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An important problem within both epidemiology and many social sciences is to break down the effect of a

given treatment into different causal pathways and to quantify the importance of each pathway. Formal mediation

analysis based on counterfactuals is a key tool when addressing this problem. During the last decade, the theo-

retical framework for mediation analysis has been greatly extended to enable the use of arbitrary statistical

models for outcome and mediator. However, the researcher attempting to use these techniques in practice will

often find implementation a daunting task, as it tends to require special statistical programming. In this paper,

the authors introduce a simple procedure based on marginal structural models that directly parameterize the

natural direct and indirect effects of interest. It tends to produce more parsimonious results than current tech-

niques, greatly simplifies testing for the presence of a direct or an indirect effect, and has the advantage that it

can be conducted in standard software. However, its simplicity comes at the price of relying on correct specifica-

tion of models for the distribution of mediator (and exposure) and accepting some loss of precision compared

with more complex methods. Web Appendixes 1 and 2, which are posted on the Journal’s Web site (http://aje.

oupjournals.org/), contain implementation examples in SAS software (SAS Institute, Inc., Cary, North Carolina)

and R language (R Foundation for Statistical Computing, Vienna, Austria).

causal inference; marginal structural models; mediation

Abbreviation: MSM, marginal structural model.

Important questions within both epidemiology and social
sciences often require moving beyond “simply” estimating
the total effect of a given exposure and instead require
breaking down the total effect into separate causal path-
ways. The foremost example of such a strategy, which we
consider here, is the decomposition of total effect into an
indirect effect mediated through a specific mediator and the
remaining direct effect.
The standard approach, which is inspired by Baron and

Kenny (1), involves estimating the direct effect as the resid-
ual association between outcome and exposure after regres-
sion adjustment for the mediator(s) and the indirect effect
by subtracting this from the total effect (on an appropriate
scale). It has been shown that this approach works in the
special case of linear models without interactions but is
fundamentally flawed otherwise (2–4). Building on the
counterfactual framework (refer to the work by Pearl (5)), a

formal approach to mediation analysis has now been devel-
oped. Using ideas of Robins and Greenland (6), Pearl (7)
showed that a total effect can always be broken down into a
so-called natural direct and indirect effect, regardless of the
underlying statistical model.
Although much attention has been given to the develop-

ment of identification conditions for natural direct and indi-
rect effects (6–11), the researcher who wishes to estimate
natural direct and indirect effects from actual data continues
to face many challenges. This is because current procedures
obtain natural direct and indirect effect estimates through a
nontrivial combination of parameter estimates from a re-
gression model for the mediator and a regression model for
the outcome (4, 8, 10–15). The way to compute natural
direct and indirect effects can therefore differ substantially
between different types of mediator or outcome, and
standard error calculations become even more tedious.
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Furthermore, even simple models for the mediator and
outcome (e.g., a linear model for the mediator and a logistic
regression model for the outcome) tend to produce
complex expressions of natural direct and indirect effects.
This can make results difficult to report (e.g., because these
effects may turn out to depend on covariates in a complicat-
ed way). Moreover, it makes interesting hypotheses (e.g.,
for modification of the direct or indirect effect by covari-
ates) essentially impossible to test, because it can be diffi-
cult to specify models for the outcome and mediator that
satisfy the considered null hypothesis (e.g., that the natural
(in)direct effect does not depend on covariates). All in all,
this complexity places severe restrictions on the practical
utility of current methods for computing natural direct and
indirect effects for general epidemiologic research.

In this paper, we suggest a unified model for the direct
and indirect effects with a corresponding simple estimation
procedure. The estimation procedure is related to work by
Hong (16) but generalized to a broad class of outcomes.
The approach can, in principle, be used for any type of
outcome (binary, continuous, survival, categorical, and so on)
and any type of mediator, even when exposure-mediator
interactions exist. Because it involves directly modeling the
natural direct and indirect effects of interest, results become
simpler for reporting, and interesting hypotheses concern-
ing these effects become straightforward to test. The ap-
proach can be implemented in any software package
capable of handling weighted modeling. However, its sim-
plicity comes at the price of relying on correct specification
of models for the distribution of mediator (and exposure)
and of not exploiting all information in the data; more effi-
cient estimators under the same model can thus be ob-
tained. Web Appendixes 1 and 2, posted on the Journal ’s
Web site (http://aje.oupjournals.org/), present detailed im-
plementation examples in SAS software and R language.

