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Abstract

A simple two-dimensional SIS model with vaccination exhibits a backward bifurcation for some pa-
rameter values. A two-population version of the model leads to the consideration of vaccination policies in
paired border towns. The results of our mathematical analysis indicate that a vaccination campaign /
meant to reduce a disease's reproduction number R�/� below one may fail to control the disease. If the aim
is to prevent an epidemic outbreak, a large initial number of infective persons can cause a high endemicity
level to arise rather suddenly even if the vaccine-reduced reproduction number is below threshold. If the
aim is to eradicate an already established disease, bringing the vaccine-reduced reproduction number below
one may not be su�cient to do so. The complete bifurcation analysis of the model in terms of the vaccine-
reduced reproduction number is given, and some extensions are considered. Ó 2000 Elsevier Science Inc.
All rights reserved.

MSC: 34K20; 92D30
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1. Introduction

Recently there has been interest in the analysis and prediction of consequences of public health
strategies designed to control infectious diseases, particularly tuberculosis and AIDS. Attention
has been given to vaccination and treatment policies both in terms of the di�erent vaccine classes
(all/nothing, leaky, VEI) and e�cacy (e.g., [1±4]) and to application schedules and associated costs
(e.g., [5±9]).
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The study of vaccination, treatment and associated behavioral changes related to disease
transmission has been the subject of intense theoretical analysis. The literature on these topics is
ample and in the references we list but a small subset of it. We want to underline, however, a few
of those that directly relate to the approach we take in this work.

The application of a vaccination and treatment programs has the likely e�ect of inducing be-
havioral changes in those individuals subjected to it. In particular, in the case of HIV, risk be-
havior can combine with vaccination or treatment resulting in a possible harmful e�ect in terms of
disease prevalence. Blower and McLean [10] have argued that a mass vaccination campaign can
increase the severity of disease if the vaccine being applied resulted in only a 50% coverage and
60% e�cacy. Velasco-Hern�andez and Hsieh [11] and Hsieh and Velasco-Hern�andez [12] con-
®rmed this result in a theoretical mathematical model of disease transmission. In their case a too-
large case treatment rate combined with lengthening of the infectious period could result in the
increase of the treatment reproduction number, that is, treatment would contribute to the spread
of disease rather than to its elimination.

Of course, these are theoretical investigations on the plausible e�ects of vaccination and
treatment programs. The models are rather simple, but nevertheless they give insight into some of
the plausible consequences of public health policies.

A phenomenon of considerable interest recently in theoretical epidemiology is that of the ex-
istence of multiple steady-states and the associated population and epidemiological mechanisms
that produce them. Mathematical models that give rise to multiple steady-states show bifurcation
phenomena. A bifurcation in general is a set of parameter values at which an equilibrium, or ®xed
point, of the system being considered changes stability and/or appears/disappears. In epidemi-
ology, bifurcation phenomena are associated with threshold parameters, the most common of
which is the basic reproduction number, R0. R0 is a dimensionless quantity that represents the
average number of secondary infections caused by an infective individual introduced into a pool
of susceptibles. In the case of the simplest epidemiological models of the SIS and SIR types and a
considerable number of generalizations (e.g., [13]), if R0 < 1, the pathogen cannot successfully
invade the host population, and dies out; if R0 > 1, however, the pathogen can invade and suc-
cessfully colonize hosts, therefore producing an epidemic outbreak that in many cases ends up in
the establishment of an endemic disease in steady-state.

The mathematical description of this phenomenon involves a so-called transcritical bifurcation
that brings about an exchange in stability between the disease-free equilibrium, which exists for all
values of R0, and an endemic equilibrium which only exists on one side of the bifurcation point.
(On the other side, it has a negative value and is therefore outside the biologically feasible state
space.) Prototypical R0 threshold behavior features a `forward' bifurcation, in which the endemic
equilibrium exists only for R0 > 1, so that there is no possibility of an endemic state when R0 < 1.
In systems exhibiting a backward bifurcation, however, the endemic equilibrium exists for R0 < 1,
so that under certain initial conditions it is possible for an invasion to succeed, or for an estab-
lished endemic state to persist, with R0 < 1. See Fig. 1 for an illustration.

The presence of a backward bifurcation has other important consequences for the population
dynamics of infectious diseases. In a system with a forward bifurcation, if parameters change and
cause R0 to rise slightly above one, a small endemic state results; that is, the endemic level at
equilibrium is a continuous function of R0 [13]. In a system with a backward bifurcation, the
endemic equilibrium that exists for R0 just above one has a large infective population, so the result
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of R0 rising above one would be a sudden and dramatic jump in the number of infectives.
Moreover, reducing R0 back below one would not eradicate the disease, if the infective population
size is close to the endemic level at equilibrium: there will be two locally stable equilibrium points,
one with no disease and other with a positive endemic level. In this case, in order to eradicate the
disease, one must further reduce R0 so far that it passes a so-called saddle-node bifurcation at
Rc

0 < 1 (see Fig. 2) and enters the region where no endemic equilibria exist, and the disease-free
equilibrium is globally asymptotically stable.

This e�ect is known as hysteresis, and the system is said to have memory: that is, for R0 between
Rc

0 and 1, one can tell whether R0 was most recently less than Rc
0 or greater than 1 (barring a

sudden signi®cant invasion of infectives).
Models which exhibit backward bifurcations have been studied in an epidemiological context.

