 Power of the Constraint Force and Constraint

Moment

The combined mechanical power P of Fc and Mc can

be computed:

P = Fc · vC +Mc · ω

= λ (fC · vC + hC · ω)

= −λeC . (27)

Hence, if eC 6= 0, we anticipate that P will be non-

zero. In this case, the combined effects of Fc and Mc
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will produce work and change the total energy of the

rigid body. An example of this instance occurs in the

whirling rigid body discussed in Section 3.4.

(a)

(b)

O

O

XC

XC

XA

XA

xC

xC

xA

xA

Fc = λfC

Fc = λfC

Mc = λhC

Mc = λhC + (xC − xA)×Fc

Fig. 6: Equipollence of (a) a constraint force Fc acting
at XC and a constraint moment Mc = λhC and (b)

the same force acting at XA and a different constraint

moment Mc = λhC + (xC − xA)× Fc.

4.3 Choosing a Different Material Point

Consider the sliding disk shown in Figure 1 and dis-

cussed in Sections 1 and 3.3. Earlier, we wrote the
constraint that the disk is sliding as vP · E3 = 0. In-

voking Lagrange’s prescription, we can then prescribe

Fc = λE3 acting at XP and Mc = 0. It is natural to

ask what would happen if we wrote the constraint us-
ing a different material point. For example, suppose we

wrote the constraint using the center of mass:

E3 · v̄ +
(

−Re
′′

2 ×E3

)

· ω = 0. (28)

Using Lagrange’s prescription with this constraint, we
find

Fc = λE3 acting at X̄,

Mc = λ
(

−Re
′′

2 ×E3

)

. (29)

With some insight, we conclude that this force-moment

pair is equipollent to a force Fc = λE3 acting at XP .

As a result, one can work with either vP ·E3 = 0 or (28)

and arrive at equivalent constraint force and constraint

moment prescriptions.

Based on the previous example, we are lead to the

suspicion that Lagrange’s prescription doesn’t depend
on the choice of material point XC that we choose to

formulate the constraint. To see that this is true in gen-

eral let us choose to express the constraint function (25)

in terms of another material point, say XA (cf. Figure
6). The transformation of the function πC given by (25)

to the equivalent constraint function πA,

πA = fA · vA + hA · ω + eA, (30)

where πA = 0 is equivalent to πC = 0, can be achieved

using the identity

vC = vA + ω × (xC − xA) . (31)

Substituting for vC in (25) then yields the correspon-

dences

fA = fC ,

hA = hC + (xC − xA)× fC ,

eA = eC . (32)

Using (32) it is straightforward to see that the con-

straint force (λfA acting at XA) and constraint moment
(λhA) provided by Lagrange’s prescription using (30)

are equipollent to (26):
{

Fc = λfC acting at XC

Mc = λhC

}

⇔

{

Fc = λfA = λfC acting at XA

Mc = λhA = λhC + (xC − xA)× Fc

}

. (33)

As shown schematically in Figure 6, the difference in

the constraint moments can be attributed entirely to

the difference in the point of application of the force Fc

for the two cases.

5 Lagrange’s Prescription and Lagrange’s

Equations of Motion

Lagrange’s equations of motion for a rigid body can be

written in the form

d

dt

(

∂T

∂q̇Γ

)

−
∂T

∂qΓ
= QΓ , (Γ = 1, . . . , 6) , (34)

where T = T
(

q1, . . . , q6, q̇1, . . . , q̇6
)

is the kinetic en-

ergy of the rigid body, QΓ are the generalized forces,

and q1, . . . , q6 are the coordinates used to parameter-

ize the motion (x̄,Q) of the rigid body. For example,
q1, q2, and q3 could be a set of Cartesian coordinates

for x̄ and q4, q5, and q6 might be a set of Euler angles

used to parameterize Q.
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If the resultant force acting on the rigid body is

F and the resultant moment (relative to the center of

mass) of the rigid body is M, then the following well-

known identification for QΓ holds:4

QΓ = F ·
∂v̄

∂q̇Γ
+M ·

∂ω

∂q̇Γ
. (35)

For future purposes, it is illuminating to consider a force

FC acting at a point C on a rigid body with xC = x̄+

πC . It is straightforward to show that FC ’s contribution
to QΓ can be expressed in two equivalent manners:

FC ·
∂v̄

∂q̇Γ
+ (πC × FC) ·

∂ω

∂q̇Γ
= FC ·

∂vC

∂q̇Γ
(36)

where the following pair of identities are used to estab-
lish (36) from (35):

vC = v̄ + ω × πC ,

∂vC

∂q̇Γ
=

∂v̄

∂q̇Γ
− πC ×

∂ω

∂q̇Γ
. (37)

The key to establishing (37)2 from the (37)1 is to note

that the relative position vector πC depends on the
coordinates qΓ and not their velocities q̇Γ .