DEFINITIONS AND ASSUMPTIONS

The results of this paper are based on the directed
acyclic graph depicted in Figure 1, where A is the observed
exposure of interest; M, the mediator; C, a set of baseline
confounders; and Y, the outcome. Thus, it is assumed that
there are no unmeasured confounders (confounders not in-
cluded in C) for the exposure-outcome, exposure-mediator,
or mediator-outcome relations. Variables are allowed to be
of any type (e.g., continuous, binary, categorical, or surviv-
al). For each subject, we define the counterfactual variable

Ya,m as the outcome we would, possibly contrary to the
fact, have observed for that subject had the exposure A
been set to the value a and the mediator M set to m. Simi-
larly, the counterfactual variable Ma denotes the value of
the mediator if, possibly contrary to the fact, the exposure
A was set to a.

Following the tradition in the causal inference literature
(9), we will describe direct and indirect effects in terms of so-
called nested counterfactuals, Ya�;Ma , denoting the outcome
that would have been observed if A were set to a* and M
were set to the value it would have taken if Awere set to a. In
particular, we will compare Ya;Ma with Ya�;Ma to obtain a
measure of the natural direct effect of changing the exposure
from a to a*. Such comparison can, for instance, be made in
terms of an average difference within levels of covariates,
E½Ya;Ma� � Ya�;Ma� jC�, or marginally, E½Ya;Ma� � Ya�;Ma� �; as a
risk ratio, P½Ya;Ma� ¼ 1�=P½Ya�;Ma� ¼ 1�, and so on. Likewise,
we will compare Ya�;Ma with Ya�;Ma� to obtain a measure of
the natural indirect effect. The word “natural” refers to the
fact that we let the mediator take the value it would take natu-
rally when the exposure is set to a.

In this paper, as in most of the work on causal mediation
analysis, we will discuss the estimation of natural direct
and indirect effects under the no-unmeasured confounding
assumption, implicit in the causal diagram of Figure 1, that
the same set of covariates C is sufficient to control for con-
founding of the associations between exposure and
outcome, exposure and mediator, and mediator and
outcome. In particular, we thus assume that there are no
variables L that are effects of exposure and that confound
the mediator-outcome relation. A formal description of
these assumptions is, for instance, given in the report by
VanderWeele and Vansteelandt (4).

COUNTERFACTUAL-BASED MEDIATION ANALYSIS

The traditional approach to estimating natural direct and
indirect effects uses the mediation formula (17) to calculate
E½Ya�;Ma jC ¼ c� as
X

m

E½Y jA¼ a�;M¼m;C¼ c�PðM¼mjA¼ a;C¼ cÞ: ð1Þ

This corresponds to estimating the mean value of the
outcome in each stratum defined by mediator and con-
founders among the individuals with treatment a* but
weighting these by the likelihood of each mediator value
among individuals with treatment a. Likewise, E½Ya�;Ma �
can be calculated as

X

c

X

m

E½Y jA¼ a�;M¼m;C¼ c�

PðM¼m jA¼ a;C¼ cÞPðC¼ cÞ:
ð2Þ

When C is high dimensional, it will be necessary to use
parametric models for the outcome mean and mediator dis-
tribution. If the outcome Y and mediator M are modeled by
a linear model, that is, E½Y jA¼ a�;M¼m;Z¼ z�¼a0þ
a�
1þa2mþa3z and E½M jA¼ a;C¼ c�¼b0þb1aþb2c,

Figure 1. Directed acyclic graph of the causal structure assumed
throughout the paper. Note that A is the exposure of interest; M, the
mediator; C, a set of baseline confounders; and Y, the outcome.