Castillo-Ch�avez et al. [14], Dusho� [15], Dusho� et al. [16], Hadeler and Castillo-Ch�avez [17],
Hadeler and van den Driessche [18], Huang et al. [19], and Kribs-Zaleta [20,21] have all con-
sidered models that exhibit backward bifurcations. More recently, Hadeler and van den Driessche
[18] reviewed such models and found that multi-group models with asymmetry between groups, or

Fig. 2. Backward bifurcation with hysteresis loop.

Fig. 1. A comparison of (a) the forward and (b) the backward bifurcations at R0 � 1.
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multiple interaction mechanisms, can cause backward bifurcations, and Dusho� et al. [16] derived
a criterion for determining the direction of the bifurcation at R0 � 1. Finally, Kribs-Zaleta [22]
used a more general approach to analyze bifurcations in epidemic models. Here it was also
concluded that backward bifurcations tend to arise when the population is compartmentalized in
other ways besides infectedness (typically by contact rates), and individuals can move between
these compartments. Backward bifurcations have also been found in metapopulation models
where the phenomenon has been associated with relatively high impact of migration on local
patch dynamics [23].

As mentioned before, behavioral change has been the subject of mathematical analysis in
models for the spread of infectious diseases as it relates to isolation [24], mixing patterns [25],
treatment [11,12,26], and vaccination and education programs [17]. One of the main reasons for
modeling these processes is to predict the e�ect of public health policies, particularly the imple-
mentation of treatment and vaccination campaigns. In this paper we concentrate on vaccination
policies and vaccine-related parameters: vaccine coverage (rate at which susceptible individuals
are immunized per unit time), average duration of immunity acquired by vaccine application
(waning period), and the leakiness of the vaccine, that is, the percentage of susceptible individuals
left unprotected even though vaccinated.

There are di�erent types of vaccines (see, e.g., [1,27]): some may give permanent immunity,
while others o�er only temporary protection; vaccines may not show 100% e�cacy (leaky vac-
cines), and, ®nally, vaccine coverage may not be 100%. There are other public health strategies
that behave in a fashion similar to that of the vaccine, but instead of a�ecting the immune defenses
on individuals, they a�ect behaviors that may impact (reduce or increase) disease transmission.
These we call public education programs (see, e.g., [17]).

Mass vaccination as a control mechanism attempts to lower the degree of susceptibility of a
healthy individual against a particular pathogenic agent. Since this decrease of susceptibility
occurs in a population, the overall e�ect of mass vaccination is to decrease the proportion of
contacts with infected individuals, giving rise to the concept of herd immunity. At the population
level, therefore, one wishes to identify the critical vaccination rate necessary to reduce a certain
threshold parameter below one so as to eradicate the disease or prevent infection (epidemic
outbreak) [8,9,17,28].

However, as noted above, in models that can exhibit multiple endemic equilibria, ensuring a
below-threshold value for the bifurcation parameter is insu�cient to ensure that a disease is wiped
out [11,17]. In particular, it has been seen that partially e�ective disease management programs
may actually be worse than none at all.

Because systems with multiple endemic states tend to be relatively complex, it is often di�cult
to provide a complete mathematical analysis of them. In this paper we present as simple a system
of this type as possible ± a two-dimensional model that exhibits a backward bifurcation ± along
with a complete analysis of its behavior.

The system considered in Section 2 models an SIS disease with a vaccinated class in a constant
size closed population with homogeneous mixing. The vaccination policy illustrated in the model is
one for an all/nothing vaccine which is leaky and confers only temporary immunity. The choice of
an SIS disease framework has been made for the sake of generality. Setting the cure rate to zero in
our equations leaves all of our results unchanged for an SI disease model. Likewise, the immunity
can be made permanent by setting a di�erent parameter to zero, without changing any results.
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In Section 3, we extend the system in two di�erent ways. In Sections 3.1 and 3.2, the model
expands to four dimensions in order to model two coexisting populations with di�erent vacci-
nation rates. This latter model was conceived to model a likely situation that may occur in
neighboring border cities such as San Diego and Tijuana, or El Paso and Ciudad Ju�arez, whose
populations interact on a daily basis while being subject to vaccination policies for the same
disease which are conceivably very di�erent. In the Mexican±US border example mentioned
above, the vaccination policies of BCG and rubella are completely di�erent in each country, and
yet disease transmission takes place in either side of the border.

Section 3.3 considers a model which includes as special cases both the model of Section 2 and
the model of primary focus in [17], in which some fraction of recovering infecteds pass directly
into the vaccinated class, and vaccination is permanent.

Finally, we conclude in Section 4 with a discussion of the mathematical and biological con-
sequences of our ®ndings.

2. A vaccination model

2.1. Model formulation and R0

Let us now consider a model for an SIS disease where a vaccination program is in e�ect. We
model new infections using the mass±action law, so that in general there are bSI=N new infections
in unit time, where S, I and N are the numbers of susceptibles, infectives and total population,
respectively. We assume that the timescale of the disease is such that the overall change in
population size N is negligible as an invasion of disease takes its course [18,29], or, equivalently,
that the population has reached its carrying capacity [30]. Consequently the expressions for mass-
action and standard incidence coincide (for a discussion of standard incidence, see [31]). We also
assume a constant recovery rate c. The vaccine has the e�ect of reducing the infection rate by a
factor of r, so that r � 0 means the vaccine is completely e�ective in preventing infection, while
r � 1 means that the vaccine is utterly ine�ective. The susceptible population is vaccinated at a
constant rate /, and the vaccine also wears o� at a constant rate h. We allow for renewal of the
population, however, via the birth/death rate l; all newborns come into the susceptible class. We
have chosen to present an SIS model, appropriate for diseases such as pertussis and tuberculosis,
to illustrate our results. However, there is no loss in mathematical generality if we assume the cure
rate to be equal to zero, thus obtaining an SI model more suited for diseases as AIDS and many
others.