Consider a constraint πC = 0 (cf. (25)) on the mo-

tion of a rigid body. Using the coordinates and (25), the

constraint πC = 0 can be expressed in the equivalent
form:

6
∑

Γ=1

AΓ q̇
Γ + eC = 0. (38)

Here, the six functions AΓ depend on q1, . . . , q6 and t:

AΓ = fC ·
∂vC

∂q̇Γ
+ hC ·

∂ω

∂q̇Γ
. (39)

As mentioned in the introduction, the prescription for

the generalized constraint force ΦΓ associated with (38)
is well known (see, e.g., [1,32]):

ΦΓ = λ̃AΓ (40)

where λ̃ is a Lagrange multiplier. Lagrange’s prescrip-

tion for the same constraint is given by (26): Fc = λfC
acting at XC and Mc = λhC . To help show that (26)

and (40) are equivalent, we observe with the help of (35)

and (36) that the contributions of Fc = λfC acting at

XC and Mc = λhC to QΓ are

Fc ·
∂vC

∂q̇Γ
+Mc ·

∂ω

∂q̇Γ
= λfC ·

∂vC

∂q̇Γ
+ λhC ·

∂ω

∂q̇Γ

= λAΓ . (41)

4 This identification ensures that Lagrange’s equations of mo-
tion (34) are equivalent to the Newton-Euler balance laws F =
m ˙̄v and M = Ḣ where H is the angular momentum of the rigid
body of mass m relative to X̄ (see, e.g., [1,3,7,22] for further
details on the equivalence).

Identifying λ = λ̃, we conclude that the prescription

(40), which is used in most textbooks on analytical dy-

namics, is equivalent to Lagrange’s prescription (26).5

The beauty of Lagrange’s prescription when applied

to integrable constraints is best appreciated by exam-
ining the contributions of Fc and Mc to the generalized

forces. To see this we consider an integrable constraint

of the form (25) and suppose that the coordinates are

chosen so that the constraint can be simply expressed
as

q̇6 + eC(t) = 0. (42)

That is,

q̇6 = fC · vC + hC · ω. (43)

We next assume that the associated constraint force Fc

and constraint moment are prescribed by Lagrange’s

prescription (26). With the help of (35) and (36), we
find that Fc and Mc make the following contribution

to QΓ :

Fc ·
∂vC

∂q̇Γ
+Mc ·

∂ω

∂q̇Γ
= λfC ·

∂vC

∂q̇Γ
+ λhC ·

∂ω

∂q̇Γ

= λ
∂

∂q̇Γ
(fC · vC + hC · ω)

= λ
∂q̇6

∂q̇Γ

= λδ6Γ . (44)

Hence, Mc and Fc will only contribute to the sixth

member of Lagrange equations. The remaining five La-

grange’s equations can be used to determine differential
equations for the generalized coordinates q1, . . . , q5.

The result (44) justifies the traditional approach

employed with Lagrange’s equations of motion for holo-

nomically constrained rigid bodies. In these works, the
integrable constraints are imposed during the computa-

tion of the kinetic energy to yield a constrained kinetic

energy. Assuming that Lagrange’s prescription can be

used to prescribe Fc and Mc, then this constrained ki-

netic energy suffices to determine the equations of mo-
tion governing the generalized coordinates of the rigid

body.