Estimating Natural Direct and Indirect Effects 191

Am J Epidemiol. 2012;176(3):190–195

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/176/3/190/99496 by guest on 25 August 2022

http://aje.oupjournals.org/
http://aje.oupjournals.org/
http://aje.oupjournals.org/
http://aje.oupjournals.org/
http://aje.oupjournals.org/


equation 2 simplifies greatly, and the natural direct and in-
direct effects are captured by α1(a − a*) and α2β1(a − a*),
respectively. However, equation 2 is less suited to out-
comes modeled by a nonlinear model, for example, binary
outcomes modeled by a logistic regression or survival out-
comes, because the resulting expressions for the natural
direct and indirect effects easily become complicated
(e.g., they may depend on the values of the confounders
in a complicated way; refer to the articles by VanderWeele
and Vansteelandt (13) and by VanderWeele (15)).

ESTIMATING NATURAL EFFECTS BY MARGINAL

STRUCTURAL MODELS

Marginal structural models (MSMs) are models for the
marginal expectation (or distribution) of a counterfactual
outcome (18). They have become popular for nonnested
counterfactuals such as Ya. For instance, the total causal
effect of the exposure A on the outcome Y can be modeled
in terms of a MSM of the form E[Ya] = b0 + b1a, where b1
then captures the average causal effect of the exposure. In
contrast, MSMs for nested counterfactuals such as Ya;Ma�
have received very little attention, with few exceptions
(19, 20). Such models are nonetheless of interest as they
enable simultaneous and parsimonious modeling of the
natural direct and indirect effect of the exposure A on
the outcome Y other than through mediator M, as, for
example,

E½Ya;Ma� � ¼ c0 þ c1aþ c2a
�: ð3Þ

Here, we have included the exposure twice to ascertain
that it works through 2 distinct causal pathways. It is now
easy to infer that c1(a − a*) captures the natural direct
effect E½Ya;Ma� � Ya�;Ma� �, that c2(a − a*) captures the
natural indirect effect E½Ya;Ma � Ya;Ma� �, and that their sum
measures the total effect E½Ya;Ma � Ya�;Ma� � ¼ E½Ya � Ya� �.
Equation 3 is a special case of the more general class of

generalized linear MSMs given by

gðE½Ya;Ma� �Þ ¼ c0 þ c1aþ c2a
� þ c3a � a�; ð4Þ

where g is a link function specifying the requested model
for the outcome (e.g., logistic model), and c3 is an interac-
tion term, which can be included if required. When c3 = 0
and g is the logit link, then exp[c1(a− a*)] captures
the natural direct effect odds ratio: odds½Ya;Ma� ¼ 1�=
odds½Ya�;Ma�¼ 1�; exp[c2(a− a*)] captures the natural indi-
rect effect odds ratio: odds½Ya;Ma ¼ 1�=odds½Ya;Ma� ¼ 1�;
and their product measures the total effect:
odds½Ya ¼ 1�=odds½Ya� ¼ 1�. Further, a value c3 differing
from zero indicates that the magnitude of the direct
effect may depend on the natural level at which the media-
tor is controlled and may thus be the result of an exposure-
mediator interaction. Robins and Greenland (6) and
Hafeman and Schwartz (9) proposed the terms pure- and
total natural (in)direct effects when such interactions are
present. Thus, when c3 is nonzero and g is the logit link,
the natural effects of changing exposure from a* to a are

given by the following:

Pure natural direct effect odds ratio:

exp½c1ða� a�Þþ c3a
�ða� a�Þ�;

Total natural direct effect odds ratio:

exp½c1ða� a�Þþ c3aða� a�Þ�;

Pure natural indirect effect odds ratio:

exp½c2ða� a�Þþ c3a
�ða� a�Þ�;

Total natural direct effect odds ratio:

exp½c2ða� a�Þþ c3aða� a�Þ�:

When, instead, exposure-covariate interactions are of in-
terest, then the above generalized linear MSMs can be
phrased conditional on covariates as

gðE½Ya;Ma� jC�Þ ¼ c0 þ c1aþ c2a
� þ c3a � a� þ c4C

þ c5a � C þ c6a
� � C: ð5Þ

Here, c5 captures the extent to which the direct effect is
modified by covariates, and c6 captures the extent to which
the indirect effect is modified by covariates.
The class of generalized linear MSMs encompasses a

wide range of models, but the Cox and Aalen models (21),
which are important models for survival data, are not in-
cluded in the class. Cox and Aalen models assume that the
hazard function corresponding to the counterfactual surviv-
al time, Ya;Ma� , can be expressed as

l0ðtÞ expðc0 þ c1aþ c2a
� þ c3a � a�Þ ðCoxMSMÞ ð6Þ

g0ðtÞ þ c1aþ c2a
� þ c3a � a� ðAalenMSMÞ; ð7Þ

where λ0(t) and γ0(t) are unspecified baseline hazards.
Whenever the outcome is a survival time, we will in addi-
tion assume that censoring satisfies the usual assumptions,
that is, that censoring is independent of event time (22)
conditional on the covariates in the MSM. The rest of the
paper is devoted to estimating MSMs that can be written as
in equations 4–7.
We propose to estimate the MSMs given by equations 4–

7 by the following procedure, which generalizes a proposal
by Hong (16) to models for the nested counterfactuals
Ya;Ma� , corresponding to a wide variety of outcome types.
We explain it first for a dichotomous exposure A. Construct
a new data set by repeating each observation in the original
data set twice and including an additional variable A* cap-
turing the 2 possible values of the exposure relative to the
indirect path. For the first replication of the observation, A*
is set to the actual value of the exposure (that is A�

i ¼ Ai),
while for the second replication, A* is set to the opposite of
the actual exposure (i.e., A�

i ¼ 1� Ai when A is coded to
be 0 or 1). The MSM given by equations 4–7 can now be
estimated from the new data set by using standard software
by regressing the outcome on the observed exposure A and
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the additional variable A* on the basis of the new data set,
weighting each observation in the expanded data set with

Wi ¼ 1
PðA ¼ AijC ¼ CiÞ

PðM ¼ MijA ¼ A�
i ;C ¼ CiÞ

PðM ¼ MijA ¼ Ai;C ¼ CiÞ :

The first fraction in these weights ensures that the expo-
sure-outcome association is adjusted for confounding by C.
Indeed, the impact of up-weighting observations with a rare
combination of exposures and confounders is to create a
pseudo-population in which the exposure is no longer asso-
ciated with C and, thus, there is no residual confounding
by C (i.e., mimicking a randomized trial). The second frac-
tion of the weights serves to distinguish between the direct
and indirect paths (by correcting for the fact that the ob-
served mediator value may differ from the counterfactual
value Ma� that is of interest).

The above approach can easily be implemented in stan-
dard software by using the following simple estimation pro-
cedure for a dichotomous exposure, which apart from step
3 is completely analogous to estimation of standard MSMs:

1. Estimate a suitable model for the exposure conditional
on confounders by using the original data set.

2. Estimate a suitable model for the mediator conditional
on exposure and baseline variables by using the original
data set.

3. Construct a new data set by repeating each observation
in the original data set twice and including an additional
variable A*, which is equal to the original exposure for
the first replication and equal to the opposite of the
actual exposure for the second replication. In addition,
add an identification variable to indicate which data
rows originate from the same subject.

4. Compute weights by applying the fitted models from
steps 1 and 2 to the new data set. In most software pack-
ages, this can be done by using “predict-functionality.”

5. Fit a suitable model to the outcome including only A
and A* (and perhaps their interaction) as covariates and
weighted by the weights from the previous step. It can
be shown (Web Appendix 3), provided that the exposure
and mediator models in steps 1 and 2 are fitted by using
a standard maximum likelihood procedure and provided
that the mediator model is sufficiently rich so as not to
contradict the restrictions imposed by the chosen gener-
alized linear MSM, that conservative confidence inter-
vals can be obtained as the estimate of the natural direct
or indirect effect plus/minus 1.96 times a robust standard
error, which can be obtained by using software for gen-
eralized estimating equations; alternatively, a bootstrap
procedure can be used.