We can now formulate this model, dividing the population into three classes ± susceptibles (S),
infectives (I) and vaccinated (V):

S0 � lN ÿ bSI=N ÿ �l� /�S � cI � hV ;

I 0 � b�S � rV �I=N ÿ �l� c�I ;
V 0 � /S ÿ rbVI=N ÿ �l� h�V :

Since we assume the population size N constant, we can reduce the size of the model by letting
S � N ÿ I ÿ V . Now the model is
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I 0 � �N ÿ I ÿ �1ÿ r�V �bI=N ÿ �l� c�I ;
V 0 � /�N ÿ I ÿ V � ÿ rbVI=N ÿ �l� h�V

�1�

reminding the reader of our parameters, all non-negative, where b is the infectious contact rate
(per person, in unit time), c the recovery rate for the disease (assumed constant), l the natural
birth/death rate (unrelated to disease), N the population size (assumed constant), / the vacci-
nation rate, h the rate at which the vaccination wears o� and r measures the e�ciency of the
vaccine as a multiplier to the infection rate: 0� completely e�ective, 1� useless; we take 06 r6 1.

We note that results on well-posedness found in [32] guarantee the existence and uniqueness of
solutions to all models discussed in this paper, and continuous dependence on parameters. Also,
solutions remain within the state space I P 0, V P 0, I � V 6N .

We can write the equilibrium conditions by setting the left-hand side of each di�erential
equation equal to zero. We can solve the second one for the equilibrium value

V � � /�N ÿ I��
l� h� /� br�I�=N� :

Substituting this expression into the ®rst condition and simplifying, we get a cubic equation in
I�=N . Factoring out I�=N , which yields the disease-free equilibrium I� � 0, V � � /N=�l� h� /�,
we are left with a quadratic f �x� � Ax2 � Bx� C � 0, where x � I�=N , A � ÿbr,
B � r�bÿ �l� c�� ÿ �l� h� r/�, and C � �l� h� /��1ÿ �l� c�=b� ÿ �1ÿ r�/.

Let us ®rst consider the disease-free equilibrium. We can calculate the basic reproductive
number R for the disease ± which determines the local stability of this equilibrium ± by means of
either the Jacobian matrix, obtained from linearizing the right-hand side of (1), or the next-
generation matrix operator [33,34], obtained by considering equilibria as ®xed points of a map. R
is the dominant eigenvalue of the latter matrix, and appears in the dominant eigenvalue of the
Jacobian matrix as a factor �Rÿ 1�. The reproductive number in the absence of vaccination is
calculated to be R0 � b=�l� c�. When vaccination is present, we obtain the threshold parameter
or vaccine reproduction number

R�/� � b
l� c

l� h� r/
l� h� /

:

We write R�/� to emphasize the role of the vaccination rate in controlling the spread of the
disease. Note that R�0� � R0, and that R�/�6R0 for all / P 0 (since r6 1). In particular, the
second factor in R�/� shows how much the vaccination reduces R0.

The disease-free equilibrium I� � 0, V � � /N=�l� h� /� is locally stable if and only if
R�/� < 1. Furthermore, Lemma 1 shows that the disease-free equilibrium is globally stable if
R0 < 1. The proof, given in Appendix A, uses a priori estimates and inequalities. See Fig. 3 at the
end of Section 2.2 for an illustration.

Lemma 1. For the system (1), the disease-free equilibrium is globally asymptotically stable if
R�0� � R0 < 1.
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2.2. Endemic equilibria and bifurcations

Let us begin our investigation of endemic equilibria for model (1) by considering two extreme
special cases.

First suppose that r � 1, i.e., the vaccine is useless. This makes the equation for I independent
of V, and R�/� reduces to R0. Now if R0 > 1, I�t� asymptotically approaches �1ÿ �1=R0��N .
Consequently, V �t� approaches /N=��l� h� /� b�R0 ÿ b�. Here we observe classical R0

threshold behavior.
If instead we suppose that r � 0, so that the vaccine is completely e�ective, then we ®nd one

(stable) endemic equilibrium, which exists only for R�/� > 1:

I� � 1

�
ÿ 1

R0

1

�
� /

l� h

��
N ; V � � /N

R0�l� h�
Now we wish to answer the general question of what endemic equilibria are possible for

0 < r < 1. We return to the equilibrium condition f �x� � Ax2 � Bx� C � 0. Note that A < 0, and
that C � �l� h� r/��1ÿ 1=R�/��, so that C > 0 precisely when R�/� > 1. Note also that
f �0� � C, f �1� � A� B� C � ÿ�l� c��l� h� /� br�=b < 0, and that f 's vertex x � ÿB=2A <
br=2br � 1=2 < 1 lies to the left of x � 1. Now an endemic equilibrium corresponds to a solution
of f �x� � 0 on the unit interval [0,1]. By examining the quadratic f, we can see that there is exactly
one endemic equilibrium whenever C > 0, there are precisely two whenever C < 0, B > 0 (i.e.,
ÿB=2A > 0) and B2 ÿ 4AC > 0, and there are none otherwise. (There is also a bifurcation point
with C < 0, B > 0 and B2 ÿ 4AC � 0, at which there is precisely one, but we shall deal with this
later.)