6 Closing Remarks

The treatment of Lagrange’s prescription we have pre-

sented can be readily extended to situations featuring

two or more rigid bodies. Some guidance on this mat-
ter can be found by following the developments of [26],

5 With relation to other treatments of constraint forces, it is
easy to observe from (27) and (39) that the combined virtual
work of Fc and Mc will be zero as expected.
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however instead of writing the constraint in terms of the

motions of the centers of mass of the individual bodies,

one can express the constraints in terms of the motions

of the material points on both bodies featuring in the

constraint. For example, if two bodies are connected by
a ball-and-socket joint at a point XC1

of one body and

XC2
of the second body, then the three constraints on

the system of two rigid bodies can be expressed as

Ek · vC1
− Ek · vC2

= 0, (k = 1, 2, 3) , (45)

and Lagrange’s prescription will yield a pair of con-

straint forces and constraint moments

Fc1 =

3
∑

k=1

λkEk acting at XC1
on the first body,

Mc1 = 0,

Fc2 = −

3
∑

k=1

λkEk acting at XC1
on the second body,

Mc2 = 0. (46)

Note that the constraint force Fc1 is equal and oppo-

site to the constraint force acting on the second body:

Fc2 = −Fc1 . As noted in [5, Ch. 7], [8], [19], and [26],
among others, this is the evidence for how Lagrange’s

prescription is intimately related to Newton’s third law

in this case. It might be of interest to some readers

that Noll [20] has also remarked on this coincidence for

conservative force fields.
In addition to mechanisms, one of the most use-

ful areas of application of Lagrange’s prescription is to

multibody models for anatomical joints. For example,

consider the knee joint shown in Figure 7. This joint
governs the motion of the tibia relative to the femur

and features the surface of the femur moving on the tib-

ial plateau. The constraints on the relative motion are

approximately similar to those experienced by a cone

sliding on a horizontal plane. Modulo relabeling of axes,
it is standard to parameterize the relative rotation using

a set of 3-2-1 Euler angles [11,24], where the first an-

gle ψ is known as flexion-extension rotation, the second

angle θ is known as varus-valgus rotation and the third
angle φ is known as internal-external rotation. The con-

straints on the relative motion can be written in several

equivalent forms. The simplest form is to assume that

the condyles remain in contact with the tibial plateau.

Omitting details as they are similar to those presented
above, Lagrange’s prescription would yield a pair of re-

action forces N1 and N2 acting on the femur and an

equal and opposite pair acting on the tibia (see Figure

8). The pair of normal forces is equipollent to a single
constraint force FcF = N1 + N2 acting on the femur

and a constraint moment McF in the g2 = g2 direc-

tion. An equivalent method to motivate the constraint

C

D
g1

g3

g1 = p3

g2

g3 = d2

p3

p1

p2

d3

d1

d2

ψ

θ

φ

OD

OP

Fig. 7: Schematic of the right knee joint showing
the proximal {p1,p2,p3} and distal {d1,d2,d3} bases

which corotate with the femur and tibia, respectively.

The Euler and dual Euler basis vectors associated with

the rotation of this joint and the condyles C and D are
also shown. This figure is adapted from [24].

moment is to note that the pair of condyles in contact

with the tibial plane imposes a constraint which can be

expressed in several equivalent forms:

θ = θ0, θ̇ = 0, (ωT − ωF ) · g2 = 0, (47)

where ωT is the angular velocity of the tibia and ωF

is the angular velocity of the femur. Then Lagrange’s
prescription would prescribe a moment McT = λg2 act-

ing on the tibia and an equal and opposite moment

McF = −λg2 acting on the femur. We leave it as an ex-

ercise for the reader to convince themselves that these
moments are generated by the equal and opposite nor-

mal forces N1 and N2.

While Lagrange’s prescription in either of its equiv-

alent forms has tremendous analytical advantages and,

following Gauss [10] in 1829, the remarkable feature
that it provides the minimum generalized force needed

to enforce a constraint (cf. [2,25,28,33] and references

therein), it has long been realized that it is not uni-

versally applicable. To this end there are many addi-
tional prescriptions (or as they are sometimes known

constitutive equations) for constraint forces and con-

straint moments. These include dynamic Coulomb fric-
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C

C

D

D

Femur

Tibia

N1
N2

−N1

−N2

ψ
θ

φ

Fig. 8: Schematic of the normal forces at the condyles.
For the illustrated case θ < 0. This figure is adapted

from [24].

tion, Coulomb-Contensou friction [16,17] and memory-

type generalized constraint forces in vakonomic mechan-

ics [2,18,25]. We refer the interested reader to these

references for further discussions and examples on this

rich topic.
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