It is well established in the literature on MSMs (refer to the
article by Robins et al. (18)) that estimators based on
inverse probability weights like 1/P(A = Ai|C =Ci) can be
unstable in samples of small to moderate size, as the
weights can become so large that individual observations
dominate the estimation. Unless the MSM is saturated,

somewhat better behaving estimators may be obtained by
instead using stabilized weights given by

Ws
i ¼

PðA ¼ AiÞ
PðA ¼ AijC ¼ CiÞ

PðM ¼ MijA ¼ A�
i ;C ¼ CiÞ

PðM ¼ MijA ¼ Ai;C ¼ CiÞ :

When the MSM includes the covariates C (compare with
equation 5), then the following stabilized weights can also
be used:

Wc
i ¼ PðM ¼ MijA ¼ A�

i ;C ¼ CiÞ
PðM ¼ MijA ¼ Ai;C ¼ CiÞ :

Note that these do not involve inverse probability weight-
ing by the exposure distribution, because the adjustment for
confounding by C now happens via a standard regression
adjustment. These weights will thereby typically be much
more stable.

The above approach is very flexible because, unlike tra-
ditional approaches, it does not work indirectly by combin-
ing parameter estimates from standard models for the
mediator M and outcome Y. In particular, it can, in princi-
ple, be used for any type of outcome, mediator, and expo-
sure and regardless of the choice of MSM and the models
for mediator and exposure. However, the approach may
lend itself less ideally to the analysis of continuous media-
tors, because this requires substituting the probabilities
P(M =Mi | A = Ai, C = Ci) in the weights by probability den-
sities, which in turn may yield unstable weights (refer to
Web Appendix 1 or 2, however, for an application where
this was not the case). For categorical exposures A, a minor
modification is needed in that one must repeat the original
data set as many times as needed to ensure that, for each
subject, A* takes on all the possible values it can take. For
continuous exposures, we recommend fitting MSMs condi-
tional on covariates, with corresponding stabilized weights
Wc

i to avoid instability due to inverse weighting by the ex-
posure distribution. Here, the user is advised to follow the
procedure prescribed for categorical exposures but to
replace A* for subject i by randomly drawn exposures. This
can either be done by resampling from the observed expo-
sures or by drawing from a normal distribution with the
mean and standard deviation matching the observed expo-
sures. For continuous exposures, a minimum of 5 draws
must be made for each original observation.

Web Appendixes 3 and 4 contain a mathematical valida-
tion of the procedure and of the validity of the robust stan-
dard errors, respectively. In addition, Web Appendixes 1
and 2 present 2 implementations (one with a binary
outcome and one with a survival outcome) of this proce-
dure in both SAS software and R language.

DISCUSSION AND CONCLUSION

It should be noted that the proposed estimators do not
exploit all available information in the data and, thus, that
more efficient estimators can, in principle, be obtained.
Furthermore, their correctness critically hinges on the correct-
ness of the MSMs and the models used for the exposure and
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the mediator, except when the MSM is specified conditional-
ly on covariates C, in which case correct specification of the
exposure model is not required. If only the MSM model is
misspecified, then the resulting measures for natural effects
can still be interpreted as a “best” approximation; however,
this is no longer the case when the exposure or mediator
models are misspecified. The current advice must therefore
be to conduct a thorough misspecification analysis for the 2
models used in this paper and to evaluate the stability of the
weights. Tchetgen Tchetgen and Shpitser (20) and subse-
quently Zheng and van der Laan (23) proposed estimators
that are efficient and multiply robust in the sense that they
merely require the correctness of 2 out of 3 models (the 3
models being the model for the exposure, the model for the
mediator, and the model for the outcome) to be correct, re-
gardless of which 2 are correct. However, implementation of
these estimators is more demanding at present. Work is
ongoing to develop alternative estimators that can also be ob-
tained via standard software, are more efficient than the ones
proposed in this paper, and also share multiple robustness
properties.
The sensitivity of effects separation techniques toward un-

measured confounders is an active area of research (11, 20,
24–26). Web Appendix 5 presents a simulation study assess-
ing the sensitivity of the described approach toward
unmeasured confounders in a simple setup of only binary
variables. As expected, the assumption of no-unmeasured
confounders is found to be critical, the only exception being
unmeasured confounding of the exposure-mediator relation,
which does not affect estimation of the direct effect.
In summary, this paper has described a simple unified

procedure for estimating natural direct and indirect effects.
The procedure can be applied to almost any combination of
variable types and can be conducted in standard software.
WebAppendixes 1 and 2 of the paper provide detailed imple-
mentation examples in SAS software and R language.
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