The two parameters we are most likely to be able to change as public policy makers are b and /;
hence we can write the conditions in terms of b (see below). They can also be put in terms of /, but
the expressions are more complicated, less enlightening, and lack the linear correlation with R�/�
which b a�ords. In either case, the ways these conditions can be satis®ed ± a large infection rate
and a low vaccination rate ± are plausible reasons for enabling the disease to invade. (The con-
dition involving the discriminant is quadratic in both b and /, but can be simpli®ed using the
condition B > 0. The two conditions B > 0 and B2 ÿ 4AC > 0 cannot, however, be reduced to
one.) We therefore rewrite these conditions as follows:

Lemma 2. For model (1), with R�/� as defined above,
(i) When R�/� > 1, there is precisely one endemic equilibrium.
(ii) When R�/� < 1, there are precisely two endemic equilibria if b > l� c� /� �l� h�=r and
b > l� cÿ �l� h� r/�=r� �2=r� ������������������������������������l� c��1ÿ r�r/

p
. Otherwise there are none.

Stability analysis is hindered here by the complexity of the expressions for the endemic equi-
libria, which we might normally like to plug into the system's characteristic equation (and by the
absence of other convenient relations between equilibrium values). For this reason we will instead
determine stability by looking at bifurcation points. As evidenced by Lemma 2 above, model (1)
does have the usual (transcritical) bifurcation at R�/� � 1. Under certain conditions, to be de-
termined below, this becomes a `backward' (subcritical) bifurcation, so that endemic equilibria
exist for R�/� < 1 as well as for R�/� > 1.
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In this case, there is some critical value of R�/� below 1, where a pair of endemic equilibria are
created at a second, saddle-node type bifurcation (see again Fig. 1). We can ®nd this bifurcation
point by setting the discriminant B2 ÿ 4AC to zero. Solving this equation for R�/� yields

R�/� � 4br�l� h� r/�
4br�l� h� r/� � B2

;

although we might better identify the bifurcation point in terms of b by rewriting B2 ÿ 4AC � 0 as
b � l� cÿ �l� h� r/�=r� �2=r� ������������������������������������l� c��1ÿ r�r/

p
. It is also possible, albeit not as clean, to

solve this equation for /. We can verify analytically that these two bifurcations are the only ones
exhibited by model (1).

One bifurcation analysis approach is the technique described in [22]. For each bifurcation, we
shall ®rst reduce the dimension of the system to consider only the center manifold at the bifur-
cation point, a subset of the state space which acts as an attractor ± in other words, all solutions
approach this manifold (in this case, a curve), and it is on the manifold that the interesting dy-
namics occur. For more background, see Refs. [22,35].

We compute [22] model (1)'s center manifold at R�/� � 1 and the disease-free equilibrium as

y � b
N
�1ÿ r� /�l� h� /� br� ÿ �l� h� /�2

/�l� h� /� br��l� h� /�

" #
x2 ÿ l� c

l� h� /
xp � C

up to second-order terms, where

x � ÿ/�l� h� /� br�
�l� h� /�2 I; y � /�l� h� /� br�

�l� h� /�2 I � V ÿ V �;

the bifurcation parameter p � R0 ÿ 1, and C represents all terms of order three in x and p.
We now consider the dynamics on the center manifold, where we can write

x0 � �l� c�pxÿ b
N
�1
"
ÿ r� ÿ �l� h� /�2

/�l� h� /� br�

#
x2 ÿ b

N
�1ÿ r� l� c

l� h� /
x2p �O�x3�:

We compare this expression with the canonical form, or normal form, for a generic forward
transcritical bifurcation: x0 � pxÿ x2 �O�x3�. We see that the bifurcation at R�/� � 1 is indeed
transcritical i�

~h � �1ÿ r� ÿ �l� h� /�2
/�l� h� /� br� 6� 0;

and that the bifurcation is forward in x ± and therefore backward in I ± i� ~h > 0. (A linear
transformation can remove the x2p term.) Note that this is only possible if r < 1, which agrees
with our observation that the vaccine must have some e�ect in order to enable a backward bi-
furcation. This criterion can also be developed using the criterion presented by Dusho� et al. [16].

The approach of [22] also allows us to verify the saddle-node bifurcation that exists when the
transcritical bifurcation above is backward. We identify the point as B2 ÿ 4AC � 0; B > 0;f
C < 0g or
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R�/� � 4br�l� h� r/�
4br�l� h� r/� � B2

;

based on the equilibrium conditions we derived earlier. If we now de®ne our bifurcation pa-
rameter p2 � B2 ÿ 4AC and let

x � ÿ�r=�1ÿ r���B� 2�l� h� /���I ÿ I�� � B�V ÿ V ��
B� r�B� 2�l� h� /�� ;

y � �1=�1ÿ r���I ÿ I�� � �V ÿ V ��
B� r�B� 2�l� h� /�� ;

where

I� � BN
2br

and V � � /N
br

2brÿ B
B� 2�l� h� /� ;

then we can ®nd the center manifold in terms of x and p, on which the dynamics are

x0 � ÿ BN
4br�1ÿ r��B� r�B� 2�l� h� /��� p

� b
N

r�1ÿ r� B
B� r�B� 2�l� h� /�� x

2 �O�xp� �O�p2� � C:

The normal form for a saddle-node bifurcation is x0 � p � x2 � C, and we can see that the ex-
pression above ®ts this form (again a linear transformation can eliminate the O�xp� and O�p2�
terms).

This approach also shows us that the stability of these `extra' endemic equilibria is indeed as we
expected: for example, the forward transcritical bifurcation x0 � pxÿ x2 has x� � 0 stable for p < 0
and unstable for p > 0, and vice versa for the equilibrium given locally by x� � p. Since, for the
transcritical bifurcation in model (1), I and x di�er in sign (see the de®nition of x above), this
means that when the bifurcation at R�/� � 1 is backward in I, I� � 0 is stable for R�/� < 1 (p < 0)
and unstable for R�/� > 1 (p > 0), and, more importantly, vice versa for the endemic equilibrium
which enters the state space through that bifurcation and exists for R�/� < 1. The saddle-node
bifurcation gives us similar information about the two endemic equilibria which meet there, and
this local picture of (local) stability extends to a global picture of (local) stability ± i.e., proves that
the stability claimed in Fig. 2 is accurate ± unless there is another bifurcation in between, at which
an eigenvalue of the characteristic equation crosses the imaginary axis (real part zero). However,
we have seen above that there are no such other bifurcations.

Now note that we can easily solve the condition ~h > 0 for b:

b >
�l� h� /��l� h� r/�

r�1ÿ r�/ :

From this we see, not surprisingly, that a su�ciently high contact rate in the presence of a par-
tially e�ective vaccine will cause a backward bifurcation. The condition cannot be expressed so
simply in terms of any of the other parameters; it is worth noting that the recovery rate c does not
appear, although of course it does appear in the equation R�/� � 1. Since we know the condition
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cannot be satis®ed for r � 0 or r � 1, there must be a certain range of e�ectiveness (i.e., of r) for
which a backward bifurcation will occur; likewise, for / near 0 or / su�ciently large, we see the
condition cannot be met, so there is a range of vaccination rates which will allow it to happen.

We may be concerned that our criterion for the existence of a backward bifurcation in model
(1) does not appear to match Lemma 2's three conditions for the existence of two endemic
equilibria: R�/� < 1, B > 0, B2 ÿ 4AC > 0. However, a backward bifurcation only guarantees two
endemic equilibria when parameters fall in the range Rc�/� < R�/� < 1. The ®rst and last of the
above trio of conditions ensure that the parameters fall within this range; the ®rst two conditions
together imply ~h > 0.

Now we can put the pieces together to form a complete picture of the model's behavior. We
may divide the parameter space into three regions: (1) R0 < 1, in which case, as shown in Lemma
1, the disease-free equilibrium is globally stable; (2) R�/� < 1 < R0, which is most of interest from
a control perspective; and (3) R�/� > 1, in which the vaccination program is not e�ective enough
to bring the disease's reproductive number down, and the unique endemic equilibrium remains the
only attractor. (Note that Poincar�e±Bendixson applies since this is a two-dimensional system.)

In case (2), vaccination makes the disease-free equilibrium locally stable, but there remain two
possibilities for global behavior: either the disease-free equilibrium is globally stable, or it com-
petes with a locally stable endemic equilibrium. We can state the criteria for determining the
global behavior most easily in terms of b. Let us de®ne the following quantities; their individual
signi®cances are given at right.

b00 � l� c; b < b00 () R0 < 1 �disease dies out regardless of vacc: program�;

b0 � �l� c� l� h� /
l� h� r/

; b < b0 () R�/� < 1 �DFEQ a local attractor�;

ba � l� c� l� h� r/
r

;

b > ba () B > 0 �ENEQs which may exist when R�/� < 1 will be in state space�;

bb � l� cÿ l� h� r/
r

� 2

r

�����������������������������������
�l� c�r�1ÿ r�/

p
;

b > bb () B2 ÿ 4AC > 0 �R�/� > Rc�/� when backward bifurcation exists�;

bc �
�l� h� /��l� h� r/�

r�1ÿ r�/ ; b > bc () ~h > 0 �backward bifurcation exists�:

We can see that b00 < b0 and b00 < ba, and we can show that either (a) bc < ba < bb < b0 or (b)
bb < b0 < ba < bc (or all four are equal; this is why the endemic equilibrium conditions cannot be
reduced). If R�/� < 1 < R0, then we have b00 < b < b0. If (a) holds, it is possible to have endemic
equilibria if bb < b < b0 (note this implies R�/� < 1); if (b) holds, then R�/� < 1 (b < b0) pre-
cludes the existence of endemic equilibria (b > max�ba; bb�). Inequality (a) can be rewritten more
simply as �l� h� r/�2 < �l� c�r�1ÿ r�/. We can rewrite Lemma 2(ii)'s conditions as
max�ba; bb� < b < b0. Thus, ®nally, we conclude that
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Theorem 1. For model (1), with R�/�, b0, bb as defined above,
(i) If �l� h� r/�2 < �l� c�r�1ÿ r�/ and bb < b < b0, then two endemic equilibria exist, one
of which is locally stable and competes with the locally stable disease-free equilibrium;
(ii) otherwise, the disease-free equilibrium is the unique attractor when R�/� < 1.

Note that the backward bifurcation exists whenever b > bc, but if parameter values make
R�/� > 1 (b > b0) or R�/� < Rc�/� (b < bb), we will not observe its e�ect on system behavior. See
Fig. 3 for an illustration.

We can interpret biologically the endemic equilibrium which exists under the backward bi-
furcation as follows. Infected individuals arise from two sources: those susceptibles that get in-
fected and those vaccinated that get infected. Under certain particular but nonetheless ample
circumstances, migration into the infected class is large even though R�/� < 1: for a range of
values of vaccination and infection rates, involving comparatively high infection and recovery
rates, susceptibles are more likely to be infected than vaccinated, thus increasing the ¯ow into the
infected class. This promotes locally the existence of an endemic equilibrium for below-threshold
values of the reproduction number. The above e�ect is valid only for population densities close to
this endemic equilibrium. When initial conditions involve a su�ciently low number of infectives, it
is not possible to sustain the exchange of susceptibles and infecteds necessary to establish an
endemic state.

3. Extensions

In this section we shall consider two extensions of the model considered in the last section;
results prove similar to those obtained above.

3.1. A two-group model

Now suppose we have two separate but interacting populations, such as those of border cities
like San Diego and Tijuana, El Paso and Ciudad Ju�arez, or Laredo and Nuevo Laredo. A disease
may be in circulation, and transmitted, among members of each population, as well as between
populations. In this case, the two groups may have di�erent values for model parameters,

(a) (b)

Fig. 3. Bifurcation diagrams for model (1) in the two cases: (a) bc < ba < bb < b0 and (b) bb < b0 < ba < bc.
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especially those dealing with vaccination. Suppose we allow l (the natural birth/death rate) and c
(the recovery rate) to be the same for the two populations. We can now formulate a four-di-
mensional model of this situation by connecting two copies of our two-dimensional model (with
S1 and S2 eliminated):

I 01 � �N1 ÿ I1 ÿ �1ÿ r1�V1��b1I1 � b2I2�=N ÿ �l� c�I1;

V 01 � /1�N1 ÿ I1 ÿ V1� ÿ r1V1�b1I1 � b2I2�=N ÿ �l� h1�V1;

I 02 � �N2 ÿ I2 ÿ �1ÿ r2�V2��b1I1 � b2I2�=N ÿ �l� c�I2;

V 02 � /2�N2 ÿ I2 ÿ V2� ÿ r2V2�b1I1 � b2I2�=N ÿ �l� h2�V2;

�2�

where N1 and N2 are the sizes of the two groups, assumed constants, and N � N1 � N2. Note that
the only interaction between populations is in the term representing new infections.

The equilibrium conditions are now too complicated to obtain a simple closed-form solution;
however, we can see that the disease-free equilibrium

0;
/1N1

l� h1 � /1

; 0;
/2N2

l� h2 � /2

� �
always exists. If we de®ne the marginal vaccine reproduction numbers

R1�/1� �
b1

l� c
l� h1 � r1/1

l� h1 � /1

and R2�/2� �
b2

l� c
l� h2 � r2/2

l� h2 � /2

;

analogous to R�/� for the two-dimensional model, then local stability analysis of the disease-free
equilibrium for the four-dimensional model yields the overall vaccine reproduction number

R�U� � R1�/1�
N1

N
� R2�/2�

N2

N
;

a weighted average of the two individual populations' R�/�'s, where U � �/1;/2�. Note that
R�0; 0� � R0, the basic reproductive number for the disease (in the absence of any vaccination).

We can easily obtain the following result analogous to Lemma 1 (proof in Appendix A):

Theorem 2. For system (2), the disease-free equilibrium is globally asymptotically stable if

R0 � b1

�l� c�
N1

N
� b2

�l� c�
N2

N
< 1:

Note again that this does not preclude the stability of endemic equilibria which may exist for
R�U� < 1, as they should occur for parameter values which do not satisfy the theorem hypothesis.
Also, our interpretation is again that the vaccination extends the local (not necessarily global)
stability of the disease-free equilibrium.

3.2. Endemic equilibria of the two-group model

We now turn to the existence of endemic equilibria. We can solve two of the equilibrium
conditions for V �1 and V �2 in terms of I�1 and I�2 :
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V �1 �
/1�N1 ÿ I�1 �

l� h1 � /1 � r1 �b1I�1 � b2I�2 �=N� � ; V �2 �
/2�N2 ÿ I�2 �

l� h2 � /2 � r2 �b1I�1 � b2I�2 �=N� � :

The remaining conditions can thus be reduced to cubic equations of the form h1�x; y� � 0 and
h2�x; y� � 0, where x � I�1=N , y � I�2=N . Any equilibria must then correspond to intersections of
the zero contours of h1 and h2 within the domain �0;N1=N � � �0;N2=N �. By analyzing these
functions' zero contours, we can show the following.

Theorem 3. For model (2), with R�U� as defined above,
(i) for R�U� < 1, there is an even number of endemic equilibria;
(ii) for R�U� > 1, there is an odd number of endemic equilibria;
(iii) for R�U� < 1, either of the conditions b1 > max�b1a; b1b�, b2 > max�b2a;b2b� is sufficient
(but not necessary) to cause two endemic equilibria,

where

b1a �
N
N1

l

�
� c� l� h1 � r1/1

r1

�
;

b1b �
N
N1

l

�
� cÿ l� h1 � r1/1

r1

� 2

r1

�����������������������������������������
�l� c�r1�1ÿ r1�/1

p �
;

and b2a and b2b are defined similarly.

Furthermore, numerical results appear to indicate that the number of endemic equilibria is
never more than two.

These results are a natural extension of those we obtained for model (1); clause (iii) yields an
important consequence of the coupling of these two populations: each of the two is capable, under
certain conditions, of bringing a stable endemic equilibrium into existence for R�U� < 1 regardless
of how much e�ort the other population puts into vaccination and reducing its contact rate.

3.3. From infection to immunity

The model of primary focus in [17] bears several structural similarities to the one studied in
Section 2; the main di�erence is that vaccination is considered permanent (h � 0), and some
fraction of recovering infecteds pass directly into this class; that is, it assumes that treatment and
vaccination induce permanent immunity against the disease. In this sense, we could think of the
model as an SIR model, or consider instead of vaccination and treatment an education program
that changes behavior, e�ectively inducing immunity to disease transmission. We can easily ex-
tend system (1) to include this latter feature, introducing a parameter c, 06 c6 1 [17], to denote
the proportion of infecteds who pass directly into the vaccinated class upon recovery.

After reducing the model to two dimensions, as before, the only di�erence is a term ccI in the
equation for V 0:

I 0 � �N ÿ I ÿ �1ÿ r�V �bI=N ÿ �l� c�I;
V 0 � /�N ÿ I ÿ V � � ccI ÿ rbVI=N ÿ �l� h�V : �3�
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The analysis of this model parallels that given in Section 2, with only a few small di�erences.
The disease-free equilibrium and expression for R�/� are unchanged, but the analogues of ba, bb

and bc are

bca � l� c� l� h� r/
r

� �1ÿ r�cc
r

bcb � l� c� �1ÿ r�cc
r

ÿ l� h� r/
r

� 2

r

��������������������������������������������������������������������������������������
�l� c�r�1ÿ r�/ÿ cc�1ÿ r��l� h� r/�

p
bcc �

�l� h� /��l� h� r/� �1ÿ r�cc�
r�1ÿ r�/

Therefore, the analogue of Theorem 1 is:

Theorem 4. For model (3), if R�/� > 1, then the unique endemic equilibrium is globally asymp-
totically stable. If R�/� < 1, then the disease-free equilibrium is globally stable unless

(i) b > bca and b > bcb, or, equivalently,
(ii) �l� h� r/�2 < �l� c�r�1ÿ r�/ÿ cc�1ÿ r��l� h� r/� and b > bcb,

in which case there is a locally stable endemic equilibrium in competition with the locally stable
disease-free equilibrium.

We note, as did Hadeler and Castillo-Ch�avez, that if recovery brings permanent immunity, i.e.,
c � 1 and h � 0, there can be no backward bifurcation; in particular the ®rst condition in (ii)
above is violated.

As a ®nal remark, we note that Hadeler and van den Driessche consider a further generalized
model in [18]; for example, if we let a proportion j, 06 j6 1, of new arrivals into the population
enter the vaccinated class, the expression for R�/� is further reduced as follows:

R�/� � b
l� c

l� h� r/ÿ �1ÿ r�lj
l� h� /

:

3.4. Disease-induced mortality

Finally, we consider the case where the disease produces non-negligible death in the infected
population. Model equations now give rise to a system where the total population is not constant:

S 0 � k ÿ bSI=N ÿ �l� /�S � cI � hV ;

I 0 � b�S � rV �I=N ÿ �l� d � c�I; �4�
V 0 � /S ÿ rbVI=N ÿ �l� h�V ;

where k is now the recruitment rate of susceptibles and d is the disease-induced mortality. In this
case the basic reproductive number stands as

R0 � b
l� c� d

:
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The vaccination reproduction number can be computed as

R�/� � R0

l� h� r/
l� h� /

:

The introduction of disease-induced mortality in our model does not allow its reduction to a lower
dimensional system like (1). Nevertheless the backward bifurcation phenomenon still exists for
values of R�/� < 1 as the following numerical example suggests (see Fig. 4).

4. Discussion

Public health policies have consequences at the population level. In particular, the application
of vaccines has to take into consideration not only vaccine-related parameters such as coverage,
e�cacy and so forth, but also social factors (risk behaviors) that may alter the expected theoretical
predictions. In Section 1 we discussed several instances in which mathematical models help to
identify plausible harmful e�ects of otherwise straightforward disease control strategies. The
AIDS pandemic together with other emerging infectious diseases has underlined the necessity of
careful control and planning of public health actions to prevent these e�ects that can go from
spreading the diseases instead of eradicating it, to promoting the persistence of pathogen strains
resistant to treatment drugs.

Vaccines that attempt to reduce susceptiblity to infection can be characterized by at least three
important parameters represented in our model: coverage (represented by /), e�cacy (represented
by r), and waning period (represented by h). Arguably not all of these are important in all
vaccines. However, all of them interact and determine to a certain degree the success or failure of
a vaccinaton program. Coverage and e�cacy are related to costs either in terms of vaccination
campaigns, accessibility of vaccines, propaganda, etc., or in terms of intrinsic factors, e.g., quality
of the vaccine.

The model and its generalization presented and analyzed in this paper are perhaps the simplest
caricature possible of a vaccination program applied to a general population, and, in summary, it

Fig. 4. Multiple steady-states for the full 3D vaccination model (4) for the parameter values l � 0:01, c � 0:0, h � 0:01,

r � 0:02, d � 0:11, k � 10, b � 3:27, and 0:9737 < R�/� < 1. The separatrix divides the state space into two basins of

attraction, one for each of the two stable equilibria (shown).
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shows that a vaccination campaign / meant to reduce a disease's reproduction number R�/�
below one may fail to control the disease:
· If the aim is to prevent an epidemic outbreak, a large initial number of infective persons can

cause a high endemicity level to arise rather suddenly even if the vaccine-reduced reproduction
number is below threshold.

· If the aim is to eradicate an already established disease, bringing the vaccine-reduced reproduc-
tion number below one may not be su�cient to do so.
Above, we have given a complete analysis of a simple model exhibiting a backward bifurcation

± the simplest of which we are aware. Techniques focusing on the bifurcation(s) present have
yielded local stability information in a situation where more traditional methods require di�cult
calculations; in this way the bifurcation analysis has allowed us to identify the parameters in-
volved in this phenomenon.

Moreover, within the context of our models, we have seen that a partially e�ective vaccination
program, in combination with a su�ciently high contact rate, can actually enable an invasion to
succeed where it would normally die out. Keep in mind, however, that the vaccination program
modeled in this paper does not, strictly speaking, make things worse: Without vaccination, the
disease is guaranteed to die out if b=�l� c� < 1, and (cf. Lemma 1) this remains true under
vaccination. Rather, as discussed at the end of Section 2.2, the vaccination program extends the
local stability of the disease-free equilibrium in such a way that under certain conditions, an
invasion of infectives can cause an endemic state to arise in a previously disease-free environment
without any of the epidemiological parameters changing.

More quantitatively, we can answer the question of whether or not to vaccinate as follows. In
general, a vaccination program is of interest when parameters are such that R�/� < 1 < R0, i.e.,
without vaccination the disease will persist, but if everyone were vaccinated, the disease would
normally die out. In such a situation, we wish to know how high the vaccination rate / must be,
not only to reduce R�/� beneath 1 but to ensure that no endemic equilibria are possible. From the
®rst inequality in (ii) of Theorem 4, we see that a backward bifurcation will be possible for some
values of / i� Q � 2�l� h� ÿ �1ÿ r��l� c�1ÿ c�� < 0. Since l should be available from de-
mographic data and h, r, c and c can be measured from controlled studies of the vaccine,
this condition can ®rst be determined. If the inequality above is obeyed, it is still possible to
avoid multiple endemic equilibria by keeping / out of the `danger zone' �1=2r�
�ÿQ� ��������������������������������������������������������������������

Q2 ÿ 4�l� h��l� h� cc�1ÿ r��p � (also obtained from (ii) in Theorem 4), or else by
keeping the contact rate su�ciently low: b < bcb.

Third, when two at-risk populations interact, each population is capable of enabling an in-
vasion to persist, regardless of the e�orts of the other population. This suggests that such inter-
acting populations, such as nearby border towns or other distinct groups whose geographical
distribution overlaps, must include in their disease control policy a vaccination strategy that in-
volves both groups ± in other words, think globally.

The notion of vaccination in this context can also be extended to a more general description of
education and behavior. In the context of a sexually transmitted disease, one might consider an
`educated' class which employs practices that reduce the risk of infection. Hadeler and M�uller
discuss this notion with respect to two-sex models in [36]. In the context of infections commu-
nicable through direct contact, one could consider as `vaccinated' those individuals who consci-
entiously wash their hands, glassware, etc.
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We may also speculate that similar results will occur for more than two interacting populations;
the more general case is an area for future study, as is the more explicit consideration of the non-
epidemiological contexts suggested above when formulating the model. Finally, also worthy of
further study (and addressed in part in [18,22]) is the application of the bifurcation-related
techniques illustrated in this paper to obtain a more complete, cohesive idea of what causes
backward bifurcations in epidemic models, a phenomenon with important biological conse-
quences.
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Appendix A. Proofs

Lemma 1. For the system (1), the disease-free equilibrium is globally asymptotically stable if
R�0� � R0 < 1.

Proof. We ®rst rewrite the system as a set of integral equations:

I�t� �
Z t

ÿ1
�N ÿ I�s� ÿ �1ÿ r�V �s��b I�s�

N
eÿ�l�c��tÿs� ds;

V �t� �
Z t

ÿ1
/�N
�

ÿ I�s� ÿ V �s�� ÿ brV �s� I�s�
N

�
eÿ�l�h��tÿs� ds:

We now use the substitution x � t ÿ s, take the lim sup of both sides of the equation for I�t� and
apply the fact that lim sup

R
f 6

R
lim sup f (see [37, Lemma 2]) to get

lim sup
t!1

I�t� � lim sup
t!1

Z 1

0

�N ÿ I�t ÿ x� ÿ �1ÿ r�V �t ÿ x��b I�t ÿ x�
N

eÿ�l�c�x dx

6
Z 1

0

lim sup
t!1

�N ÿ I�t ÿ x� ÿ �1ÿ r�V �t ÿ x��b lim sup
t!1

I�t ÿ x�
N

eÿ�l�c�x dx

6 lim sup
t!1

�N ÿ I�t� ÿ �1ÿ r�V �t��b lim sup
t!1

I�t�
N

Z 1

0

eÿ�l�c�x dx

6N � b lim sup
t!1

I�t�
� ��

N
1

l� c
� b

l� c
lim sup

t!1
I�t�:

Thus if b=�l� c� < 1, we have the strict inequality (and contradiction) lim supt!1 I�t� <
lim supt!1 I�t�, unless lim supt!1 I�t� � 0. �
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Theorem 2. For system 2, the disease-free equilibrium is globally asymptotically stable if

R0 � b1

�l� c�
N1

N
� b2

�l� c�
N2

N
< 1:

Proof. By rewriting the system as a set of integral equations and applying the methods of Theorem
1, we can obtain the inequalities

lim sup
t!1

I1�t�6 N1

N
b1

l� c
lim sup

t!1
I1�t�

�
� b2

l� c
lim sup

t!1
I2�t�

�
;

lim sup
t!1

I2�t�6 N2

N
b1

l� c
lim sup

t!1
I1�t�

�
� b2

l� c
lim sup

t!1
I2�t�

�
:

We now apply Lemma 3 from [37] to get that if R0 < 1, then lim supt!1 I1�t� �
lim supt!1 I2�t� � 0. �
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